2,015 research outputs found

    Network Selection and Resource Allocation Games for Wireless Access Networks

    Get PDF
    Wireless access networks are often characterized by the interaction of different end users, communication technologies, and network operators. This paper analyzes the dynamics among these "actors" by focusing on the processes of wireless network selection, where end users may choose among multiple available access networks to get connectivity, and resource allocation, where network operators may set their radio resources to provide connectivity. The interaction among end users is modeled as a non-cooperative congestion game where players (end users) selfishly select the access network that minimizes their perceived selection cost. A method based on mathematical programming is proposed to find Nash equilibria and characterize their optimality under three cost functions, which are representative of different technological scenarios. System level simulations are then used to evaluate the actual throughput and fairness of the equilibrium points. The interaction among end users and network operators is then assessed through a two-stage multi-leader/multi-follower game, where network operators (leaders) play in the first stage by properly setting the radio resources to maximize their users, and end users (followers) play in the second stage the aforementioned network selection game. The existence of exact and approximated subgame perfect Nash equilibria of the two-stage game is thoroughly assessed and numerical results are provided on the "quality" of such equilibria

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Green communication in energy renewable wireless mesh networks: routing, rate control, and power allocation

    Get PDF
    PublishedJournal Article© 2014 IEEE. The increasing demand for wireless services has led to a severe energy consumption problem with the rising of greenhouse gas emission. While the renewable energy can somehow alleviate this problem, the routing, flow rate, and power still have to be well investigated with the objective of minimizing energy consumption in multi-hop energy renewable wireless mesh networks (ER-WMNs). This paper formulates the problem of network-wide energy consumption minimization under the network throughput constraint as a mixed-integer nonlinear programming problem by jointly optimizing routing, rate control, and power allocation. Moreover, the min-max fairness model is applied to address the fairness issue because the uneven routing problem may incur the sharp reduction of network performance in multi-hop ER-WMNs. Due to the high computational complexity of the formulated mathematical programming problem, an energy-aware multi-path routing algorithm (EARA) is also proposed to deal with the joint control of routing, flow rate, and power allocation in practical multi-hop WMNs. To search the optimal routing, it applies a weighted Dijkstra's shortest path algorithm, where the weight is defined as a function of the power consumption and residual energy of a node. Extensive simulation results are presented to show the performance of the proposed schemes and the effects of energy replenishment rate and network throughput on the network lifetime
    corecore