2,196 research outputs found

    Quantum Cloning Machines and the Applications

    Full text link
    No-cloning theorem is fundamental for quantum mechanics and for quantum information science that states an unknown quantum state cannot be cloned perfectly. However, we can try to clone a quantum state approximately with the optimal fidelity, or instead, we can try to clone it perfectly with the largest probability. Thus various quantum cloning machines have been designed for different quantum information protocols. Specifically, quantum cloning machines can be designed to analyze the security of quantum key distribution protocols such as BB84 protocol, six-state protocol, B92 protocol and their generalizations. Some well-known quantum cloning machines include universal quantum cloning machine, phase-covariant cloning machine, the asymmetric quantum cloning machine and the probabilistic quantum cloning machine etc. In the past years, much progress has been made in studying quantum cloning machines and their applications and implementations, both theoretically and experimentally. In this review, we will give a complete description of those important developments about quantum cloning and some related topics. On the other hand, this review is self-consistent, and in particular, we try to present some detailed formulations so that further study can be taken based on those results.Comment: 98 pages, 12 figures, 400+ references. Physics Reports (published online

    Quantum Cloning of Mixed States in Symmetric Subspace

    Full text link
    Quantum cloning machine for arbitrary mixed states in symmetric subspace is proposed. This quantum cloning machine can be used to copy part of the output state of another quantum cloning machine and is useful in quantum computation and quantum information. The shrinking factor of this quantum cloning achieves the well-known upper bound. When the input is identical pure states, two different fidelities of this cloning machine are optimal.Comment: Revtex, 4 page

    Universal quantum Controlled-NOT gate

    Full text link
    An investigation of an optimal universal unitary Controlled-NOT gate that performs a specific operation on two unknown states of qubits taken from a great circle of the Bloch sphere is presented. The deep analogy between the optimal universal C-NOT gate and the `equatorial' quantum cloning machine (QCM) is shown. In addition, possible applications of the universal C-NOT gate are briefly discussed.Comment: 18 reference

    Cloning a Qutrit

    Full text link
    We investigate several classes of state-dependent quantum cloners for three-level systems. These cloners optimally duplicate some of the four maximally-conjugate bases with an equal fidelity, thereby extending the phase-covariant qubit cloner to qutrits. Three distinct classes of qutrit cloners can be distinguished, depending on two, three, or four maximally-conjugate bases are cloned as well (the latter case simply corresponds to the universal qutrit cloner). These results apply to symmetric as well as asymmetric cloners, so that the balance between the fidelity of the two clones can also be analyzed.Comment: 14 pages LaTex. To appear in the Journal of Modern Optics for the special issue on "Quantum Information: Theory, Experiment and Perspectives". Proceedings of the ESF Conference, Gdansk, July 10-18, 200
    corecore