7 research outputs found

    On the Secrecy Capacity of MIMO Wiretap Channels: Convex Reformulation and Efficient Numerical Methods

    Full text link
    This paper presents novel numerical approaches to finding the secrecy capacity of the multiple-input multiple-output (MIMO) wiretap channel subject to multiple linear transmit covariance constraints, including sum power constraint, per antenna power constraints and interference power constraint. An analytical solution to this problem is not known and existing numerical solutions suffer from slow convergence rate and/or high per-iteration complexity. Deriving computationally efficient solutions to the secrecy capacity problem is challenging since the secrecy rate is expressed as a difference of convex functions (DC) of the transmit covariance matrix, for which its convexity is only known for some special cases. In this paper we propose two low-complexity methods to compute the secrecy capacity along with a convex reformulation for degraded channels. In the first method we capitalize on the accelerated DC algorithm which requires solving a sequence of convex subproblems, for which we propose an efficient iterative algorithm where each iteration admits a closed-form solution. In the second method, we rely on the concave-convex equivalent reformulation of the secrecy capacity problem which allows us to derive the so-called partial best response algorithm to obtain an optimal solution. Notably, each iteration of the second method can also be done in closed form. The simulation results demonstrate a faster convergence rate of our methods compared to other known solutions. We carry out extensive numerical experiments to evaluate the impact of various parameters on the achieved secrecy capacity

    Optimal Transmit Strategies for Gaussian MISO Wiretap Channels

    No full text
    This paper studies the optimal tradeoff between secrecy and non-secrecy rates of the MISO wiretap channels for different power constraint settings:sum power constraint only, per-antenna power constraints only and joint sum and per-antenna power constraints. The problem is motivated by the fact thatchannel capacity and secrecy capacity are generally achieved by different transmit strategies. First, a necessary and sufficient condition to ensure a positive secrecy capacity is shown. The optimal tradeoff between secrecy rate and transmission rate is characterized by a weighted rate sum maximization problem. Since this problem is not necessarily convex, equivalent problem formulations are introduced to derive the optimal transmit strategies. Under sum power constraint only, a closed-form solution is provided. Under per-antenna power constraints, necessary conditions to find the optimal power allocation are provided. Sufficient conditions are provided for the special case of two transmit antennas. For the special case of parallel channels, the optimal transmit strategies can deduced from an equivalent point-to-point channel problem. Lastly, the theoretical results are illustrated by numerical simulations.QC 20190401</p

    Optimal Transmit Strategies for Gaussian MISO Wiretap Channels

    No full text
    This paper studies the optimal tradeoff between secrecy and non-secrecy rates of the MISO wiretap channels for different power constraint settings: sum power constraint only, per-antenna power constraints only, and joint sum and per-antenna power constraints. The problem is motivated by the fact that channel capacity and secrecy capacity are generally achieved by different transmit strategies. First, a necessary and sufficient condition to ensure a positive secrecy capacity is shown. The optimal tradeoff between secrecy rate and transmission rate is characterized by a weighted rate sum maximization problem. Since this problem is not necessarily convex, equivalent problem formulations are introduced to derive the optimal transmit strategies. Under sum power constraint only, a closed-form solution is provided. Under per-antenna power constraints, necessary conditions to find the optimal power allocation are derived. Sufficient conditions are provided for the special case of two transmit antennas. For the special case of aligned channels, the optimal transmit strategies can deduced from an equivalent point-to-point channel problem. Last, the theoretical results are illustrated by numerical simulations.Not duplicate with DiVA 1300865.QC 20191209. QC 20200319</p

