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Abstract— So far, complex valued orthogonal codes have been used differentially in cooperative 

broadband networks. These codes however achieve less than unitary code rate when utilized in 

cooperative networks with more than two relays. Therefore, the main challenge is how to construct 

unitary rate codes for non-coherent cooperative broadband networks with more than two relays 

while exploiting the achievable spatial and frequency diversity. In this paper, we extend full rate 

quasi-orthogonal codes to differential cooperative broadband networks where channel information 

is unavailable. From this, we propose a generalized differential distributed quasi-orthogonal space-

frequency coding (DQSFC) scheme for cooperative broadband networks. Our proposed scheme is 

able to achieve full rate, and full spatial and frequency diversity in cooperative networks with any 

number of relays. Through pairwise error probability analysis we show that the diversity gain of 

our scheme can be improved by appropriate code construction and sub-carrier allocation. Based on 

this, we derive sufficient conditions for the proposed code structure at the source node and relay 

nodes to achieve full spatial and frequency diversity.  

Keywords—Differential distributed quasi-orthogonal space-frequency codes, orthogonal frequency 

division multiplexing, pairwise error probability, quasi-orthogonal codes 

I. INTRODUCTION  

The study of non-coherent signal detection in multiple-antenna broadband networks has been extensively 

investigated in the literature. For example in [1] [2] the authors investigate non-coherent maximum-

likelihood (ML) detection of orthogonal space-time coded transmissions in ultra-wideband systems. Non-

coherent signal detection in single-antenna cooperative networks has also become a popular research 

focus. The works in [3] [4] [5] propose differential transmission schemes for non-coherent signal 



detection in quasi-static flat fading (narrowband) cooperative networks. The results show that different 

types of real and complex-valued codes can be used differentially in flat fading cooperative networks 

while guaranteeing full spatial and temporal diversity, and non-coherent detection. Compared to flat 

fading cooperative networks, the problem of non-coherent signal detection in frequency-selective fading 

(broadband) networks is significantly more challenging because of the presence of multiple channel paths 

and multiple broadcast phases between the source node and the destination. Furthermore, a simple 

extension of all the aforementioned non-coherent space-time coding schemes from the temporal 

dimension, to the frequency dimension, yields designs that are sub-optimal in terms of achievable 

frequency diversity. In other words, the direct application of codes in the temporal dimension to 

frequency sub-carriers fails to exploit the available diversity in the frequency dimension. Thus, while the 

schemes in [1-5] exploit achievable spatial and temporal gain, the schemes fail to exploit frequency 

diversity. The main problem is therefore how to design distributed space-frequency codes (DSFC) that 

can exploit the available diversity gain in the spatial and frequency dimensions in non-coherent 

broadband cooperative networks.           

In addition to the aforementioned, the schemes in [1] [2] utilize orthogonal codes. It is difficult to 

construct orthogonal codes with full rate for cooperative networks with four or more relays. Quasi-

orthogonal codes which achieve full rate have been studied in [6] for coherent flat fading networks where 

full channel state information (CSI) is available. For the case of non-coherent flat fading cooperative 

networks, quasi-orthogonal codes were employed in [7] for wireless relay networks with partial CSI. The 

results in [6] and [7] show that quasi-orthogonal codes can achieve full rate and full spatial and temporal 

diversity in flat fading channels. For the case of frequency-selective channels however, constructing 

quasi-orthogonal codes that can achieve full rate and full spatial and frequency diversity in non-coherent 

cooperative networks is more challenging and of practical requirement. 

Motivated by all of the above, we propose a differential distributed quasi-orthogonal space-frequency 

coding (DQSFC) scheme which is able to achieve full rate, and full spatial and frequency diversity in 

non-coherent cooperative broadband networks with any number of relays. This means that our scheme 

achieves full rate when relay nodes forward information signals to the destination. We contrast our work 

with [8] and [9], while these works investigate hybrid combinations of quasi-orthogonal codes with 



OFDM in coherent multiple-antenna networks. Our work is the first to focus on non-coherent single-

antenna cooperative broadband networks utilizing quasi-orthogonal codes in the spatial and frequency 

dimensions. Based on all the aforementioned, in this work, we make the following contributions: 

(1) As the cooperative network involves the ‘transmit’ and ‘cooperate’ stages, we carefully provide a 

systematic construction of the quasi-orthogonal space-frequency code matrix and present the full 

differential procedure. Based on the assumption of constant channel gain across adjacent groups of 

frequency sub-carriers, we implement the differential encoding, sub-carrier grouping and quasi-

orthogonal design at the source node thereby simplifying the operation at the relays. 

