5,062 research outputs found

    Best Performance Frontiers for Buy-Online-Pickup-in-Store order fulfilment

    Get PDF
    With the proliferation of omni-channel retailing, Buy-Online-Pickup-in-Store (BOPS) retail services have gained increasing popularity as they have benefits for both customers and retailers. However, using conventional retail stores to fulfil orders received online whilst also serving walk-in customers is challenging for retailers, particularly when a high customer service level is promised to online customers (e.g., order by a certain time and pick up in store after a specific time later the same day). This paper examines store picking operations for same day BOPS services. Specifically, we derive Best Performance Frontiers (BPFs) for single wave and multi-wave order picking. New relationships, propositions, and results are presented to determine the minimum picking rate needed in stores to guarantee a target service level, the number of picking waves a retailer should launch in an ordering cycle, and the timing of picking waves. We also examine demand surge scenarios with different order arrival rates in an ordering cycle. Insights and implications of the results are discussed for retailers that seek to benchmark their current BOPS performances and understand how to schedule and improve the picking of online orders in conventional retail stores and the picking rates needed to guarantee a desired service level for online customers

    D-SPACE4Cloud: A Design Tool for Big Data Applications

    Get PDF
    The last years have seen a steep rise in data generation worldwide, with the development and widespread adoption of several software projects targeting the Big Data paradigm. Many companies currently engage in Big Data analytics as part of their core business activities, nonetheless there are no tools and techniques to support the design of the underlying hardware configuration backing such systems. In particular, the focus in this report is set on Cloud deployed clusters, which represent a cost-effective alternative to on premises installations. We propose a novel tool implementing a battery of optimization and prediction techniques integrated so as to efficiently assess several alternative resource configurations, in order to determine the minimum cost cluster deployment satisfying QoS constraints. Further, the experimental campaign conducted on real systems shows the validity and relevance of the proposed method

    Performance Analysis and Capacity Planning of Multi-stage Stochastic Order Fulfilment Systems with Levelled Order Release and Order Deadlines

    Get PDF
    Order fulfilment systems are forced to manage a volatile customer demand while meeting customer-required short order deadlines. To handle these challenges, we introduce the Strategy of Levelled Order Release (LOR) for workload balancing over time. The contributions of this work are (1) the workload balancing concept LOR, (2) a discrete-time Markov chain for performance analysis, and (3) an algorithm for capacity planning under performance constraints in order fulfilment systems with LOR

    Performance Analysis and Capacity Planning of Multi-stage Stochastic Order Fulfilment Systems with Levelled Order Release and Order Deadlines