    Optimal Transmit Strategies for Gaussian MISO Wiretap Channels

    No full text
    This paper studies the optimal tradeoff between secrecy and non-secrecy rates of the MISO wiretap channels for different power constraint settings:sum power constraint only, per-antenna power constraints only and joint sum and per-antenna power constraints. The problem is motivated by the fact thatchannel capacity and secrecy capacity are generally achieved by different transmit strategies. First, a necessary and sufficient condition to ensure a positive secrecy capacity is shown. The optimal tradeoff between secrecy rate and transmission rate is characterized by a weighted rate sum maximization problem. Since this problem is not necessarily convex, equivalent problem formulations are introduced to derive the optimal transmit strategies. Under sum power constraint only, a closed-form solution is provided. Under per-antenna power constraints, necessary conditions to find the optimal power allocation are provided. Sufficient conditions are provided for the special case of two transmit antennas. For the special case of parallel channels, the optimal transmit strategies can deduced from an equivalent point-to-point channel problem. Lastly, the theoretical results are illustrated by numerical simulations.QC 20190401</p

    Optimal Transmit Strategies for Gaussian MISO Wiretap Channels

    No full text
    This paper studies the optimal tradeoff between secrecy and non-secrecy rates of the MISO wiretap channels for different power constraint settings:sum power constraint only, per-antenna power constraints only and joint sum and per-antenna power constraints. The problem is motivated by the fact thatchannel capacity and secrecy capacity are generally achieved by different transmit strategies. First, a necessary and sufficient condition to ensure a positive secrecy capacity is shown. The optimal tradeoff between secrecy rate and transmission rate is characterized by a weighted rate sum maximization problem. Since this problem is not necessarily convex, equivalent problem formulations are introduced to derive the optimal transmit strategies. Under sum power constraint only, a closed-form solution is provided. Under per-antenna power constraints, necessary conditions to find the optimal power allocation are provided. Sufficient conditions are provided for the special case of two transmit antennas. For the special case of parallel channels, the optimal transmit strategies can deduced from an equivalent point-to-point channel problem. Lastly, the theoretical results are illustrated by numerical simulations.QC 20190401</p

    Optimal Transmit Strategies for Multi-antenna Systems with Joint Sum and Per-antenna Power Constraints