(2) The pairwise error probability (PEP) analysis shows that the diversity performance of our scheme 

can be improved through code construction and sub-carrier allocation. Based on this, we devise a 

code structure which maximizes the diversity performance of our scheme. Using the permutation 

scheme of [10], we introduce a sub-carrier allocation strategy which improves the diversity gain 

when CSI is unavailable. 

(3) We study the performance of our proposed DQSFC scheme over frequency selective Rayleigh 

fading channels. From the simulation results, we show that the availability of different number of 

paths on the source-relay and relay-destination links provides additional diversity gains. 

The rest of the paper is organized as follows: In Section II we present the quasi-orthogonal space 

frequency (QSF) system model and discuss how the space-frequency codes are designed at the source 

node and forwarded by the relays, we also present the structure of the quasi-orthogonal codes used in our 

scheme. Section III covers the encoding and decoding procedure for our differential DQSFC scheme. 

Section IV contains the PEP analysis and discussions on diversity improvement. Section V presents some 

simulation results and Section VI contains the conclusion. 

Notation: A bold-face upper case letter denotes a matrix, while a bold-face lower case letter denotes a 

vector; (∙)∗,(∙)𝑇,(∙)𝐻 denote conjugate, transpose and conjugate-transpose respectively; 𝑨⨀𝑩 denotes the 

Hadamard product or entry-wise product of the matrices 𝑨 and 𝑩; 𝑨⨂𝑩 denotes the Kronecker product of 

the matrices 𝑨 and 𝑩; 𝑡𝑟(⋅) is a trace function; 𝐸(⋅) and 𝑣𝑎𝑟(⋅) represent expectation and variance of a 

random variable respectively;  ‖𝑿‖𝐹 denotes the Frobenius norm of the matrix 𝑿; |𝑥|  denotes the 

absolute value of 𝑥; 𝑑𝑒𝑡(𝑿) stands for the determinant of 𝑿; 𝑑𝑖𝑎𝑔([𝑥0, 𝑥1, … , 𝑥𝑁−1]) denotes an 𝑁 × 𝑁 



diagonal matrix with diagonal entries 𝑥0, 𝑥1, … , 𝑥𝑁−1;  ⌊𝑥⌋ denotes the largest integer smaller than 𝑥; 𝑰𝑁 is 

an 𝑁 × 𝑁 identity matrix; superscript ℂ𝑇×𝑁 gives the dimension of a matrix of complex numbers; finally 

𝑗 = √−1. 

II. DISTRIBUTED QUASI-ORTHOGONAL SPACE FREQUENCY CODING 

A. System Model 

The cooperative network consists of a source node, a destination node and 𝑃 relay nodes as shown in 

Fig.1. Each node is equipped with a single antenna which is used for both transmission and reception. The 

transmission from the source node to the destination is divided into the ‘transmit’ and ‘cooperate’ stages. 

In the ‘transmit’ stage, the source node sends information signals to the cooperating relay nodes, while in 

the ‘cooperate’ stage, the source node keeps silent and the cooperating relay nodes simply forward the 

information signals to the destination. For each stage, the nodes are subject to half-duplex constraint such 

that they cannot transmit and receive simultaneously. We focus on differential DQSFC where the 

antennas of the cooperating nodes constructively forward the quasi-orthogonal codewords to the 

destination. We address the problem of differential encoding and decoding where the relay nodes and the 

destination are unable to acquire CSI. Our investigation in this work is carried out under the assumption 

of perfect inter-relay synchronization1. This assumption is however critical in practice due to the 

distributive nature of relays in space. Asynchronous transmission of the relays may result in degradation 

in diversity gain, specifically, the impact of synchronization errors have been studied in [11] based on 

analytical and simulation results.  

The multipath fading channel between the source node and the 𝑝𝑡ℎ  relay node is modeled as 𝑓𝑝(𝑡) =

∑ 𝑓𝑝(𝑙)𝛿(𝑡 − 𝛼𝑙)
𝐿𝑆𝑅−1
𝑙=0 . Similarly, the multipath fading channel between the 𝑝𝑡ℎ  relay node and the 

destination is modeled as 𝑔𝑝(𝑡) = ∑ 𝑔𝑝(𝑙)𝛿(𝑡 − 𝛽𝑙)
𝐿𝑅𝐷−1
𝑙=0  where the complex amplitudes 𝑓𝑝(𝑙) and 𝑔𝑝(𝑙) 

are assumed to be independent zero-mean complex Gaussian random variables with 

variances  𝐸 (|𝑓𝑝(𝑙)|
2
) = 𝜎𝑆𝑅

2 (𝑙) and 𝐸 (|𝑔𝑝(𝑙)|
2
) = 𝜎𝑅𝐷

2 (𝑙) respectively. The delay of the 𝑙𝑡ℎ  path is 

denoted by 𝛼𝑙 and  𝛽𝑙, while 𝛿(∙) is the Dirac delta function, 𝐿𝑆𝑅 and 𝐿𝑅𝐷 denote the number of 

independent channel taps on the source-relay (𝑆 − 𝑅) link and relay-destination (𝑅 − 𝐷) link 

