1,365 research outputs found

    On bounds and algorithms for frequency synchronization for collaborative communication systems

    Full text link
    Cooperative diversity systems are wireless communication systems designed to exploit cooperation among users to mitigate the effects of multipath fading. In fairly general conditions, it has been shown that these systems can achieve the diversity order of an equivalent MISO channel and, if the node geometry permits, virtually the same outage probability can be achieved as that of the equivalent MISO channel for a wide range of applicable SNR. However, much of the prior analysis has been performed under the assumption of perfect timing and frequency offset synchronization. In this paper, we derive the estimation bounds and associated maximum likelihood estimators for frequency offset estimation in a cooperative communication system. We show the benefit of adaptively tuning the frequency of the relay node in order to reduce estimation error at the destination. We also derive an efficient estimation algorithm, based on the correlation sequence of the data, which has mean squared error close to the Cramer-Rao Bound.Comment: Submitted to IEEE Transaction on Signal Processin

    Distributed space-time block coding in cooperative relay networks with application in cognitive radio

    Get PDF
    Spatial diversity is an effective technique to combat the effects of severe fading in wireless environments. Recently, cooperative communications has emerged as an attractive communications paradigm that can introduce a new form of spatial diversity which is known as cooperative diversity, that can enhance system reliability without sacrificing the scarce bandwidth resource or consuming more transmit power. It enables single-antenna terminals in a wireless relay network to share their antennas to form a virtual antenna array on the basis of their distributed locations. As such, the same diversity gains as in multi-input multi-output systems can be achieved without requiring multiple-antenna terminals. In this thesis, a new approach to cooperative communications via distributed extended orthogonal space-time block coding (D-EO-STBC) based on limited partial feedback is proposed for cooperative relay networks with three and four relay nodes and then generalized for an arbitrary number of relay nodes. This scheme can achieve full cooperative diversity and full transmission rate in addition to array gain, and it has certain properties that make it alluring for practical systems such as orthogonality, flexibility, low computational complexity and decoding delay, and high robustness to node failure. Versions of the closed-loop D-EO-STBC scheme based on cooperative orthogonal frequency division multiplexing type transmission are also proposed for both flat and frequency-selective fading channels which can overcome imperfect synchronization in the network. As such, this proposed technique can effectively cope with the effects of fading and timing errors. Moreover, to increase the end-to-end data rate, this scheme is extended for two-way relay networks through a three-time slot framework. On the other hand, to substantially reduce the feedback channel overhead, limited feedback approaches based on parameter quantization are proposed. In particular, an optimal one-bit partial feedback approach is proposed for the generalized D-O-STBC scheme to maximize the array gain. To further enhance the end-to-end bit error rate performance of the cooperative relay system, a relay selection scheme based on D-EO-STBC is then proposed. Finally, to highlight the utility of the proposed D-EO-STBC scheme, an application to cognitive radio is studied

    Quasi-orthogonal space-frequency coding in non-coherent cooperative broadband networks

    Get PDF
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.So far, complex valued orthogonal codes have been used differentially in cooperative broadband networks. These codes however achieve less than unitary code rate when utilized in cooperative networks with more than two relays. Therefore, the main challenge is how to construct unitary rate codes for non-coherent cooperative broadband networks with more than two relays while exploiting the achievable spatial and frequency diversity. In this paper, we extend full rate quasi-orthogonal codes to differential cooperative broadband networks where channel information is unavailable. From this, we propose a generalized differential distributed quasi-orthogonal space-frequency coding (DQSFC) protocol for cooperative broadband networks. Our proposed scheme is able to achieve full rate, and full spatial and frequency diversity in cooperative networks with any number of relays. Through pairwise error probability analysis we show that the diversity gain of our scheme can be improved by appropriate code construction and sub-carrier allocation. Based on this, we derive sufficient conditions for the proposed code structure at the source node and relay nodes to achieve full spatial and frequency diversity.Peer reviewe

