118 research outputs found

    Optical control plane: theory and algorithms

    Get PDF
    In this thesis we propose a novel way to achieve global network information dissemination in which some wavelengths are reserved exclusively for global control information exchange. We study the routing and wavelength assignment problem for the special communication pattern of non-blocking all-to-all broadcast in WDM optical networks. We provide efficient solutions to reduce the number of wavelengths needed for non-blocking all-to-all broadcast, in the absence of wavelength converters, for network information dissemination. We adopt an approach in which we consider all nodes to be tap-and-continue capable thus studying lighttrees rather than lightpaths. To the best of our knowledge, this thesis is the first to consider “tap-and-continue” capable nodes in the context of conflict-free all-to-all broadcast. The problem of all to-all broadcast using individual lightpaths has been proven to be an NP-complete problem [6]. We provide optimal RWA solutions for conflict-free all-to-all broadcast for some particular cases of regular topologies, namely the ring, the torus and the hypercube. We make an important contribution on hypercube decomposition into edge-disjoint structures. We also present near-optimal polynomial-time solutions for the general case of arbitrary topologies. Furthermore, we apply for the first time the “cactus” representation of all minimum edge-cuts of graphs with arbitrary topologies to the problem of all-to-all broadcast in optical networks. Using this representation recursively we obtain near-optimal results for the number of wavelengths needed by the non-blocking all-to-all broadcast. The second part of this thesis focuses on the more practical case of multi-hop RWA for non- blocking all-to-all broadcast in the presence of Optical-Electrical-Optical conversion. We propose two simple but efficient multi-hop RWA models. In addition to reducing the number of wavelengths we also concentrate on reducing the number of optical receivers, another important optical resource. We analyze these models on the ring and the hypercube, as special cases of regular topologies. Lastly, we develop a good upper-bound on the number of wavelengths in the case of non-blocking multi-hop all-to-all broadcast on networks with arbitrary topologies and offer a heuristic algorithm to achieve it. We propose a novel network partitioning method based on “virtual perfect matching” for use in the RWA heuristic algorithm

    Efficient communication using multiple cycles and multiple channels

    Get PDF
    Initially, the use of optical fiber in networks was to create point-to-point links. Optical paths were not altered once they were setup. This limits the ability of the network to respond to changing traffic demands. There were expensive solutions to handle dynamic traffic. One could set up multiple paths for additional traffic. Alternately, traffic that did not have a dedicated optical path needed to be received, the next hop found electronically, and then transmitted again. Current research in optical networking is looking to minimize or even eliminate electronic packet processing in the network. This will reduce the numbers of transmitters, receivers, and processing hardware needed in the network. If a signal can be kept entirely optical, new signal formats can be added to the network by only upgrading systems sending or receiving the new format. Research is currently looking at hardware designs to support electrically changing optical paths, and algorithms to route the optical paths. The topic of this work is the routing algorithms. We wish to keep cost as low as possible, while being able to recover quickly from or completely hide hardware failures. Several strategies exist to meet these expectations that involve a mix of handing routing and failure at the optical or at the electronic layer. This dissertation considers the use of cycles or rings in both establishing optical connections in response to connection requests, and electronic routing on optical cycle\u27s setup when a network is built. Load balancing is an important issue for both approaches. In this dissertation we provide heuristics and integer linear program (ILP) that can be used to find cycles in a network. We report on experiments showing the effectiveness of the heuristics. Simulations show the importance of load balancing. In the case of electronic routing, we setup cycles in the network which allow nodes on the cycle to communicate with each other. We select cycles so that they have two properties. One property is that all node pairs appear on at least one cycle. The other property is that each cycle contains a cyclical quorum. The first property allows for a network to support all-to-all communication entirely in the optical domain. The second property allows for quorum based distributed systems to send a message to an entire quorum in an all optical one-to-many connection. The use of quorums makes distributed systems efficient at tasks such as coordinating mutual exclusion or database replication. There is a need for the optical layer of the network to provide support for keeping latency of this type of communication low because as designers have scarified the benefits of using quorums in higher latency networks. Combined with light trails, cycles based on quorums requires fewer transmitter and receivers than light-paths to support all-to-all traffic