                                                            
1It is noteworthy that the use of cyclic prefix can provide robustness against synchronization errors at the relays. This benefit, 

which is owed to the employment of OFDM transmission, is applicable to our proposed DQSFC scheme.    



respectively. We assume that the channels are spatially uncorrelated, thus 𝑓𝑝(𝑙)  and 𝑔𝑝(𝑙) are 

independent for different relay nodes. Unlike space-frequency coding in multiple-antenna systems, space-

frequency coding in cooperative networks must be implemented in two distinct stages, namely; coding at 

the source node, and coding at the relay nodes. We first describe how the coded data is designed at the 

source node.  

B. Source Node Coding 

The cooperative system is based on OFDM modulation with 𝑁 sub-carriers and 𝑇 OFDM blocks. At the 

source node, a stream of 𝑁 modulated symbols 𝒔 = [𝑠(0), 𝑠(1), … , 𝑠(𝑁 − 1)] are generated from an  𝑚 =

𝑙𝑜𝑔2𝑀 𝑀𝑃𝑆𝐾 constellation, m is the spectral efficiency. The symbols are then encoded in such a way that 

a diversity of order  𝐿 = 𝑚𝑖𝑛{𝐿𝑆𝑅 , 𝐿𝑅𝐷} can be achieved at each relay node. In order to achieve this, we 

first define a fixed positive integer Γ ≤ 𝐿 ≪ 𝑁, we then partition the 𝑁 modulated symbols into 𝐾 =

⌊𝑁 𝑃Γ⁄ ⌋ blocks of codewords, such that each 𝑘𝑡ℎ block is of length 𝑃Γ. From this, we obtain the coded 

source node data 

                                       𝒙 = [𝑥(0), 𝑥(1), … , 𝑥(𝑁 − 1)] = [𝒙1
𝑇 , 𝒙2

𝑇 , … , 𝒙𝐾
𝑇 , 𝟎𝑁−𝐾𝑃Γ

𝑇 ]
𝑇

                                  (1) 

where 𝒙𝑘 = [𝑥𝑘(1), … , 𝑥𝑘(𝑃Γ)]𝑇 is the 𝑃Γ × 1 coded source node data transmitted in the 𝑘𝑡ℎ block,  

(𝑁 − 𝐾𝑃Γ) zeros are padded into 𝒙 if 𝑁 is not an integer multiple of 𝑃Γ. The elements of 𝒙𝑘  are stacked 

in parallel unto 𝑃Γ adjacent data sub-carriers within a single OFDM block. We assume that the channel 

remains constant within each OFDM block, and varies independently from block to block. Based on this 

assumption, differentially modulated symbols will be placed on adjacent groups of 𝑃Γ sub-carriers within 

the same OFDM block. Let 𝒙𝑘 = [𝑥𝑘(1), … , 𝑥𝑘(𝑃Γ)]𝑇 be the 𝑃Γ × 1  data vector transmitted in the 𝑘𝑡ℎ 

block, where 𝑥𝑘(𝑛) denotes the symbol transmitted on the 𝑛𝑡ℎ  sub-carrier. The elements of 𝒙  are 

normalized such that  𝐸(|𝒙𝑘|2) = 1. Since the source node transmits the data vector 𝒙𝑘 to 𝑃 relay nodes 

on 𝑃Γ data sub-carriers, then the source node code is capable of achieving a diversity of order Γ ≤ 𝐿 at 

each relay node. The criteria for achieving this diversity order will be clarified later.  



