418 research outputs found

    Optimization of Energy Harvesting MISO Communication System with Feedback

    Full text link
    Optimization of a point-to-point (p2p) multipleinput single-output (MISO) communication system is considered when both the transmitter (TX) and the receiver (RX) have energy harvesting (EH) capabilities. The RX is interested in feeding back the channel state information (CSI) to the TX to help improve the transmission rate. The objective is to maximize the throughput by a deadline, subject to the EH constraints at the TX and the RX. The throughput metric considered is an upper bound on the ergodic rate of the MISO channel with beamforming and limited feedback. Feedback bit allocation and transmission policies that maximize the upper bound on the ergodic rate are obtained. Tools from majorization theory are used to simplify the formulated optimization problems. Optimal policies obtained for the modified problem outperform the naive scheme in which no intelligent management of energy is performed.Comment: 11 page

    On the MISO Channel with Feedback: Can Infinitely Massive Antennas Achieve Infinite Capacity?

    Full text link
    We consider communication over a multiple-input single-output (MISO) block fading channel in the presence of an independent noiseless feedback link. We assume that the transmitter and receiver have no prior knowledge of the channel state realizations, but the transmitter and receiver can acquire the channel state information (CSIT/CSIR) via downlink training and feedback. For this channel, we show that increasing the number of transmit antennas to infinity will not achieve an infinite capacity, for a finite channel coherence length and a finite input constraint on the second or fourth moment. This insight follows from our new capacity bounds that hold for any linear and nonlinear coding strategies, and any channel training schemes. In addition to the channel capacity bounds, we also provide a characterization on the beamforming gain that is also known as array gain or power gain, at the regime with a large number of antennas.Comment: This work has been submitted to the IEEE Transactions on Information Theory. It was presented in part at ISIT201

    Resource Allocation for Multiple-Input and Multiple-Output Interference Networks

    Get PDF
    To meet the exponentially increasing traffic data driven by the rapidly growing mobile subscriptions, both industry and academia are exploring the potential of a new genera- tion (5G) of wireless technologies. An important 5G goal is to achieve high data rate. Small cells with spectrum sharing and multiple-input multiple-output (MIMO) techniques are one of the most promising 5G technologies, since it enables to increase the aggregate data rate by improving the spectral efficiency, nodes density and transmission bandwidth, respectively. However, the increased interference in the densified networks will in return limit the achievable rate performance if not properly managed. The considered setup can be modeled as MIMO interference networks, which can be classified into the K-user MIMO interference channel (IC) and the K-cell MIMO interfering broadcast channel/multiple access channel (MIMO-IBC/IMAC) according to the number of mobile stations (MSs) simultaneously served by each base station (BS). The thesis considers two physical layer (PHY) resource allocation problems that deal with the interference for both models: 1) Pareto boundary computation for the achiev- able rate region in a K-user single-stream MIMO IC and 2) grouping-based interference alignment (GIA) with optimized IA-Cell assignment in a MIMO-IMAC under limited feedback. In each problem, the thesis seeks to provide a deeper understanding of the system and novel mathematical results, along with supporting numerical examples. Some of the main contributions can be summarized as follows. It is an open problem to compute the Pareto boundary of the achievable rate region for a K-user single-stream MIMO IC. The K-user single-stream MIMO IC models multiple transmitter-receiver pairs which operate over the same spectrum simultaneously. Each transmitter and each receiver is equipped with multiple antennas, and a single desired data stream is communicated in each transmitter-receiver link. The individual achievable rates of the K users form a K-dimensional achievable rate region. To find efficient operating points in the achievable rate region, the Pareto boundary computation problem, which can be formulated as a multi-objective optimization problem, needs to be solved. The thesis transforms the multi-objective optimization problem to two single-objective optimization problems–single constraint rate maximization problem and alternating rate profile optimization problem, based on the formulations of the Δ-constraint optimization and the weighted Chebyshev optimization, respectively. The thesis proposes two alternating optimization algorithms to solve both single-objective optimization problems. The convergence of both algorithms is guaranteed. Also, a heuristic initialization scheme is provided for each algorithm to achieve a high-quality solution. By varying the weights in each single-objective optimization problem, numerical results show that both algorithms provide an inner bound very close to the Pareto boundary. Furthermore, the thesis also computes some key points exactly on the Pareto boundary in closed-form. A framework for interference alignment (IA) under limited feedback is proposed for a MIMO-IMAC. The MIMO-IMAC well matches the uplink scenario in cellular system, where multiple cells share their spectrum and operate simultaneously. In each cell, a BS receives the desired signals from multiple MSs within its own cell and each BS and each MS is equipped with multi-antenna. By allowing the inter-cell coordination, the thesis develops a distributed IA framework under limited feedback from three aspects: the GIA, the IA-Cell assignment and dynamic feedback bit allocation (DBA), respec- tively. Firstly, the thesis provides a complete study along with some new improvements of the GIA, which enables to compute the exact IA precoders in closed-form, based on local channel state information at the receiver (CSIR). Secondly, the concept of IA-Cell assignment is introduced and its effect on the achievable rate and degrees of freedom (DoF) performance is analyzed. Two distributed matching approaches and one centralized assignment approach are proposed to find a good IA-Cell assignment in three scenrios with different backhaul overhead. Thirdly, under limited feedback, the thesis derives an upper bound of the residual interference to noise ratio (RINR), formulates and solves a corresponding DBA problem. Finally, numerical results show that the proposed GIA with optimized IA-Cell assignment and the DBA greatly outperforms the traditional GIA algorithm