    Fair and optimal resource allocation in wireless sensor networks

    Get PDF
    There is a large amount of research in wireless networks focuses on optimization of either network routing and power control alone. In contrast, this work aims at jointly optimizing the transmission power and routing path selection in order to optimize allocation of resources in interference constrained wireless environment. Moreover, we consider a multipath routing where multiple alternative paths are employed to transmit data between the end nodes. One of modern communication techniques that it applies to a network coding, though not explicitly implemented in this work. The proposed approach is first analyzed theoretically using Lagrangian optimization for a three-node scenario. We analyze this basic scenario, as it is essential for development of the overall multi-path routing schemes for multi-hop networks. The optimal solution for the three-node topology is replicated throughout the network to converge to a network-level solution. In contrast to existing studies, we explicitly consider interference from adjacent links, which varies with traffic flow thus optimizing the routing, and flow control decisions. The results and conclusions provide guidance as to the optimum routing decisions and a corresponding theoretical performance limits. The optimization of the throughput of the wireless network scenario is considered as a multi-variable optimization problem subject to flow and power constraints. Numerical analysis performed in Matlab-Simulink indicates that, given loose outage constraints, an optimal trade-off between the channel parameters renders optimum results even when the gain of the channel varies with time. The theoretical analysis and simulations demonstrate and validate that the channel capacity and efficiency are maximized when the routing decisions consider the network performance trade-offs. Next, the proposed routing and power control scheme is experimentally evaluated in hardware using universal software radio peripheral (USRP2). The USRP testbed utilizes the proposed multi-variable optimization algorithm. The communication system is implemented using GNU Radio software where the physical layer employs two direct-spread spectrum variants: (a) binary phase shift keying (DS-BPSK) and (b) orthogonal frequency division modulation (DS-OFDM) schemes. The experimental results are compared with the simulation results --Abstract, page iii

    Distributed space-time coding including the golden code with application in cooperative networks

    Get PDF
    This thesis presents new methodologies to improve performance of wireless cooperative networks using the Golden Code. As a form of space-time coding, the Golden Code can achieve diversity-multiplexing tradeoff and the data rate can be twice that of the Alamouti code. In practice, however, asynchronism between relay nodes may reduce performance and channel quality can be degraded from certain antennas. Firstly, a simple offset transmission scheme, which employs full interference cancellation (FIC) and orthogonal frequency division multiplexing (OFDM), is enhanced through the use of four relay nodes and receiver processing to mitigate asynchronism. Then, the potential reduction in diversity gain due to the dependent channel matrix elements in the distributed Golden Code transmission, and the rate penalty of multihop transmission, are mitigated by relay selection based on two-way transmission. The Golden Code is also implemented in an asynchronous one-way relay network over frequency flat and selective channels, and a simple approach to overcome asynchronism is proposed. In one-way communication with computationally efficient sphere decoding, the maximum of the channel parameter means is shown to achieve the best performance for the relay selection through bit error rate simulations. Secondly, to reduce the cost of hardware when multiple antennas are available in a cooperative network, multi-antenna selection is exploited. In this context, maximum-sum transmit antenna selection is proposed. End-to-end signal-to-noise ratio (SNR) is calculated and outage probability analysis is performed when the links are modelled as Rayleigh fading frequency flat channels. The numerical results support the analysis and for a MIMO system maximum-sum selection is shown to outperform maximum-minimum selection. Additionally, pairwise error probability (PEP) analysis is performed for maximum-sum transmit antenna selection with the Golden Code and the diversity order is obtained. Finally, with the assumption of fibre-connected multiple antennas with finite buffers, multiple-antenna selection is implemented on the basis of maximum-sum antenna selection. Frequency flat Rayleigh fading channels are assumed together with a decode and forward transmission scheme. Outage probability analysis is performed by exploiting the steady-state stationarity of a Markov Chain model
    corecore