5,967 research outputs found

    Incentives and Efficiency in Uncertain Collaborative Environments

    Full text link
    We consider collaborative systems where users make contributions across multiple available projects and are rewarded for their contributions in individual projects according to a local sharing of the value produced. This serves as a model of online social computing systems such as online Q&A forums and of credit sharing in scientific co-authorship settings. We show that the maximum feasible produced value can be well approximated by simple local sharing rules where users are approximately rewarded in proportion to their marginal contributions and that this holds even under incomplete information about the player's abilities and effort constraints. For natural instances we show almost 95% optimality at equilibrium. When players incur a cost for their effort, we identify a threshold phenomenon: the efficiency is a constant fraction of the optimal when the cost is strictly convex and decreases with the number of players if the cost is linear

    A Game Theoretic Analysis of Incentives in Content Production and Sharing over Peer-to-Peer Networks

    Full text link
    User-generated content can be distributed at a low cost using peer-to-peer (P2P) networks, but the free-rider problem hinders the utilization of P2P networks. In order to achieve an efficient use of P2P networks, we investigate fundamental issues on incentives in content production and sharing using game theory. We build a basic model to analyze non-cooperative outcomes without an incentive scheme and then use different game formulations derived from the basic model to examine five incentive schemes: cooperative, payment, repeated interaction, intervention, and enforced full sharing. The results of this paper show that 1) cooperative peers share all produced content while non-cooperative peers do not share at all without an incentive scheme; 2) a cooperative scheme allows peers to consume more content than non-cooperative outcomes do; 3) a cooperative outcome can be achieved among non-cooperative peers by introducing an incentive scheme based on payment, repeated interaction, or intervention; and 4) enforced full sharing has ambiguous welfare effects on peers. In addition to describing the solutions of different formulations, we discuss enforcement and informational requirements to implement each solution, aiming to offer a guideline for protocol designers when designing incentive schemes for P2P networks.Comment: 31 pages, 3 figures, 1 tabl

    Computing large market equilibria using abstractions

    Full text link
    Computing market equilibria is an important practical problem for market design (e.g. fair division, item allocation). However, computing equilibria requires large amounts of information (e.g. all valuations for all buyers for all items) and compute power. We consider ameliorating these issues by applying a method used for solving complex games: constructing a coarsened abstraction of a given market, solving for the equilibrium in the abstraction, and lifting the prices and allocations back to the original market. We show how to bound important quantities such as regret, envy, Nash social welfare, Pareto optimality, and maximin share when the abstracted prices and allocations are used in place of the real equilibrium. We then study two abstraction methods of interest for practitioners: 1) filling in unknown valuations using techniques from matrix completion, 2) reducing the problem size by aggregating groups of buyers/items into smaller numbers of representative buyers/items and solving for equilibrium in this coarsened market. We find that in real data allocations/prices that are relatively close to equilibria can be computed from even very coarse abstractions

    Cross-layer distributed power control: A repeated games formulation to improve the sum energy-efficiency

    Get PDF
    The main objective of this work is to improve the energy-efficiency (EE) of a multiple access channel (MAC) system, through power control, in a distributed manner. In contrast with many existing works on energy-efficient power control, which ignore the possible presence of a queue at the transmitter, we consider a new generalized cross-layer EE metric. This approach is relevant when the transmitters have a non-zero energy cost even when the radiated power is zero and takes into account the presence of a finite packet buffer and packet arrival at the transmitter. As the Nash equilibrium (NE) is an energy-inefficient solution, the present work aims at overcoming this deficit by improving the global energy-efficiency. Indeed, as the considered system has multiple agencies each with their own interest, the performance metric reflecting the individual interest of each decision maker is the global energy-efficiency defined then as the sum over individual energy-efficiencies. Repeated games (RG) are investigated through the study of two dynamic games (finite RG and discounted RG), whose equilibrium is defined when introducing a new operating point (OP), Pareto-dominating the NE and relying only on individual channel state information (CSI). Accordingly, closed-form expressions of the minimum number of stages of the game for finite RG (FRG) and the maximum discount factor of the discounted RG (DRG) were established. The cross-layer model in the RG formulation leads to achieving a shorter minimum number of stages in the FRG even for higher number of users. In addition, the social welfare (sum of utilities) in the DRG decreases slightly with the cross-layer model when the number of users increases while it is reduced considerably with the Goodman model. Finally, we show that in real systems with random packet arrivals, the cross-layer power control algorithm outperforms the Goodman algorithm.Comment: 36 pages, single column draft forma

    Approaching Utopia: Strong Truthfulness and Externality-Resistant Mechanisms

    Full text link
    We introduce and study strongly truthful mechanisms and their applications. We use strongly truthful mechanisms as a tool for implementation in undominated strategies for several problems,including the design of externality resistant auctions and a variant of multi-dimensional scheduling

    On the Hardness of Signaling

    Full text link
    There has been a recent surge of interest in the role of information in strategic interactions. Much of this work seeks to understand how the realized equilibrium of a game is influenced by uncertainty in the environment and the information available to players in the game. Lurking beneath this literature is a fundamental, yet largely unexplored, algorithmic question: how should a "market maker" who is privy to additional information, and equipped with a specified objective, inform the players in the game? This is an informational analogue of the mechanism design question, and views the information structure of a game as a mathematical object to be designed, rather than an exogenous variable. We initiate a complexity-theoretic examination of the design of optimal information structures in general Bayesian games, a task often referred to as signaling. We focus on one of the simplest instantiations of the signaling question: Bayesian zero-sum games, and a principal who must choose an information structure maximizing the equilibrium payoff of one of the players. In this setting, we show that optimal signaling is computationally intractable, and in some cases hard to approximate, assuming that it is hard to recover a planted clique from an Erdos-Renyi random graph. This is despite the fact that equilibria in these games are computable in polynomial time, and therefore suggests that the hardness of optimal signaling is a distinct phenomenon from the hardness of equilibrium computation. Necessitated by the non-local nature of information structures, en-route to our results we prove an "amplification lemma" for the planted clique problem which may be of independent interest
    • …
    corecore