If the data vector generated by the source node is of the form √𝐸𝑆𝑃Γ𝒙𝑘 where 𝐸𝑆 denotes average 

transmit-power, the signal received at the 𝑝𝑡ℎ relay node in the 𝑘𝑡ℎ block after cyclic prefix2 (CP) removal 

and fast Fourier transform (FFT) demodulation is given in vector form by: 

                                                                       𝒓𝑘,𝑝  = √𝐸𝑆𝑃Γ𝒙𝑘 ⊙ 𝒇𝑘,𝑝 + 𝒏𝑘,𝑝                        (2) 

where ⊙ denotes Hadamard product or entry-wise operation, 𝒓𝑘,𝑝 = [𝑟𝑘,𝑝(1), … , 𝑟𝑘,𝑝(𝑃Γ)]
𝑇

, 𝒇𝑘,𝑝 =

[𝑓𝑘,𝑝(1), … , 𝑓𝑘,𝑝(𝑃Γ)]
𝑇

and 𝒏𝑘,𝑝 = [𝑛𝑘,𝑝(1), … , 𝑛𝑘,𝑝(𝑃Γ)]
𝑇

 is the zero-mean complex Gaussian noise 

vector with covariance 𝑁0𝐼𝑃Γ. The average signal-to-noise ratio (SNR) of the channel between the source 

node and the 𝑝𝑡ℎ relay node is given by Υ𝑆𝑅 = 𝐸𝑆𝑃Γ 𝑁0⁄ . The frequency response of the channel at the 

𝑛𝑡ℎ sub-carrier of the 𝑝𝑡ℎ  relay node in the 𝑘𝑡ℎ block is denoted by 𝑓𝑘,𝑝(𝑛) = ∑ 𝑓𝑝(𝑙)𝑒−𝑗2𝜋𝑙𝑛 𝑁⁄ =
𝐿𝑆𝑅−1
𝑙=0

𝒇𝑝𝝎, 𝒇𝑝 = [𝑓𝑝(0), … , 𝑓𝑝(𝐿𝑆𝑅 − 1)], 𝝎 = [1, 𝑒−𝑗2𝜋𝑛 𝑁⁄ , … , 𝑒−𝑗2𝜋𝐿−1𝑛 𝑁⁄ ]
𝑇

.  

C. Relay Node Coding 

We now describe how the space-frequency codes are constructed at the relay nodes. Given that the 𝑝𝑡ℎ  

relay node receives 𝒓𝑘,𝑝 in (2) on 𝑃Γ sub-carriers, it is only allowed to forward the data on Γ sub-carriers, 

while the data on the remaining (𝑃Γ − Γ) sub-carriers is discarded. Specifically, the 𝑝𝑡ℎ  relay node is 

only allowed to forward a subset of 𝒓𝑘,𝑝 which we define as �̅�𝑘,𝑝 = [𝑟𝑘,𝑝(1), … , 𝑟𝑘,𝑝(Γ)]
𝑇

∈ ℂΓ×1. Based 

on this, we can rewrite the received signal at the 𝑝𝑡ℎ relay node as:  

                                                                         �̅�𝑘,𝑝  = √𝐸𝑆𝑃Γ�̅�𝑘 ⊙ �̅�𝑘,𝑝 + �̅�𝑘,𝑝                                                (3) 

where �̅�𝑘 = [𝑥𝑘(1), … , 𝑥𝑘(Γ)]𝑇, �̅�𝑘,𝑝 = [𝑓𝑘,𝑝(1), … , 𝑓𝑘,𝑝(Γ)]
𝑇

and �̅�𝑘,𝑝 = [𝑛𝑘,𝑝(1), … , 𝑛𝑘,𝑝(Γ)]
𝑇

. In our 

DQSFC scheme, the 𝑃 relay nodes are designed to construct Γ × 𝑃  quasi-orthogonal signal matrices at 

the destination. In order to achieve this, each 𝑝𝑡ℎ relay node is equipped with a Γ × Γ unitary matrix 𝑴𝑝 

referred to as the ‘relay matrix’. The relay matrix is a matrix of 1s and 0s which enables the relay nodes to 

generate codewords with a quasi-orthogonal structure at the destination.The structure of the relay matrix 

is given in Section III and IV of [7] for cooperative networks with different number of relay nodes. Due to 

space limitations however, the structure of the relay matrix is not illustrated in our work, we simply 

                                                            
2The use of CP brings about additional bandwidth and power penalties due to the use of redundant symbols. Furthermore, the 

bandwidth and power losses are increased by a factor of  𝑃 due to the multi-relay operation. Measures that can be used to reduce 

the inefficiency of the CP are documented in Chapter 4 of [12].    

 



borrow the design of [7]. Specifically, we assume that 𝐽 relay nodes are programmed to multiply their 

relay matrix by the received signal [𝑟𝑘,𝑝(1), … , 𝑟𝑘,𝑝(Γ)]
𝑇

 while the remaining 𝑃 − 𝐽 relay nodes are 

programmed to multiply their relay matrix by the conjugate of the received signal [𝑟𝑘,𝑝(1)∗, … , 𝑟𝑘,𝑝(Γ)∗]
𝑇

. 