    No full text
    Nowadays, wireless communications have become an essential part of our daily life. During the last decade, both the number of users and their demands for wireless data have tremendously increased. Multi-antenna communication is a promising solution to meet this ever-growing traffic demands. In this dissertation, we study the optimal transmit strategies for multi-antenna systems with advanced power constraints, in particular joint sum and per-antenna power constraints. We focus on three different models including multi-antenna point-to-point channels, wiretap channels and massive multiple-input multiple-output (MIMO) setups. The solutions are provided either in closed-form or efficient iterative algorithms, which are ready to be implemented in practical systems. The first part is concerned with the optimal transmit strategies for point-to-point multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) channels with joint sum and per-antenna power constraints. For the Gaussian MISO channels, a closed-form characterization of an optimal beamforming strategy is derived. It is shown that we can always find an optimal beamforming transmit strategy that allocates the maximal sum power with phases matched to the complex channel coefficients. An interesting property of the optimal power allocation is that whenever the optimal power allocation of the corresponding problem with sum power constraint only exceeds per-antenna power constraints, it is optimal to allocate maximal per-antenna power to those antennas to satisfy the per-antenna power constraints. The remaining power is distributed among the other antennas whose optimal allocation follows from a reduced joint sum and per-antenna power constraints problem with fewer channel coefficients and a reduced sum power constraint. For the Gaussian MIMO channels, it is shown that if an unconstraint optimal power allocation for an antenna exceeds a per-antenna power constraint, then the maximal power for this antenna is used in the constraint optimal transmit strategy. This observation is then used in an iterative algorithm to compute the optimal transmit strategy in closed-form. In the second part of the thesis, we investigate the optimal transmit strategies for Gaussian MISO wiretap channels. Motivated by the fact that the non-secure capacity of the MISO wiretap channels is usually larger than the secrecy capacity, we study the optimal trade-off between those two rates with different power constraint settings, in particular, sum power constraint only, per-antenna power constraints only, and joint sum and per-antenna power constraints. To characterize the boundary of the optimal rate region, which describes the optimal trade-off between non-secure transmission and secrecy rates, related problems to find optimal transmit strategies that maximize the weighted rate sum with different power constraints are derived. Since these problems are not necessarily convex, equivalent problem formulation is used to derive optimal transmit strategies. A closed-formsolution is provided for sum power constraint only problem. Under per-antenna power constraints, necessary conditions to find the optimal power allocation are provided. Sufficient conditions, however, are available for the case of two transmit antennas only. For the special case of parallel channels, the optimal transmit strategies can deduced from an equivalent point-to-point channel problem. In this case, there is no trade-off between secrecy and non-secrecy rate, i.e., there is onlya transmit strategy that maximizes both rates. Finally, the optimal transmit strategies for large-scale MISO and massive MIMO systems with sub-connected hybrid analog-digital beamforming architecture, RF chain and per-antenna power constraints are studied. The system is configured such that each RF chain serves a group of antennas. For the large-scale MISO system, necessary and sufficient conditions to design the optimal digital and analog precoders are provided. It is optimal that the phase at each antenna is matched tothe channel so that we have constructive alignment. Unfortunately, for the massive MIMO system, only necessary conditions are provided. The necessary conditions to design the digital precoder are established based on a generalized water-filling and joint sum and per-antenna optimal power allocation solution, while the analog precoder is based on a per-antenna power allocation solution only. Further, we provide the optimal power allocation for sub-connected setups based on two properties: (i) Each RF chain uses full power and (ii) if the optimal power allocation of the unconstraint problem violates a per-antenna power constraint then it is optimal to allocate the maximal power for that antenna. The results in the dissertation demonstrate that future wireless networks can achieved higher data rates with less power consumption. The designs of optimal transmit strategies provided in this dissertation are valuable for ongoing implementations in future wireless networks. The insights offered through the analysis and design of the optimal transmit strategies in the dissertation also provide the understanding of the optimal power allocation on practical multi-antenna systems.TrĂ„dlös kommunikation har idag kommit att bli en viktig del av vĂ„ra dagliga liv. Under det senaste decenniet har bĂ„de antalet anvĂ€ndare och deras efterfrĂ„gan pĂ„ trĂ„dlös data ökat enormt. Att utöka antalet