3,268 research outputs found

    On the Delay-Throughput Tradeoff in Distributed Wireless Networks

    Full text link
    This paper deals with the delay-throughput analysis of a single-hop wireless network with nn transmitter/receiver pairs. All channels are assumed to be block Rayleigh fading with shadowing, described by parameters (α,ϖ)(\alpha,\varpi), where α\alpha denotes the probability of shadowing and ϖ\varpi represents the average cross-link gains. The analysis relies on the distributed on-off power allocation strategy (i.e., links with a direct channel gain above a certain threshold transmit at full power and the rest remain silent) for the deterministic and stochastic packet arrival processes. It is also assumed that each transmitter has a buffer size of one packet and dropping occurs once a packet arrives in the buffer while the previous packet has not been served. In the first part of the paper, we define a new notion of performance in the network, called effective throughput, which captures the effect of arrival process in the network throughput, and maximize it for different cases of packet arrival process. It is proved that the effective throughput of the network asymptotically scales as lognα^\frac{\log n}{\hat{\alpha}}, with α^αϖ\hat{\alpha} \triangleq \alpha \varpi, regardless of the packet arrival process. In the second part of the paper, we present the delay characteristics of the underlying network in terms of the packet dropping probability. We derive the sufficient conditions in the asymptotic case of nn \to \infty such that the packet dropping probability tend to zero, while achieving the maximum effective throughput of the network. Finally, we study the trade-off between the effective throughput, delay, and packet dropping probability of the network for different packet arrival processes.Comment: Submitted to IEEE Transactions on Information Theory (34 pages

    Multi-Round Contention in Wireless LANs with Multipacket Reception

    Full text link
    Multi-packet reception (MPR) has been recognized as a powerful capacity-enhancement technique for random-access wireless local area networks (WLANs). As is common with all random access protocols, the wireless channel is often under-utilized in MPR WLANs. In this paper, we propose a novel multi-round contention random-access protocol to address this problem. This work complements the existing random-access methods that are based on single-round contention. In the proposed scheme, stations are given multiple chances to contend for the channel until there are a sufficient number of ``winning" stations that can share the MPR channel for data packet transmission. The key issue here is the identification of the optimal time to stop the contention process and start data transmission. The solution corresponds to finding a desired tradeoff between channel utilization and contention overhead. In this paper, we conduct a rigorous analysis to characterize the optimal strategy using the theory of optimal stopping. An interesting result is that the optimal stopping strategy is a simple threshold-based rule, which stops the contention process as soon as the total number of winning stations exceeds a certain threshold. Compared with the conventional single-round contention protocol, the multi-round contention scheme significantly enhances channel utilization when the MPR capability of the channel is small to medium. Meanwhile, the scheme automatically falls back to single-round contention when the MPR capability is very large, in which case the throughput penalty due to random access is already small even with single-round contention

    Energy-delay bounds analysis in wireless multi-hop networks with unreliable radio links

    Get PDF
    Energy efficiency and transmission delay are very important parameters for wireless multi-hop networks. Previous works that study energy efficiency and delay are based on the assumption of reliable links. However, the unreliability of the channel is inevitable in wireless multi-hop networks. This paper investigates the trade-off between the energy consumption and the end-to-end delay of multi-hop communications in a wireless network using an unreliable link model. It provides a closed form expression of the lower bound on the energy-delay trade-off for different channel models (AWGN, Raleigh flat fading and Nakagami block-fading) in a linear network. These analytical results are also verified in 2-dimensional Poisson networks using simulations. The main contribution of this work is the use of a probabilistic link model to define the energy efficiency of the system and capture the energy-delay trade-offs. Hence, it provides a more realistic lower bound on both the energy efficiency and the energy-delay trade-off since it does not restrict the study to the set of perfect links as proposed in earlier works

    Restricted Mobility Improves Delay-Throughput Trade-offs in Mobile Ad-Hoc Networks

    Get PDF
    In this paper we revisit two classes of mobility models which are widely used to repre-sent users ’ mobility in wireless networks: Random Waypoint (RWP) and Random Direction (RD). For both models we obtain systems of partial differential equations which describe the evolution of the users ’ distribution. For the RD model, we show how the equations can be solved analytically both in the stationary and transient regime adopting standard mathematical techniques. Our main contributions are i) simple expressions which relate the transient dura-tion to the model parameters; ii) the definition of a generalized random direction model whose stationary distribution of mobiles in the physical space corresponds to an assigned distribution

    On the Benefits of Network-Level Cooperation in Millimeter-Wave Communications

    Full text link
    Relaying techniques for millimeter-wave wireless networks represent a powerful solution for improving the transmission performance. In this work, we quantify the benefits in terms of delay and throughput for a random-access multi-user millimeter-wave wireless network, assisted by a full-duplex network cooperative relay. The relay is equipped with a queue for which we analyze the performance characteristics (e.g., arrival rate, service rate, average size, and stability condition). Moreover, we study two possible transmission schemes: fully directional and broadcast. In the former, the source nodes transmit a packet either to the relay or to the destination by using narrow beams, whereas, in the latter, the nodes transmit to both the destination and the relay in the same timeslot by using a wider beam, but with lower beamforming gain. In our analysis, we also take into account the beam alignment phase that occurs every time a transmitter node changes the destination node. We show how the beam alignment duration, as well as position and number of transmitting nodes, significantly affect the network performance. Moreover, we illustrate the optimal transmission scheme (i.e., broadcast or fully directional) for several system parameters and show that a fully directional transmission is not always beneficial, but, in some scenarios, broadcasting and relaying can improve the performance in terms of throughput and delay.Comment: arXiv admin note: text overlap with arXiv:1804.0945

    Energy-Efficient Resource Allocation in Wireless Networks: An Overview of Game-Theoretic Approaches

    Full text link
    An overview of game-theoretic approaches to energy-efficient resource allocation in wireless networks is presented. Focusing on multiple-access networks, it is demonstrated that game theory can be used as an effective tool to study resource allocation in wireless networks with quality-of-service (QoS) constraints. A family of non-cooperative (distributed) games is presented in which each user seeks to choose a strategy that maximizes its own utility while satisfying its QoS requirements. The utility function considered here measures the number of reliable bits that are transmitted per joule of energy consumed and, hence, is particulary suitable for energy-constrained networks. The actions available to each user in trying to maximize its own utility are at least the choice of the transmit power and, depending on the situation, the user may also be able to choose its transmission rate, modulation, packet size, multiuser receiver, multi-antenna processing algorithm, or carrier allocation strategy. The best-response strategy and Nash equilibrium for each game is presented. Using this game-theoretic framework, the effects of power control, rate control, modulation, temporal and spatial signal processing, carrier allocation strategy and delay QoS constraints on energy efficiency and network capacity are quantified.Comment: To appear in the IEEE Signal Processing Magazine: Special Issue on Resource-Constrained Signal Processing, Communications and Networking, May 200
    corecore