Thus, in the 𝑘𝑡ℎ  block, the 𝑝𝑡ℎ relay node transmits a Γ × 1 vector  𝒕𝑘,𝑝 given by:    

                             𝒕𝑘,𝑝 = √
𝐸𝐶

𝐸𝑆+1
𝑴𝑝�̅�𝑘,𝑝,   �̅�𝑘,𝑝 ∈ {[𝑟𝑘,𝑝(1), … , 𝑟𝑘,𝑝(Γ)]

𝑇
, [𝑟𝑘,𝑝(1)∗, … , 𝑟𝑘,𝑝(Γ)∗]

𝑇
}             (4) 

The power allocated to each relay node is denoted by 𝐸𝐶, this implies that an amplification co-efficient 

𝜇 = √𝐸𝐶 𝐸𝑆 + 1⁄  is applied at each relay node. The power allocation strategy is chosen to satisfy 𝐸 =

𝜙1𝐸𝑆 + 𝜙2𝐸𝐶𝑃, we do not derive the optimal value for the power allocation factors 𝜙1 and 𝜙2 because 

exact channel knowledge is necessary to solve the optimization problem, and such optimization problem 

is outside the scope of this work. The interested reader is however referred to [13] where the issue of 

optimal power allocation for non-coherent cooperative networks is addressed explicitly. 

Assuming the relay nodes are synchronized at symbol level such that the nodes can transmit 

simultaneously, the signal received at the destination in the 𝑘𝑡ℎ block after CP removal and FFT 

demodulation is given by: 

                                                  𝒚𝑘,𝑛 = ∑ 𝒕𝑘,𝑝
𝑃
𝑝=1 ⊙ 𝒈𝑘,𝑝 + 𝒛𝑘,𝑛, 𝑛 = 1,2, … , Γ           (5) 

where 𝒚𝑘,𝑛 = [𝑦𝑘,𝑛(1), … , 𝑦𝑘,𝑛(Γ)]
𝑇

, 𝒈𝑘,𝑝 = [𝑔𝑘,𝑝(1), … , 𝑔𝑘,𝑝(Γ)]
𝑇

 and 𝒛𝑘,𝑛 = [𝑧𝑘,𝑛(1), … , 𝑧𝑘,𝑛(Γ)]
𝑇

 is 

the zero-mean complex Gaussian noise term with covariance 𝑁0𝐼Γ. The frequency response of the channel 

at the 𝑛𝑡ℎ sub-carrier between the 𝑝𝑡ℎ relay node and the destination in the 𝑘𝑡ℎ block is denoted 

by 𝑔𝑘,𝑝(𝑛) = ∑ 𝑔𝑝(𝑙)𝑒−𝑗2𝜋𝑙𝑛 𝑁⁄ = 𝒈𝑝𝝎
𝐿𝑅𝐷−1
𝑙=0 , 𝒈𝑝 = [𝑔𝑝(0), … , 𝑔𝑝(𝐿𝑆𝑅 − 1)]. The average SNR of the 

channel between the 𝑝𝑡ℎ relay node and the destination is given by Υ𝑅𝐷 = 𝐸𝐶 𝑁0⁄ . Substituting for �̅�𝑘,𝑝 in 

(3) and 𝒕𝑘,𝑝  in (4), (5) becomes: 

                                  𝒚𝑘,𝑛 = ∑ √
𝐸𝐶𝐸𝑆𝑁𝐶

𝐸𝑆+1
𝑃
𝑝=1 𝑴𝑝�̅�𝑘 ⊙ �̅�𝑘,𝑝 ⊙ 𝒈𝑘,𝑝 + �̃�𝑘,𝑛, 𝑛 = 1,2, … , Γ                      (6) 

where �̃�𝑘,𝑛 = ∑ 𝜇𝑃
𝑝=1 𝑴𝑝�̅�𝑘,𝑝 ⊙ 𝒈𝑘,𝑝 + 𝒛𝑘,𝑛 is the equivalent noise. The signal received at the destination 

in the 𝑘𝑡ℎ block can be written in compact form as: 

                                                                 𝒀𝑘 = √𝜌𝑿𝑘𝑯𝑘 + 𝒁𝑘               (7) 



where  𝒀𝑘 = [𝒚𝑘,1, … , 𝒚𝑘,Γ] ∈ ℂΓ×Γ, 𝒚𝑘,𝑛 = [𝑦𝑘,𝑛(1), … , 𝑦𝑘,𝑛(Γ)]
𝑇
, 𝑿𝑘 = [𝑴1�̅�𝑘, … ,𝑴𝐽�̅�𝑘,𝑴𝐽+1�̅�𝑘