antenner i sĂ€ndare och mottagare Ă€r lovande strategier för att möta det stĂ€ndigt ökande trafikbehovet. I den hĂ€r avhandlingen studerar vi optimala transmissionsstrategier för multi-antennsystem med avancerade effektbegrĂ€nsningar. Mer specifikt antas sammanlĂ€nkade begrĂ€nsningar pĂ„ total effekt och effekt per antenn. Vi fokuserar pĂ„ tre olika modeller, nĂ€mligen multi-antenn punkt-till-punkt kanaler, wiretap-kanaler samt s.k. massiv MIMO (eng. multiple-input multiple-output) scenarier. Lösningar ges antingen i form av slutna matematiska uttryck, alternativt genom effektiva iterativa algoritmer redo att implementeras i praktiska system. Den första delen av avhandlingen studerar optimala transmissionsstrategier för punkt-till-punkt MISO (eng. multiple-input single-output) samt MIMO-kanaler med sammanlĂ€nkade begrĂ€nsningar pĂ„ total effekt och effekt per antenn. För Gaussiska MISO-kanaler hĂ€rleds en sluten karakterisering av en optimal ’beamforming’ -strategi. Vi visar att det alltid gĂ„r att hitta en optimal ’beamforming’-strategi som allokerar den maximala totaleffekten med faser matchade till de komplexa kanalkoefficienterna. En intressant egenskap hos den optimala effektallokeringen Ă€r att nĂ€rhelst den optimala effektallokeringen med enbart total effektbegrĂ€nsning endast överskrider de individuella begrĂ€nsningarna för specifika antenner, erhĂ„lls en optimal lösning genom att allokera maximal per-antenn effekt till just dessa antenner. Den Ă„terstĂ„ende effekten distribueras sedan över de övriga antennerna enligt ett ekvivalent men reducerat optimeringsproblem med fĂ€rre kanalkoefficienter. För Gaussiska MIMO-kanaler visas att om en obegrĂ€nsad optimal effektallokering för en antenn överskrider den individuella, per antenn angivna, begrĂ€nsningen sĂ„ Ă€r maximal effekt allokerad för just dessa antenner i den optimala strategin. Denna observation anvĂ€nds för att beskriva en iterativ algoritm som berĂ€knar den optimala transmissionsstrategin. I den andra delen av avhandlingen undersöker vi optimala transmissionsstrategier för Gaussiska MISO wiretap-kanaler. Motiverat av faktumet att den icke-sĂ€krade kapaciteten över MISO wiretap-kanalen vanligtvis Ă€r större Ă€n den sĂ€krade s.k. ’secrecy’-kapaciteten, studerar vi den optimala avvĂ€gningen mellan dessa tvĂ„ överföringshastigheter givet olika effektbegrĂ€nsningar. Mer specifikt studeras total effektbegrĂ€nsning enskilt, individuell effektbegrĂ€nsning per antenn enskilt, samt sammanlĂ€nkade begrĂ€nsningar pĂ„ bĂ„da dessa. För att hitta regionsgrĂ€nsen för optimala hastigheter, vilken beskriver den optimala avvĂ€gningen mellan icke-sĂ€krad sĂ€ndning och ’secrecy’-hastighet, hĂ€rleds lösningar till relaterade problem dĂ€r vi söker optimala transmissionsstrategier som maximerar den viktade summan av hastigheter med olika effektbegrĂ€nsningar. Ekvivalenta formuleringar av optimeringsproblemen anvĂ€nds för att hĂ€rleda optimala transmissionsstrategier eftersom ursprungsproblemen ej Ă€r konvexa. En optimal lösning för problemet med total effektbegrĂ€nsning ges i sluten form. För individuell effektbegrĂ€nsning per antenn tillhandahĂ„ller vi nödvĂ€ndiga villkor för att finna en optimal effektallokering. TillrĂ€ckliga villkor Ă€r endast tillgĂ€ngliga i fallet av tvĂ„ sĂ€ndarantenner. För specialfallet av parallella kanaler kan transmissionsstrategier hĂ€rledas frĂ„n ett ekvivalent problem för en punkt-till-punkt kanal. I detta fall existerar ingen avvĂ€gning mellan icke-sĂ€krade och ’secrecy’ kapaciteten, endast en optimal strategi som maximerar bĂ„da kapaciteter. Avslutningsvis studeras optimala strategier för storskaliga MISO samt massiva MIMO system med sammankopplad hybrid analog-digital ’beamforming’-arkitektur,  radiofrekvens-kedja samt individuella effektbegrĂ€nsningar per antenn. Studerat system Ă€r konfigurerat sĂ„ att varje radiofrekvens-kedja matar en grupp av antenner. För det storskaliga MISO systemet tillhandahĂ„lls nödvĂ€ndiga och tillrĂ€ckliga villkor för att design av optimala analoga och digitala kodningsstrategier ska vara möjligt. Optimal strategi uppnĂ„s dĂ„ fasförskjutningen i varje antenn Ă€r matchad till motsvarande kanal, varvid konstruktiv samverkan uppstĂ„r. För massiv MIMO ges dessvĂ€rre endast nödvĂ€ndiga villkor. De nödvĂ€ndiga villkoren för att designa digitala kodningsstrategier etableras baserat pĂ„ en generaliserad s.k. ’water-filling’ effektallokeringsmetod med sammanlĂ€nkade begrĂ€nsningar pĂ„ total effekt och effekt per antenn, medan villkoren för de analoga kodningsstrategierna endast Ă€r baserade pĂ„ effektbegrĂ€nsningar per antenn. Vidare beskriver vi optimal effektallokering för sammankopplade system baserat pĂ„ tvĂ„ egenskaper: (i) Varje radiokedja utnyttjas till full effekt, samt (ii) i fallet dĂ„ optimala effektallokeringen i det obegrĂ€nsade problemet överskrider specifika antenners begrĂ€nsningar fĂ„s den optimala lösningen genom att allokera maximal effekt till motsvarande antenner.Resultaten i denna avhandling visar att framtida trĂ„dlösa nĂ€tverk kan uppnĂ„ högre datahastigheter med lĂ€gre effektförbrukning. Den design av optimala transmissionsstrategier som beskrivs i denna avhandling Ă€r dĂ€rför vĂ€rdefulla i den pĂ„gĂ„ende implementeringen av framtida trĂ„dlösa nĂ€tverk. De insikter som ges genom analys och design av optimala transmissionsstrategier i avhandlingen ger ocksĂ„ förstĂ„else inom optimal effektallokering i praktiska implementeringar av multi-antennsystem