    Get PDF
    Kundenorientierte Auftragsbearbeitungsprozesse in Logistik- und Produktionssystemen sind heutzutage mit einem kontinuierlich steigenden Auftragsvolumen zunehmend kleinvolumiger Aufträge, hohen Kundenanforderungen hinsichtlich kurzfristiger und individueller Lieferfristen und einer stark stochastisch schwankenden Kundennachfrage konfrontiert. Um trotz der volatilen Kundennachfrage eine effiziente Auftragsbearbeitung und die Einhaltung der kundenindividuellen Lieferfristen gewährleisten zu können, muss die Arbeitslast kundenorientierter Auftragsbearbeitungsprozesse auf geeignete Weise geglättet werden. Hopp und Spearman (2004) unterscheiden zur Kompensation von Schwankungen in Produktionssystemen zwischen den Dimensionen Bestand, Zeit und Kapazität. Diese stellen auch einen guten Ausgangspunkt für die Entwicklung von Glättungskonzepten für stochastische, kundenorientierte Bearbeitungsprozesse dar. In dieser Arbeit werden die Potentiale der Dimensionen Zeit und Kapazität in der Strategie der nivellierten Auftragseinlastung zusammengeführt, um die Arbeitslast mehrstufiger, stochastischer Auftragsbearbeitungsprozesse mit kundenindividuellen Fälligkeitsfristen auf taktischer Ebene zeitlich zu glätten. Ziel dieser Arbeit ist (1) die Entwicklung eines Glättungskonzeptes, der so genannten Strategie der nivellierten Auftragseinlastung, (2) die Entwicklung eines zeitdiskreten analytischen Modells zur Leistungsanalyse und (3) die Entwicklung eines Algorithmus zur Kapazitätsplanung unter Gewährleistung bestimmter Leistungsanforderungen für mehrstufige, stochastische Auftragsbearbeitungsprozesse mit nivellierter Auftragseinlastung und kundenindividuellen Fälligkeitsfristen. Die Strategie der nivellierten Auftragseinlastung zeichnet sich durch die Bereitstellung zeitlich konstanter Kapazitäten für die Auftragsbearbeitung und eine Auftragsbearbeitung gemäß aufsteigender Fälligkeitsfristen aus. Auf diese Weise wird der zeitliche Spielraum jedes Auftrags zwischen dessen Auftragseingang und dessen Fälligkeitsfrist systematisch zur Kompensation der stochastischen Nachfrageschwankungen genutzt. Die verbleibende Variabilität wird in Abhängigkeit der Leistungsanforderungen der Kunden durch die Höhe der bereitgestellten Kapazität kompensiert. Das analytische Modell zur Leistungsanalyse mehrstufiger, stochastischer Auftragsbearbeitungsprozesse mit nivellierter Auftragseinlastung und kundenindividuellen Fälligkeitsfristen bildet die Auftragsbearbeitung als zeitdiskrete Markov-Kette ab und berechnet verschiedene stochastische und deterministische Leistungskenngrößen auf Basis deren asymptotischer Zustandsverteilung. Diese Kenngrößen, wie beispielsweise Durchsatz, Servicegrad, Auslastung, Anzahl Lost Sales sowie Zeitpuffer und Rückstandsdauer eines Auftrags, ermöglichen eine umfassende und exakte Leistungsanalyse von mehrstufigen, stochastischen Auftragsbearbeitungsprozessen mit nivellierter Auftragseinlastung und kundenindividuellen Fälligkeitsfristen. Der Zusammenhang zwischen der bereitgestellten Kapazität und der damit erreichbaren Leistungsfähigkeit kann nicht explizit durch eine mathematische Gleichung beschrieben werden, sondern ist implizit durch das analytische Modell gegeben. Daher ist das Entscheidungsproblem der Kapazitätsplanung unter Gewährleistung bestimmter Leistungsanforderungen ein Blackbox-Optimierungsproblem. Die problemspezifischen Konfigurationen der Blackbox-Optimierungsalgorithmen Mesh Adaptive Direct Search und Surrogate Optimisation Integer ermöglichen eine zielgerichtete Bestimmung des minimalen prozessspezifischen Kapazitätsbedarfs, der zur Gewährleistung der Leistungsanforderungen der Kunden bereitgestellt werden muss. Diese werden anhand einer oder mehrerer Leistungskenngrößen des Auftragsbearbeitungsprozesses spezifiziert. Numerische Untersuchungen zur Beurteilung der Leistungsfähigkeit der Strategie der nivellierten Auftragseinlastung zeigen, dass in Systemen mit einer Auslastung größer als 0,6 durch den Einsatz der Strategie der nivellierten Auftragseinlastung ein deutlich höherer α\alpha- und β\beta-Servicegrad erreicht werden kann als mit First come first serve. Außerdem ist der Kapazitätsbedarf zur Gewährleistung eines bestimmten α\alpha-Servicegrads bei Einsatz der Strategie der nivellierten Auftragseinlastung höchstens so hoch wie bei Einsatz von First come first serve

    Performance Analysis and Capacity Planning of Multi-stage Stochastic Order Fulfilment Systems with Levelled Order Release and Order Deadlines

    Get PDF
    Order fulfilment systems are forced to manage a volatile customer demand while meeting customer-required short order deadlines. To handle these challenges, we introduce the Strategy of Levelled Order Release (LOR) for workload balancing over time. The contributions of this work are (1) the workload balancing concept LOR, (2) a discrete-time Markov chain for performance analysis, and (3) an algorithm for capacity planning under performance constraints in order fulfilment systems with LOR