∗, … ,𝑴𝑃�̅�𝑘
∗] ∈

ℂΓ×𝑃,  𝜌 =
𝐸𝐶𝐸𝑆𝑁𝐶

𝐸𝑆+1
, 𝑯𝑘 = [𝒉𝑘,1, … , 𝒉𝑘,Γ]  ∈ ℂ𝑃×Γ,𝒉𝑘,𝑛 = [ℎ𝑘(1), … , ℎ𝑘(𝑃)]𝑇 = (𝑰𝑃 ⊗ 𝝎𝑇)𝒉,  𝒉 =

[ℎ1(0), … , ℎ1(𝐿 − 1), . . , ℎ𝑃(0), … , ℎ𝑃(𝐿 − 1)]𝑇 and 𝒁𝑘 = [�̃�𝑘,1, … , �̃�𝑘,Γ] ∈ ℂΓ×Γ, the channel co-

efficients ℎ𝑝(𝑙) = 𝑓𝑝(𝑙) ∙ 𝑔𝑝(𝑙). The 𝑃 × Γ quasi-orthogonal channel matrix 𝑯𝑘 captures the channel co-

efficients between the source node, the 𝑃 relay nodes, and the destination. Here we assume that the 

channel is constant during the transmission of Γ symbols, that is, 𝒉𝑘,𝑛 is constant for 𝑛 = 1,2, … , Γ.  

The matrix 𝑿𝑘 that is generated at the destination by the 𝑃 relay nodes is a Γ × 𝑃  quasi-orthogonal signal 

matrix containing either complex information symbols {𝑥𝑘(1), … , 𝑥𝑘(Γ)} or their 

conjugates {𝑥𝑘(1)∗, … , 𝑥𝑘(Γ)∗}. Thus 𝑿𝑘 in (7) can be rewritten as  𝑿𝑘 = [�̅�𝑘,1
𝑇 , … , �̅�𝑘,𝑃

𝑇] ∈ ℂΓ×𝑃,

�̅�𝑘,𝑝 = [𝑥𝑘(1), … , 𝑥𝑘(Γ)], where �̅�𝑘,𝑝 is the  𝑝𝑡ℎ column of 𝑿𝑘. In other words, the  𝑝𝑡ℎ relay node 

transmits the 𝑝𝑡ℎ column vector of 𝑿𝑘. In order to recover information symbols at the destination without 

CSI, two consecutive quasi-orthogonal signal matrices 𝑿𝑘 and 𝑿𝑘+1 must be received at the destination in 

the 𝑘𝑡ℎ block and (𝑘 + 1)𝑡ℎ block respectively. The first signal matrix 𝑿𝑘 is termed the ‘reference’ quasi-

orthogonal matrix because it is only required for differential decoding and thus contains no valid data, 

while the subsequent quasi-orthogonal signal matrix 𝑿𝑘+1 conveys the valid data. 

D. Quasi-Orthogonal Space-Frequency Code Construction 

In this section, we devise the structure of QSF codes that can achieve our targeted diversity of order 𝑃Γ. 

Since quasi-orthogonal codes will be used to build the space-frequency codewords, it is necessary to 

employ the class of codes with a block-diagonal structure, for example, the quasi-orthogonal codes 

designed in [8] for multiple antenna systems. Denote 𝓥 as the generalized quasi-orthogonal matrix with a 

block-diagonal structure as given in [8], 𝓥 can be used to construct codewords for a cooperative network 

with any 𝑃 = 2𝑞 relay nodes where 𝑞 = 2𝑟 for a positive integer 𝑟.   

                         𝓥 = 𝑑𝑖𝑎𝑔[𝒢(𝑣1, 𝑣2), 𝒢(𝑣3, 𝑣4), … , 𝒢(𝑣𝑃−1, 𝑣𝑃)… ],𝒢(𝑣𝑖 , 𝑣𝑗) = [
𝑣𝑖 𝑣𝑗

−𝑣𝑗
∗ 𝑣𝑖

∗]                      (8) 

 

 

 



The entries of 𝓥 are made up of combined symbols, we now show how the combined symbols are 

computed. A stream of 𝑚2Γ information bits are mapped into 2Γ symbols denoted by  v𝑖 , 𝑖 = 1,2, … ,2Γ. 