    Optimal Transmit Strategies for Multi-antenna Systems with Joint Sum and Per-antenna Power Constraints

    No full text
    Nowadays, wireless communications have become an essential part of our daily life. During the last decade, both the number of users and their demands for wireless data have tremendously increased. Multi-antenna communication is a promising solution to meet this ever-growing traffic demands. In this dissertation, we study the optimal transmit strategies for multi-antenna systems with advanced power constraints, in particular joint sum and per-antenna power constraints. We focus on three different models including multi-antenna point-to-point channels, wiretap channels and massive multiple-input multiple-output (MIMO) setups. The solutions are provided either in closed-form or efficient iterative algorithms, which are ready to be implemented in practical systems. The first part is concerned with the optimal transmit strategies for point-to-point multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) channels with joint sum and per-antenna power constraints. For the Gaussian MISO channels, a closed-form characterization of an optimal beamforming strategy is derived. It is shown that we can always find an optimal beamforming transmit strategy that allocates the maximal sum power with phases matched to the complex channel coefficients. An interesting property of the optimal power allocation is that whenever the optimal power allocation of the corresponding problem with sum power constraint only exceeds per-antenna power constraints, it is optimal to allocate maximal per-antenna power to those antennas to satisfy the per-antenna power constraints. The remaining power is distributed among the other antennas whose optimal allocation follows from a reduced joint sum and per-antenna power constraints problem with fewer channel coefficients and a reduced sum power constraint. For the Gaussian MIMO channels, it is shown that if an unconstraint optimal power allocation for an antenna exceeds a per-antenna power constraint, then the maximal power for this antenna is used in the constraint optimal transmit strategy. This observation is then used in an iterative algorithm to compute the optimal transmit strategy in closed-form. In the second part of the thesis, we investigate the optimal transmit strategies for Gaussian MISO wiretap channels. Motivated by the fact that the non-secure capacity of the MISO wiretap channels is usually larger than the secrecy capacity, we study the optimal trade-off between those two rates with different power constraint settings, in particular, sum power constraint only, per-antenna power constraints only, and joint sum and per-antenna power constraints. To characterize the boundary of the optimal rate region, which describes the optimal trade-off between non-secure transmission and secrecy rates, related problems to find optimal transmit strategies that maximize the weighted rate sum with different power constraints are derived. Since these problems are not necessarily convex, equivalent problem formulation is used to derive optimal transmit strategies. A closed-formsolution is provided for sum power constraint only problem. Under per-antenna power constraints, necessary conditions to find the optimal power allocation are provided. Sufficient conditions, however, are available for the case of two transmit antennas only. For the special case of parallel channels, the optimal transmit strategies can deduced from an equivalent point-to-point channel problem. In this case, there is no trade-off between secrecy and non-secrecy rate, i.e., there is onlya transmit strategy that