    Smart Algorithms for Hierarchical Clustering in Optical Network

    Get PDF
    Network design process is a very important in order to balance between the investment in the network and the supervises offered to the network user, taking into consideration, both minimizing the network investment cost, on the other hand, maximizing the quality of service offered to the customers as well.Partitioning the network to smaller sub-networks called clusters is required during the design process inorder to ease studying the whole network and achieve the design process as a trade-off between several atrtributes such as quality of service, reliability,cost, and management. Under CANON, a large scale optical network is partitioned into a number of geographically limited areas taking into account many different criteria like administrative domains, topological characteristics, traffic patterns, legacy infrastructure etc. An important consideration is that each of these clusters is comprised of a group of nodes in geographical proximity. The clusters can coincide with administrative domains but there could be many cases where two or more clusters belong to the same administrative domain. Therefore, in the most general case the partitioning into specific clusters can be either a off-line or a on-line process. In this work only the off-line case is considered. In this Study, we look at the problem of designing efficient 2- level Hierarchical Optical Networks (HON), in the context of network costs optimization. 2-level HON paradigm only have local rings to connect disjoint sets of nodes and a global sub mesh to interconnect all the local rings. We present an Hierarchical algorithm that is based on two phases. We present results for scenarios containing a set of real optical topologies

    Grooming of Dynamic Traffic in WDM Star and Tree Networks Using Genetic Algorithm

    Full text link
    The advances in WDM technology lead to the great interest in traffic grooming problems. As traffic often changes from time to time, the problem of grooming dynamic traffic is of great practical value. In this paper, we discuss dynamic grooming of traffic in star and tree networks. A genetic algorithm (GA) based approach is proposed to support arbitrary dynamic traffic patterns, which minimizes the number of ADM's and wavelengths. To evaluate the algorithm, tighter bounds are derived. Computer simulation results show that our algorithm is efficient in reducing both the numbers of ADM's and wavelengths in tree and star networks.Comment: 15 page

    Scheduling algorithms for throughput maximization in data networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 215-226).This thesis considers the performance implications of throughput optimal scheduling in physically and computationally constrained data networks. We study optical networks, packet switches, and wireless networks, each of which has an assortment of features and constraints that challenge the design decisions of network architects. In this work, each of these network settings are subsumed under a canonical model and scheduling framework. Tools of queueing analysis are used to evaluate network throughput properties, and demonstrate throughput optimality of scheduling and routing algorithms under stochastic traffic. Techniques of graph theory are used to study network topologies having desirable throughput properties. Combinatorial algorithms are proposed for efficient resource allocation. In the optical network setting, the key enabling technology is wavelength division multiplexing (WDM), which allows each optical fiber link to simultaneously carry a large number of independent data streams at high rate. To take advantage of this high data processing potential, engineers and physicists have developed numerous technologies, including wavelength converters, optical switches, and tunable transceivers.(cont.) While the functionality provided by these devices is of great importance in capitalizing upon the WDM resources, a major challenge exists in determining how to configure these devices to operate efficiently under time-varying data traffic. In the WDM setting, we make two main contributions. First, we develop throughput optimal joint WDM reconfiguration and electronic-layer routing algorithms, based on maxweight scheduling. To mitigate the service disruption associated with WDM reconfiguration, our algorithms make decisions at frame intervals. Second, we develop analytic tools to quantify the maximum throughput achievable in general network settings. Our approach is to characterize several geometric features of the maximum region of arrival rates that can be supported in the network. In the packet switch setting, we observe through numerical simulation the attractive throughput properties of a simple maximal weight scheduler. Subsequently, we consider small switches, and analytically demonstrate the attractive throughput properties achievable using maximal weight scheduling. We demonstrate that such throughput properties may not be sustained in larger switches.(cont.) In the wireless network setting, mesh networking is a promising technology for achieving connectivity in local and metropolitan area networks. Wireless access points and base stations adhering to the IEEE 802.11 wireless networking standard can be bought off the shelf at little cost, and can be configured to access the Internet in minutes. With ubiquitous low-cost Internet access perceived to be of tremendous societal value, such technology is naturally garnering strong interest. Enabling such wireless technology is thus of great importance. An important challenge in enabling mesh networks, and many other wireless network applications, results from the fact that wireless transmission is achieved by broadcasting signals through the air, which has the potential for interfering with other parts of the network. Furthermore, the scarcity of wireless transmission resources implies that link activation and packet routing should be effected using simple distributed algorithms. We make three main contributions in the wireless setting. First, we determine graph classes under which simple, distributed, maximal weight schedulers achieve throughput optimality.(cont.) Second, we use this acquired knowledge of graph classes to develop combinatorial algorithms, based on matroids, for allocating channels to wireless links, such that each channel can achieve maximum throughput using simple distributed schedulers. Third, we determine new conditions under which distributed algorithms for joint link activation and routing achieve throughput optimality.by Andrew Brzezinski.Ph.D