Using the design of [8], the symbols are combined as follows. Let Φ = D ∙ 𝑑𝑖𝑎𝑔[1, 𝑒𝑗𝜃1 , … , 𝑒𝑗𝜃Γ−1], 

where D is a Γ × Γ Hadamard matrix, the symbols are constructed as [𝑣1, 𝑣3, … , 𝑣2Γ−1]
𝑇 = Φ ∙

[v1, v3, … , v2Γ−1]
𝑇 and  [𝑣2, 𝑣4, … , 𝑣2Γ]

𝑇 = Φ ∙ [v2, v4, … , v2Γ]
𝑇. Thus, the information symbols 

v1, v2, … , v2Γ  are mapped onto different signal constellations due to the rotation angles 𝜃, and the number 

of rotation angles depends on the size of the combined symbols. The rotation angles ensure that the codes 

achieve full diversity. As example, given a cooperative network with 𝑃 relay nodes, the symbols are 

combined as 𝑣1 = v1 + ṽ3 + ⋯+ v2Γ−1, 𝑣2 = v2 + ṽ4 + ⋯+ v2Γ ,…, 𝑣𝑃 = v1 − ṽ3 − ⋯− v2Γ−1 where 

ṽ𝑖 is the rotated version of v𝑖 . 

The main challenge is how to construct the source node codeword from 𝓥, such that spatial and frequency 

diversity is exploited, and full rate is guaranteed. For any cooperative network with 𝑃 relay nodes, the 

quasi-orthogonal code for any 𝑘𝑡ℎ block  𝓥𝑘 is constructed from 𝓥  as   

                                                                    𝓥𝑘 = 𝑑𝑖𝑎𝑔[𝒢(𝑣1, 𝑣2), … , 𝒢(𝑣𝑃−1, 𝑣𝑃)]                                           (9) 

Using (9), the source node then constructs a 𝑃 × 1 codeword from the elements of 𝓥𝑘 as 

                                                                               𝒗𝑘 = [𝑣1, … , 𝑣𝑃]𝑇                                                                (10) 

The quasi-orthogonal code in (9) has full rate and will achieve full spatial diversity in any cooperative 

network with 𝑃 relay nodes in a quasi-static flat fading channel scenario. The proof of full rate and full 

spatial diversity for the quasi-orthogonal code of (9) is given in [14, Section 5.4]. The code is however 

sub-optimal for our scheme because it is unable to exploit frequency diversity. In order to design a space-

frequency codeword that guarantees full spatial and frequency diversity of order 𝑃Γ where Γ ≤ 𝐿 ≪ 𝑁, 

we follow the design of [8] and construct the quasi-orthogonal code from 𝓥 as   

                                              𝓥𝑘 = 𝑑𝑖𝑎𝑔[𝒢(𝑣1, 𝑣2), … , 𝒢(𝑣𝑃−1, 𝑣𝑃), … , 𝒢(𝑣𝑃Γ−1, 𝑣𝑃Γ)]                               (11) 

Using (11), the source node then constructs a 𝑃Γ × 1 codeword from the elements of 𝓥𝑘 as 

                                                                         𝒗𝑘 = [𝑣1, … , 𝑣𝑃, … , 𝑣𝑃Γ]
𝑇                                                         (12) 

The quasi-orthogonal code in (11) exploits full spatial and frequency diversity, the code also provides 

pairwise decoding as will be shown in Section III B. Note that 𝑣𝑝, 𝑝 ≤ 𝑃 in (12) are the original symbols, 

while 𝑣𝑝, 𝑝 > 𝑃 are replicas of the original symbols which will be forwarded by the relay nodes. 



As an example, for a cooperative network with 𝑃 = 4 relay nodes, if we set Γ = 4, the 𝑃Γ × 1 quasi-

orthogonal source node data is constructed as 

𝒗𝑘 = [𝑣𝑖(1), … , 𝑣𝑖(4), … , 𝑣𝑖(16)]
𝑇
, 𝑖 ∈ {1,2, . . , Γ} 

= [(𝑣1(1), 𝑣2(2), 𝑣3(3), 𝑣4(4)),(𝑣1(5), 𝑣2(6), 𝑣3(7), 𝑣4(8)), (𝑣1(9), 𝑣2(10), 𝑣3(11), 𝑣4(12)), 

(𝑣1(13), 𝑣2(14), 𝑣3(15), 𝑣4(16))]
𝑇

 

           = [(𝑣1, 𝑣2, 𝑣3, 𝑣4)1, (−𝑣2
∗, 𝑣1

∗, −𝑣4
∗, 𝑣3

∗)2, (−𝑣3
∗, −𝑣4

∗, 𝑣1
∗, 𝑣2

∗)3, (𝑣4, −𝑣3, −𝑣2, 𝑣1)4]
𝑇        (13) 

where 𝑣𝑖(𝑛), 𝑛 ≤ 4 are the original information symbols and 𝑣𝑖(𝑛), 𝑛 > 4 are replicas, (∙)𝑝 is the Γ × 1 

data vector that will eventually be forwarded by the  𝑝𝑡ℎ  relay node during the ‘cooperate’ stage. Thus the 

proposed code structure guarantees full rate when the relay nodes transmit to the destination. Specifically, 