    Order picking optimization with order assignment and multiple workstations in KIVA warehouses

    Full text link
    We consider the problem of allocating orders and racks to multiple stations and sequencing their interlinked processing flows at each station in the robot-assisted KIVA warehouse. The various decisions involved in the problem, which are closely associated and must be solved in real time, are often tackled separately for ease of treatment. However, exploiting the synergy between order assignment and picking station scheduling benefits picking efficiency. We develop a comprehensive mathematical model that takes the synergy into consideration to minimize the total number of rack visits. To solve this intractable problem, we develop an efficient algorithm based on simulated annealing and dynamic programming. Computational studies show that the proposed approach outperforms the rule-based policies used in practice in terms of solution quality. Moreover, the results reveal that ignoring the order assignment policy leads to considerable optimality gaps for real-world-sized instances

    Demand Management for Attended Home Delivery – A Literature Review

    Get PDF
    Given the continuing e-commerce boom, home delivery services are becoming increasingly important. From a logistics perspective, attended home deliveries, which require the customer to be present when the purchased goods are delivered, are particularly challenging. To facilitate the delivery, the service provider and the customer typically agree on a specific time window. This step involves the customer directly in the service creation process. In designing the service offering, service providers thus face complex trade-offs between customer preferences and the efficiency of service execution. In this paper, we review these trade-offs and the corresponding literature, focusing on prescriptive analytics, for the case of attended home delivery. We develop a framework organized around different planning levels and demand management levers. Based on this framework, we review available models in the academic literature and discuss research gaps and future research directions

    Statistical priority-based uplink scheduling for M2M communications

    Get PDF
    Currently, the worldwide network is witnessing major efforts to transform it from being the Internet of humans only to becoming the Internet of Things (IoT). It is expected that Machine Type Communication Devices (MTCDs) will overwhelm the cellular networks with huge traffic of data that they collect from their environments to be sent to other remote MTCDs for processing thus forming what is known as Machine-to-Machine (M2M) communications. Long Term Evolution (LTE) and LTE-Advanced (LTE-A) appear as the best technology to support M2M communications due to their native IP support. LTE can provide high capacity, flexible radio resource allocation and scalability, which are the required pillars for supporting the expected large numbers of deployed MTCDs. Supporting M2M communications over LTE faces many challenges. These challenges include medium access control and the allocation of radio resources among MTCDs. The problem of radio resources allocation, or scheduling, originates from the nature of M2M traffic. This traffic consists of a large number of small data packets, with specific deadlines, generated by a potentially massive number of MTCDs. M2M traffic is therefore mostly in the uplink direction, i.e. from MTCDs to the base station (known as eNB in LTE terminology). These characteristics impose some design requirements on M2M scheduling techniques such as the need to use insufficient radio resources to transmit a huge amount of traffic within certain deadlines. This presents the main motivation behind this thesis work. In this thesis, we introduce a novel M2M scheduling scheme that utilizes what we term the “statistical priority” in determining the importance of information carried by data packets. Statistical priority is calculated based on the statistical features of the data such as value similarity, trend similarity and auto-correlation. These calculations are made and then reported by the MTCDs to the serving eNBs along with other reports such as channel state. Statistical priority is then used to assign priorities to data packets so that the scarce radio resources are allocated to the MTCDs that are sending statistically important information. This would help avoid exploiting limited radio resources to carry redundant or repetitive data which is a common situation in M2M communications. In order to validate our technique, we perform a simulation-based comparison among the main scheduling techniques and our proposed statistical priority-based scheduling technique. This comparison was conducted in a network that includes different types of MTCDs, such as environmental monitoring sensors, surveillance cameras and alarms. The results show that our proposed statistical priority-based scheduler outperforms the other schedulers in terms of having the least losses of alarm data packets and the highest rate in sending critical data packets that carry non-redundant information for both environmental monitoring and video traffic. This indicates that the proposed technique is the most efficient in the utilization of limited radio resources as compared to the other techniques
    corecore