maximizes both rates. Finally, the optimal transmit strategies for large-scale MISO and massive MIMO systems with sub-connected hybrid analog-digital beamforming architecture, RF chain and per-antenna power constraints are studied. The system is configured such that each RF chain serves a group of antennas. For the large-scale MISO system, necessary and sufficient conditions to design the optimal digital and analog precoders are provided. It is optimal that the phase at each antenna is matched tothe channel so that we have constructive alignment. Unfortunately, for the massive MIMO system, only necessary conditions are provided. The necessary conditions to design the digital precoder are established based on a generalized water-filling and joint sum and per-antenna optimal power allocation solution, while the analog precoder is based on a per-antenna power allocation solution only. Further, we provide the optimal power allocation for sub-connected setups based on two properties: (i) Each RF chain uses full power and (ii) if the optimal power allocation of the unconstraint problem violates a per-antenna power constraint then it is optimal to allocate the maximal power for that antenna. The results in the dissertation demonstrate that future wireless networks can achieved higher data rates with less power consumption. The designs of optimal transmit strategies provided in this dissertation are valuable for ongoing implementations in future wireless networks. The insights offered through the analysis and design of the optimal transmit strategies in the dissertation also provide the understanding of the optimal power allocation on practical multi-antenna systems.TrĂ„dlös kommunikation har idag kommit att bli en viktig del av vĂ„ra dagliga liv. Under det senaste decenniet har bĂ„de antalet anvĂ€ndare och deras efterfrĂ„gan pĂ„ trĂ„dlös data ökat enormt. Att utöka antalet antenner i sĂ€ndare och mottagare Ă€r lovande strategier för att möta det stĂ€ndigt ökande trafikbehovet. I den hĂ€r avhandlingen studerar vi optimala transmissionsstrategier för multi-antennsystem med avancerade effektbegrĂ€nsningar. Mer specifikt antas sammanlĂ€nkade begrĂ€nsningar pĂ„ total effekt och effekt per antenn. Vi fokuserar pĂ„ tre olika modeller, nĂ€mligen multi-antenn punkt-till-punkt kanaler, wiretap-kanaler samt s.k. massiv MIMO (eng. multiple-input multiple-output) scenarier. Lösningar ges antingen i form av slutna matematiska uttryck, alternativt genom effektiva iterativa algoritmer redo att implementeras i praktiska system. Den första delen av avhandlingen studerar optimala transmissionsstrategier för punkt-till-punkt MISO (eng. multiple-input single-output) samt MIMO-kanaler med sammanlĂ€nkade begrĂ€nsningar pĂ„ total effekt och effekt per antenn. För Gaussiska MISO-kanaler hĂ€rleds en sluten karakterisering av en optimal ’beamforming’ -strategi. Vi visar att det alltid gĂ„r att hitta en optimal ’beamforming’-strategi som allokerar den maximala totaleffekten med faser matchade till de komplexa kanalkoefficienterna. En intressant egenskap hos den optimala effektallokeringen Ă€r att nĂ€rhelst den optimala effektallokeringen med enbart total effektbegrĂ€nsning endast överskrider de individuella begrĂ€nsningarna för specifika antenner, erhĂ„lls en optimal lösning genom att allokera maximal per-antenn effekt till just dessa antenner. Den Ă„terstĂ„ende effekten distribueras sedan över de övriga antennerna enligt ett ekvivalent men reducerat optimeringsproblem med fĂ€rre kanalkoefficienter. För Gaussiska MIMO-kanaler visas att om en obegrĂ€nsad optimal effektallokering för en antenn överskrider den individuella, per antenn angivna, begrĂ€nsningen sĂ„ Ă€r maximal effekt allokerad för just dessa antenner i den optimala strategin. Denna observation anvĂ€nds för att beskriva en iterativ algoritm som berĂ€knar den optimala transmissionsstrategin. I den andra delen av avhandlingen undersöker vi optimala transmissionsstrategier för Gaussiska MISO wiretap-kanaler. Motiverat av faktumet att den icke-sĂ€krade kapaciteten över MISO wiretap-kanalen vanligtvis Ă€r större Ă€n den sĂ€krade s.k. ’secrecy’-kapaciteten, studerar vi den optimala avvĂ€gningen mellan dessa tvĂ„ överföringshastigheter givet olika effektbegrĂ€nsningar. Mer specifikt studeras total effektbegrĂ€nsning enskilt, individuell effektbegrĂ€nsning per antenn enskilt, samt sammanlĂ€nkade begrĂ€nsningar pĂ„ bĂ„da dessa. För att hitta regionsgrĂ€nsen för optimala hastigheter, vilken beskriver den optimala avvĂ€gningen mellan icke-sĂ€krad sĂ€ndning och ’secrecy’-hastighet, hĂ€rleds lösningar till relaterade problem dĂ€r vi söker optimala transmissionsstrategier som maximerar den viktade summan av hastigheter med olika effektbegrĂ€nsningar. Ekvivalenta formuleringar av optimeringsproblemen anvĂ€nds för att hĂ€rleda optimala transmissionsstrategier eftersom ursprungsproblemen ej Ă€r konvexa. En optimal lösning för problemet med total effektbegrĂ€nsning ges i sluten form. För individuell effektbegrĂ€nsning per antenn tillhandahĂ„ller vi nödvĂ€ndiga villkor för att finna en optimal effektallokering. TillrĂ€ckliga villkor Ă€r endast tillgĂ€ngliga i fallet av tvĂ„ sĂ€ndarantenner. För specialfallet av parallella kanaler kan transmissionsstrategier hĂ€rledas frĂ„n ett ekvivalent problem för en punkt-till-punkt kanal. I detta fall existerar ingen avvĂ€gning mellan icke-sĂ€krade och ’secrecy’ kapaciteten, endast en optimal strategi som maximerar bĂ„da kapaciteter. Avslutningsvis studeras optimala strategier för storskaliga MISO samt massiva MIMO system med sammankopplad hybrid analog-digital ’beamforming’-arkitektur,  radiofrekvens-kedja samt individuella effektbegrĂ€nsningar per antenn. Studerat system Ă€r konfigurerat sĂ„ att varje radiofrekvens-kedja matar en grupp av antenner. För det storskaliga MISO systemet tillhandahĂ„lls nödvĂ€ndiga och tillrĂ€ckliga villkor för att design av optimala analoga och digitala kodningsstrategier ska vara möjligt. Optimal strategi uppnĂ„s dĂ„ fasförskjutningen i varje antenn Ă€r matchad till motsvarande kanal, varvid konstruktiv samverkan uppstĂ„r. För massiv MIMO ges dessvĂ€rre endast nödvĂ€ndiga villkor. De nödvĂ€ndiga villkoren för att designa digitala kodningsstrategier etableras baserat pĂ„ en generaliserad s.k. ’water-filling’ effektallokeringsmetod med sammanlĂ€nkade begrĂ€nsningar pĂ„ total effekt och effekt per antenn, medan villkoren för de analoga kodningsstrategierna endast Ă€r baserade pĂ„ effektbegrĂ€nsningar per antenn. Vidare beskriver vi optimal effektallokering för sammankopplade system baserat pĂ„ tvĂ„ egenskaper: (i) Varje radiokedja utnyttjas till full effekt, samt (ii) i fallet dĂ„ optimala effektallokeringen i det obegrĂ€nsade problemet överskrider specifika antenners begrĂ€nsningar fĂ„s den optimala lösningen genom att allokera maximal effekt till motsvarande antenner.Resultaten i denna avhandling visar att framtida trĂ„dlösa nĂ€tverk kan uppnĂ„ högre datahastigheter med lĂ€gre effektförbrukning. Den design av optimala transmissionsstrategier som beskrivs i denna avhandling Ă€r dĂ€rför vĂ€rdefulla i den pĂ„gĂ„ende implementeringen av framtida trĂ„dlösa nĂ€tverk. De insikter som ges genom analys och design av optimala transmissionsstrategier i avhandlingen ger ocksĂ„ förstĂ„else inom optimal effektallokering i praktiska implementeringar av multi-antennsystem
    corecore