1,862 research outputs found

    Exploiting Full-duplex Receivers for Achieving Secret Communications in Multiuser MISO Networks

    Full text link
    We consider a broadcast channel, in which a multi-antenna transmitter (Alice) sends KK confidential information signals to KK legitimate users (Bobs) in the presence of LL eavesdroppers (Eves). Alice uses MIMO precoding to generate the information signals along with her own (Tx-based) friendly jamming. Interference at each Bob is removed by MIMO zero-forcing. This, however, leaves a "vulnerability region" around each Bob, which can be exploited by a nearby Eve. We address this problem by augmenting Tx-based friendly jamming (TxFJ) with Rx-based friendly jamming (RxFJ), generated by each Bob. Specifically, each Bob uses self-interference suppression (SIS) to transmit a friendly jamming signal while simultaneously receiving an information signal over the same channel. We minimize the powers allocated to the information, TxFJ, and RxFJ signals under given guarantees on the individual secrecy rate for each Bob. The problem is solved for the cases when the eavesdropper's channel state information is known/unknown. Simulations show the effectiveness of the proposed solution. Furthermore, we discuss how to schedule transmissions when the rate requirements need to be satisfied on average rather than instantaneously. Under special cases, a scheduling algorithm that serves only the strongest receivers is shown to outperform the one that schedules all receivers.Comment: IEEE Transactions on Communication

    Recent Advances in Joint Wireless Energy and Information Transfer

    Full text link
    In this paper, we provide an overview of the recent advances in microwave-enabled wireless energy transfer (WET) technologies and their applications in wireless communications. Specifically, we divide our discussions into three parts. First, we introduce the state-of-the-art WET technologies and the signal processing techniques to maximize the energy transfer efficiency. Then, we discuss an interesting paradigm named simultaneous wireless information and power transfer (SWIPT), where energy and information are jointly transmitted using the same radio waveform. At last, we review the recent progress in wireless powered communication networks (WPCN), where wireless devices communicate using the power harvested by means of WET. Extensions and future directions are also discussed in each of these areas.Comment: Conference submission accepted by ITW 201

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Robust Monotonic Optimization Framework for Multicell MISO Systems

    Full text link
    The performance of multiuser systems is both difficult to measure fairly and to optimize. Most resource allocation problems are non-convex and NP-hard, even under simplifying assumptions such as perfect channel knowledge, homogeneous channel properties among users, and simple power constraints. We establish a general optimization framework that systematically solves these problems to global optimality. The proposed branch-reduce-and-bound (BRB) algorithm handles general multicell downlink systems with single-antenna users, multiantenna transmitters, arbitrary quadratic power constraints, and robustness to channel uncertainty. A robust fairness-profile optimization (RFO) problem is solved at each iteration, which is a quasi-convex problem and a novel generalization of max-min fairness. The BRB algorithm is computationally costly, but it shows better convergence than the previously proposed outer polyblock approximation algorithm. Our framework is suitable for computing benchmarks in general multicell systems with or without channel uncertainty. We illustrate this by deriving and evaluating a zero-forcing solution to the general problem.Comment: Published in IEEE Transactions on Signal Processing, 16 pages, 9 figures, 2 table

    Cooperative Multi-Cell Block Diagonalization with Per-Base-Station Power Constraints

    Full text link
    Block diagonalization (BD) is a practical linear precoding technique that eliminates the inter-user interference in downlink multiuser multiple-input multiple-output (MIMO) systems. In this paper, we apply BD to the downlink transmission in a cooperative multi-cell MIMO system, where the signals from different base stations (BSs) to all the mobile stations (MSs) are jointly designed with the perfect knowledge of the downlink channels and transmit messages. Specifically, we study the optimal BD precoder design to maximize the weighted sum-rate of all the MSs subject to a set of per-BS power constraints. This design problem is formulated in an auxiliary MIMO broadcast channel (BC) with a set of transmit power constraints corresponding to those for individual BSs in the multi-cell system. By applying convex optimization techniques, this paper develops an efficient algorithm to solve this problem, and derives the closed-form expression for the optimal BD precoding matrix. It is revealed that the optimal BD precoding vectors for each MS in the per-BS power constraint case are in general non-orthogonal, which differs from the conventional orthogonal BD precoder design for the MIMO-BC under one single sum-power constraint. Moreover, for the special case of single-antenna BSs and MSs, the proposed solution reduces to the optimal zero-forcing beamforming (ZF-BF) precoder design for the weighted sum-rate maximization in the multiple-input single-output (MISO) BC with per-antenna power constraints. Suboptimal and low-complexity BD/ZF-BF precoding schemes are also presented, and their achievable rates are compared against those with the optimal schemes.Comment: accepted in JSAC, special issue on cooperative communications on cellular networks, June 201

    Joint Transceiver Design Algorithms for Multiuser MISO Relay Systems with Energy Harvesting

    Full text link
    In this paper, we investigate a multiuser relay system with simultaneous wireless information and power transfer. Assuming that both base station (BS) and relay station (RS) are equipped with multiple antennas, this work studies the joint transceiver design problem for the BS beamforming vectors, the RS amplify-and-forward transformation matrix and the power splitting (PS) ratios at the single-antenna receivers. Firstly, an iterative algorithm based on alternating optimization (AO) and with guaranteed convergence is proposed to successively optimize the transceiver coefficients. Secondly, a novel design scheme based on switched relaying (SR) is proposed that can significantly reduce the computational complexity and overhead of the AO based designs while maintaining a similar performance. In the proposed SR scheme, the RS is equipped with a codebook of permutation matrices. For each permutation matrix, a latent transceiver is designed which consists of BS beamforming vectors, optimally scaled RS permutation matrix and receiver PS ratios. For the given CSI, the optimal transceiver with the lowest total power consumption is selected for transmission. We propose a concave-convex procedure based and subgradient-type iterative algorithms for the non-robust and robust latent transceiver designs. Simulation results are presented to validate the effectiveness of all the proposed algorithms
    corecore