19 research outputs found

    A user preference perception model using data mining on a Web-based Environment

    Get PDF
    In a competitive environment, how to provide the information and products to meet the requirements of customers and improve the customer satisfaction will be the key criteria to measure a company’s competitiveness. Customer Relationship Management (CRM) becomes an important issue in any business market gradually. Using information technology, businesses can achieve their requirements for one to one marketing more efficiently with lower cost, labor and time. In this paper, we proposed a user preference perception model by using data mining technology on a web-based environment. First, the users’ web browse records are aggregated. Second, fuzzy set theory and most sequential pattern mining algorithm are used to infer the users’ preference changes in a period. After the test had processed, we use the on-line questionnaire to investigate the customer satisfaction degree from all participators. The results show that the degree of satisfaction was up to 72% for receiving the new information of participants whose preferences had been changed. It indicates that the proposed system can effectively perceive the change of preference for users on a web environment

    Zoning Mashhad Watershed for Artificial Recharge of Underground Aquifers using TOPSIS Model and GIS Technique

    Get PDF
    In recent years coincide with population growth and industrial expansion in many countries in the world Extract water of underground sources expanded and annual withdrawal of ground water is higher than the annual feeding This means extracting and using the water in layers that has been saved over thousands of years in the underground Consequently groundwater levels in the area will be extracted every day and eventually drop where the water will not exist While proper management and control of these resources will eliminate the problems of drop in water level One way to managing groundwater resources is artificial recharge of groundwater and determine suitable locations for these purpose growth and development trend of Mashhad city and excessive Extracting of ground water in recent years has been essential groundwater resources management strategy in the region more than ever implied The purpose of this study is Zoning Mashhad watershed for artificial recharge of underground aquifers using TOPSIS Model and GIS technique TOPSIS algorithm is a Multi Criteria Decision Making a type of compensatory model and an adaptable subgroup with strong ability to solve multi alternative problems because of having ability to overlap indicators in weak and power points In this model if quantitative criteria can change in to qualitative criteria qualitative criteria can be used besides quantitative criteria In aforementioned model it is supposed that each indicator and criterion has steady increasing and decreasing utility in decision making matrix it means if criteria gain more positive amount they will be more appropriate on the contrary the more negative amount the less appropriate The result and findings of different studies show that in TOPSIS method zone 3 with 0 669 point promotes in first rank among 5 studied zones and thus it is the most appropriate zone to establish the proper area for artificial recharge of underground aquifers in contrast zone

    A possibilistic approach to latent structure analysis for symmetric fuzzy data.

    Get PDF
    In many situations the available amount of data is huge and can be intractable. When the data set is single valued, latent structure models are recognized techniques, which provide a useful compression of the information. This is done by considering a regression model between observed and unobserved (latent) fuzzy variables. In this paper, an extension of latent structure analysis to deal with fuzzy data is proposed. Our extension follows the possibilistic approach, widely used both in the cluster and regression frameworks. In this case, the possibilistic approach involves the formulation of a latent structure analysis for fuzzy data by optimization. Specifically, a non-linear programming problem in which the fuzziness of the model is minimized is introduced. In order to show how our model works, the results of two applications are given.Latent structure analysis, symmetric fuzzy data set, possibilistic approach.

    DEDUCTIVE OR INDUCTIVE? PROSPECTIVE TEACHERS’ PREFERENCE OF PROOF METHOD ON AN INTERMEDIATE PROOF TASK

    Get PDF
    The emerging of formal mathematical proof is an essential component in advanced undergraduate mathematics courses. Several colleges have transformed mathematics courses by facilitating undergraduate students to understand formal mathematical language and axiomatic structure. Nevertheless, college students face difficulties when they transition to proof construction in mathematics courses. Therefore, this descriptive-explorative study explores prospective teachers' mathematical proof in the second semester of their studies. There were 240 pre-service mathematics teachers at a state university in Surabaya, Indonesia, determined using the conventional method. Their responses were analyzed using a combination of Miyazaki and Moore methods. This method classified reasoning types (i.e., deductive and inductive) and types of difficulties experienced during the proving. The results conveyed that 62.5% of prospective teachers tended to prefer deductive reasoning, while the rest used inductive reasoning. Only 15.83% of the responses were identified as correct answers, while the other answers included errors on a proof construction. Another result portrayed that most prospective teachers (27.5%) experienced difficulties in using definitions for constructing proofs. This study suggested that the analytical framework of the Miyazaki-Moore method can be employed as a tool to help teachers identify students' proof reasoning types and difficulties in constructing the mathematical proof