    Joint optimization of topology, switching, routing and wavelength assignment

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 279-285).To provide end users with economic access to high bandwidth, the architecture of the next generation metropolitan area networks (MANs) needs to be judiciously designed from the cost perspective. In addition to a low initial capital investment, the ultimate goal is to design networks that exhibit excellent scalability - a decreasing cost-per-node-per-unit-traffic as user number and transaction size increase. As an effort to achieve this goal, in this thesis we search for the scalable network architectures over the solution space that embodies the key aspects of optical networks: fiber connection topology, switching architecture selection and resource dimensioning, routing and wavelength assignment (RWA). Due to the inter-related nature of these design elements, we intended to solve the design problem jointly in the optimization process in order to achieve over-all good performance. To evaluate how the cost drives architectural tradeoffs, an analytical approach is taken in most parts of the thesis by first focusing on networks with symmetric and well defined structures (i.e., regular networks) and symmetric traffic patterns (i.e., all-to-all uniform traffic), which are fair representations that give us suggestions of trends, etc.(cont.) We starts with a examination of various measures of regular topologies. The average minimum hop distance plays a crucial role in evaluating the efficiency of network architecture. From the perspective of designing optical networks, the amount of switching resources used at nodes is proportional to the average minimum hop distance. Thus a smaller average minimum hop distance translates into a lower fraction of pass-through traffic and less switching resources required. Next, a first-order cost model is set up and an optimization problem is formulated for the purpose of characterizing the tradeoffs between fiber and switching resources. Via convex optimization techniques, the joint optimization problem is solved analytically for (static) uniform traffic and symmetric networks. Two classes of regular graphs - Generalized Moore Graphs and A-nearest Neighbors Graphs - are identified to yield lower and upper cost bounds, respectively. The investigation of the cost scalability further demonstrates the advantage of the Generalized Moore Graphs as benchmark topologies: with linear switching cost structure, the minimal normalized cost per unit traffic decreases with increasing network size for the Generalized Moore Graphs and their relatives.(cont.) In comparison, for less efficient fiber topologies (e.g., A-nearest Neighbors) and switching cost structures (e.g., quadratic cost), the minimal normalized cost per unit traffic plateaus or even increases with increasing network size. The study also reveals other attractive properties of Generalized Moore Graphs in conjunction with minimum hop routing - the aggregate network load is evenly distributed over each fiber. Thus, Generalized Moore Graphs also require the minimum number of wavelengths to support a given uniform traffic demand. Further more, the theoretical works on the Generalized Moore Graphs and their close relatives are extended to study more realistic design scenarios in two aspects. One aspect addresses the irregular topologies and (static) non-uniform traffic, for which the results of Generalized Moore networks are used to provide useful estimates of network cost, and are thus offering good references for cost-efficient optical networks. The other aspect deals with network design under random demands. Two optimization formulations that incorporate the traffic variability are presented.(cont.) The results show that as physical architecture, Generalized Moore Graphs are most robust (in cost) to the demand uncertainties. Analytical results also provided design guidelines on how optimum dimensioning, network connectivity, and network costs vary as functions of risk aversion, service level requirements, and probability distributions of demands.by Kyle Chi Guan.Ph.D