    Recent Advances in Acquiring Channel State Information in Cellular MIMO Systems

    Get PDF
    In cellular multi-user multiple input multiple output (MU-MIMO) systems the quality of the available channel state information (CSI) has a large impact on the system performance. Specifically, reliable CSI at the transmitter is required to determine the appropriate modulation and coding scheme, transmit power and the precoder vector, while CSI at the receiver is needed to decode the received data symbols. Therefore, cellular MUMIMO systems employ predefined pilot sequences and configure associated time, frequency, code and power resources to facilitate the acquisition of high quality CSI for data transmission and reception. Although the trade-off between the resources used user data transmission has been known for long, the near-optimal configuration of the vailable system resources for pilot and data transmission is a topic of current research efforts. Indeed, since the fifth generation of cellular systems utilizes heterogeneous networks in which base stations are equipped with a large number of transmit and receive antennas, the appropriate configuration of pilot-data resources becomes a critical design aspect. In this article, we review recent advances in system design approaches that are designed for the acquisition of CSI and discuss some of the recent results that help to dimension the pilot and data resources specifically in cellular MU-MIMO systems

    Frequency-domain transmit processing for MIMO SC-FDMA in wideband propagation channels

    Get PDF
    This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available

    Spectral Efficiency and Energy Efficiency Tradeoff in Massive MIMO Downlink Transmission with Statistical CSIT

    Full text link
    As a key technology for future wireless networks, massive multiple-input multiple-output (MIMO) can significantly improve the energy efficiency (EE) and spectral efficiency (SE), and the performance is highly dependant on the degree of the available channel state information (CSI). While most existing works on massive MIMO focused on the case where the instantaneous CSI at the transmitter (CSIT) is available, it is usually not an easy task to obtain precise instantaneous CSIT. In this paper, we investigate EE-SE tradeoff in single-cell massive MIMO downlink transmission with statistical CSIT. To this end, we aim to optimize the system resource efficiency (RE), which is capable of striking an EE-SE balance. We first figure out a closed-form solution for the eigenvectors of the optimal transmit covariance matrices of different user terminals, which indicates that beam domain is in favor of performing RE optimal transmission in massive MIMO downlink. Based on this insight, the RE optimization precoding design is reduced to a real-valued power allocation problem. Exploiting the techniques of sequential optimization and random matrix theory, we further propose a low-complexity suboptimal two-layer water-filling-structured power allocation algorithm. Numerical results illustrate the effectiveness and near-optimal performance of the proposed statistical CSI aided RE optimization approach.Comment: Typos corrected. 14 pages, 7 figures. Accepted for publication on IEEE Transactions on Signal Processing. arXiv admin note: text overlap with arXiv:2002.0488
    • 

    corecore