    An optimization model of the acceptable consensus and its economic significance

    Get PDF
    Purpose – The purpose of this paper is to construct an optimal resource reallocation model of the limited resource by a moderator for reaching the greatest consensus, and show how to reallocate the limited resources by using optimization methodology once the consensus opinion is reached. Moreover, this paper also devotes to theoretically exploring when or what is the condition that the group decision-making (GDM) system is stable; and when new opinions enter into the GDM, how the level of consensus changes. Design/methodology/approach – By minimizing the differences between the individuals’ opinions and the collective consensus opinion, this paper constructs a consensus optimization model and shows that the objective weights of the individuals are actually the optimal solution to this model. Findings – If all individual deviations of the decision makers (DMs) from the consensus balance each other out, the information entropy theorem shows this GDM is most stable, and economically each individual DM gets the same optimal unit of compensation. Once the consensus opinion is determined and each individual opinion of the DMs is under an acceptable consensus level, the consensus is still acceptable even if additional DMs are added, and the moderator’s cost is still no more than a fixed upper limitation. Originality/value – The optimization model based on acceptable consensus is constructed in this paper, and its economic significance, including the theoretical and practical significance, is emphatically analyzed: it is shown that the weight information of the optimization model carries important economic significance. Besides, some properties of the proposed model are discussed by analyzing its particular solutions: the stability of the consensus system is explored by introducing information entropy theory and variance distribution; in addition, the effect of adding new DMs on the stability of the acceptable consensus system is discussed by analyzing the convergence of consensus level: it is also built up the condition that once the consensus opinion is determined, the consensus degree will not decrease even when additional DMs are added to the GDM

    Managing Non-Homogeneous Information and Experts’ Psychological Behavior in Group Emergency Decision Making

    Get PDF
    After an emergency event (EE) happens, emergency decision making (EDM) is a common and effective way to deal with the emergency situation, which plays an important role in mitigating its level of harm. In the real world, it is a big challenge for an individual emergency manager (EM) to make a proper and comprehensive decision for coping with an EE. Consequently, many practical EDM problems drive group emergency decision making (GEDM) problems whose main limitations are related to the lack of flexibility in knowledge elicitation, disagreements in the group and the consideration of experts’ psychological behavior in the decision process. Hence, this paper proposes a novel GEDM approach that allows more flexibility for preference elicitation under uncertainty, provides a consensus process to avoid disagreements and considers experts’ psychological behavior by using the fuzzy TODIM method based on prospect theory. Eventually, a group decision support system (GDSS) is developed to support the whole GEDM process defined in the proposed method demonstrating its novelty, validity and feasibility.This work was partly supported by the Young Doctoral Dissertation Project of Social Science Planning Project of Fujian Province (Project No. FJ2016C202), National Natural Science Foundation of China (Project Nos. 71371053, 61773123), Spanish National Research Project (Project No. TIN2015-66524-P), and Spanish Ministry of Economy and Finance Postdoctoral Fellow (IJCI-2015-23715) and ERDF

    Hesitant fuzzy linguistic DNMA method with cardinal consensus reaching process for shopping mall location selection

    Get PDF
    The hesitant fuzzy linguistic term set is an effective tool to express qualitative evaluations since it is close to human reasoning and expressing habits. In this paper, we propose a multi-expert multi-criterion decision-making method integrating the double normalization-based multi-aggregation (DNMA) method with a cardinal consensus reaching process, where the assessments of alternatives over multiple criteria are expressed as hesitant fuzzy linguistic term sets. To do so, the DNMA method involving double normalizations and three aggregation tools is extended to deal with the hesitant fuzzy linguistic information and derive the ranking of alternatives with respect to each expert. In addition, a cardinal consensus reaching process is introduced to help experts reach an acceptable consensus level. In other words, the soft consensus is considered in the multi-expert multi-criterion decision-making process. Subsequently, an extended Borda rule is developed to aggregate the subordinate ranks and integrated scores of alternatives, and then deduce the comprehensive ranking of alternatives. A case study is given to illustrate the practicability of the proposed method for selecting the optimal geographical location of a larger-scale shopping mall in the new urbanization for a construction investment agency. The proposed method is compared with other ranking methods to illustrate its advantages

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    A review of applications of fuzzy sets to safety and reliability engineering

    Get PDF
    Safety and reliability are rigorously assessed during the design of dependable systems. Probabilistic risk assessment (PRA) processes are comprehensive, structured and logical methods widely used for this purpose. PRA approaches include, but not limited to Fault Tree Analysis (FTA), Failure Mode and Effects Analysis (FMEA), and Event Tree Analysis (ETA). In conventional PRA, failure data about components is required for the purposes of quantitative analysis. In practice, it is not always possible to fully obtain this data due to unavailability of primary observations and consequent scarcity of statistical data about the failure of components. To handle such situations, fuzzy set theory has been successfully used in novel PRA approaches for safety and reliability evaluation under conditions of uncertainty. This paper presents a review of fuzzy set theory based methodologies applied to safety and reliability engineering, which include fuzzy FTA, fuzzy FMEA, fuzzy ETA, fuzzy Bayesian networks, fuzzy Markov chains, and fuzzy Petri nets. Firstly, we describe relevant fundamentals of fuzzy set theory and then we review applications of fuzzy set theory to system safety and reliability analysis. The review shows the context in which each technique may be more appropriate and highlights the overall potential usefulness of fuzzy set theory in addressing uncertainty in safety and reliability engineering
    corecore