    Optical architectures for high performance switching and routing

    Get PDF
    This thesis investigates optical interconnection networks for high performance switching and routing. Two main topics are studied. The first topic regards the use of silicon microring resonators for short reach optical interconnects. Photonic technologies can help to overcome the intrinsic limitations of electronics when used in interconnects, short-distance transmissions and switching operations. This thesis considers the peculiarasymmetric losses of microring resonators since they pose unprecedented challenges for the design of the architecture and for the routing algorithms. It presents new interconnection architectures, proposes modifications on classical routing algorithms and achieves a better performance in terms of fabric complexity and scalability with respect to the state of the art. Subsequently, this thesis considers wavelength dimension capabilities of microring resonators in which wavelength reuse (i.e. crosstalk accumulation) presents impairments on the system performance. To this aim, it presents different crosstalk reduction techniques, a feasibility analysis for the design of microring resonators and a novel wavelength-agile routing matrix. The second topic regards flexible resource allocation with adaptable infrastructure for elastic optical networks. In particular, it focus on Architecture on Demand (AoD), whereby optical node architectures can be reconfigured on the fly according to traffic requirements. This thesis includes results on the first flexible-grid optical spectrum networking field trial, carried out in a collaboration with University of Essex. Finally, it addresses several challenges that present the novel concept AoD by means of modeling and simulation. This thesis proposes an algorithm to perform automatic architecture synthesis, reports AoD scalability and power consumption results working under the proposed synthesis algorithm. Such results validate AoD as a flexible node concept that provides power efficiency and high switching capacity

    Optimización metaheurística para la planificación de redes WDM

    Get PDF
    Las implementaciones actuales de las redes de telecomunicaciones no permiten soportar el incremento en la demanda de ancho de banda producido por el crecimiento del tráfico de datos en las últimas décadas. La aparición de la fibra óptica y el desarrollo de la tecnología de multiplexación por división de longitudes de onda (WDM) permite incrementar la capacidad de redes de telecomunicaciones existentes mientras se minimizan costes. En este trabajo se planifican redes ópticas WDM mediante la resolución de los problemas de Provisión y Conducción en redes WDM (Provisioning and Routing Problem) y de Supervivencia (Survivability Problem). El Problema de Conducción y Provisión consiste en incrementar a mínimo coste la capacidad de una red existente de tal forma que se satisfaga un conjunto de requerimientos de demanda. El problema de supervivencia consiste en garantizar el flujo del tráfico a través de una red en caso de fallo de alguno de los elementos de la misma. Además se resuelve el Problema de Provisión y Conducción en redes WDM con incertidumbre en las demandas. Para estos problemas se proponen modelos de programación lineal entera. Las metaheurísticas proporcionan un medio para resolver problemas de optimización complejos, como los que surgen al planificar redes de telecomunicaciones, obteniendo soluciones de alta calidad en un tiempo computacional razonable. Las metaheurísticas son estrategias que guían y modifican otras heurísticas para obtener soluciones más allá de las generadas usualmente en la búsqueda de optimalidad local. No garantizan que la mejor solución encontrada, cuando se satisfacen los criterios de parada, sea una solución óptima global del problema. Sin embargo, la experimentación de implementaciones metaheurísticas muestra que las estrategias de búsqueda embebidas en tales procedimientos son capaces de encontrar soluciones de alta calidad a problemas difíciles en industria, negocios y ciencia. Para la solución del problema de Provisión y Conducción en Redes WDM, se desarrolla un algoritmo metaheurístico híbrido que combina principalmente ideas de las metaheurísticas Búsqueda Dispersa (Scatter Search) y Búsqueda Mutiarranque (Multistart). Además añade una componente tabú en uno de los procedimiento del algoritmo. Se utiliza el modelo de programación lineal entera propuesto por otros autores y se propone un modelo de programación lineal entera alternativo que proporciona cotas superiores al problema, pero incluye un menor número de variables y restricciones, pudiendo ser resuelto de forma óptima para tamaños de red mayores. Los resultados obtenidos por el algoritmo metaheurístico diseñado se comparan con los obtenidos por un procedimiento basado en permutaciones de las demandas propuesto anteriormente por otros autores, y con los dos modelos de programación lineal entera usados. Se propone modelos de programación lineal entera para sobrevivir la red en caso de fallos en un único enlace. Se proponen modelos para los esquemas de protección de enlace compartido, de camino compartido con enlaces disjuntos, y de camino compartido sin enlaces disjuntos. Se propone un método de resolución metaheurístico que obtiene mejores costes globales que al resolver el problema en dos fases, es decir, al resolver el problema de servicio y a continuación el de supervivencia. Se proponen además modelos de programación entera para resolver el problema de provisión en redes WDM con incertidumbres en las demandas
    corecore