𝑣1, … , 𝑣Γ complex information symbols are transmitted simultaneously by 𝑃 relay nodes on Γ sub-

carriers. Our quasi-orthogonal code achieves a diversity order of 𝑃Γ for any (𝑃 + Γ) = 2𝑟+1, ∀ 𝑃 = Γ 

where 𝑟 is a positive integer. In general, to construct the codeword for (𝑃 + Γ) = 𝐽, 2𝑟 < 𝐽 < 2𝑟+1, the 

quasi-orthogonal code is first constructed for (𝑃 + Γ) = 2𝑟+1 then 𝑣𝑃, 𝐽 < 𝑝 ≤ (𝑃 + Γ) is set to zero. 

For example, to obtain the codeword when 𝑃 = 4 relay nodes and Γ = 2, that is (𝑃 + Γ) = 6, we first 

construct the codeword for (𝑃 + Γ) = 2𝑟+1 = 8 then we set 𝒢(𝑣7, 𝑣8) to zero.  

III. DIFFERENTIAL ENCODING AND DECODING PROCEDURE 

A. Differential Encoding Procedure 

In this section, we discuss the differential encoding procedure employed in the proposed differential 

DQSFC scheme as depicted in Fig. 2. The architecture is typically composed of a hybrid combination of 

three functional sub-systems, namely, a constellation mapping sub-system, a differential sub-system and a 

space-frequency sub-system. Differential encoding is initiated at the source node. Recalling that 𝒙𝑘 is the 

𝑃Γ × 1 coded source node data generated in the 𝑘𝑡ℎ block, the next step is for the source node to generate 

the 𝑃Γ × 1 data 𝒙𝑘+1 for the (𝑘 + 1)𝑡ℎ block. This involves the following processes:   

First, the constellation mapping sub-system generates the information symbols �̅�𝑘+1 =

[𝑣𝑘+1(1), … , 𝑣𝑘+1(Γ)]𝑇 where �̅�𝑘+1 represents the combined symbol vector that must be recovered at the 

destination without CSI. Next, the differential encoder generates the Γ × 1 data vector �̅�𝑘+1 =

[𝑥𝑘+1(1), … , 𝑥𝑘+1(Γ)]𝑇 for the (𝑘 + 1)𝑡ℎ  block as follows.     



                                                                          �̅�𝑘+1 =  𝑿𝑘�̅�𝑘+1          (14) 

where 𝑿𝑘 is the reference quasi-orthogonal signal matrix that was generated by the 𝑃 relay nodes in the 

𝑘𝑡ℎ block. We assume that the source node has prior knowledge of the relay 

matrices {𝑴1, … ,𝑴𝐽,𝑴𝐽+1, … ,𝑴𝑃}, the source node also knows �̅�𝑘 = [𝑥𝑘(1), … , 𝑥𝑘(Γ)]𝑇, hence it can 

compute 𝑿𝑘 = [𝑴1�̅�𝑘 , … ,𝑴𝐽�̅�𝑘 , 𝑴𝐽+1�̅�𝑘
∗, … ,𝑴𝑃�̅�𝑘

∗].   

Then finally the source node constructs the 𝑃Γ × 1 data 𝒙𝑘+1 = [𝑥𝑘+1(1), … , 𝑥𝑘+1(𝑃Γ)]𝑇 from �̅�𝑘+1 by 

adding replicas as in (13). The quasi-orthogonal structure of �̅�𝑘+1 ∈ 𝓥 guarantees that �̅�𝑘+1 is quasi-

orthogonal. 

The differential encoding process at the source node generates the 𝑃Γ × 1 complex symbol vector 𝒙𝑘+1 =

[𝑥𝑘+1(1), … , 𝑥𝑘+1(𝑃Γ)]𝑇 which is transmitted on 𝑃Γ sub-carriers. In order to construct 𝑿𝑘+1 at the 

destination, the source node and 𝑃 relay nodes follow the same process as in the 𝑘𝑡ℎ  block.  The received 

signal at the 𝑝𝑡ℎ relay node in the (𝑘 + 1)𝑡ℎ block is of the form of (2). Similar to the case of the 𝑘𝑡ℎ 

block, the relay node data is constructed and transmitted as discussed in Section II C. The received signal 

at the destination in the (𝑘 + 1)𝑡ℎ block after FFT demodulation is similar to (7) and can be written in 

compact form as:   

                                                                     𝒀𝑘+1 = √𝜌𝑿𝑘+1𝑯𝑘+1 + 𝒁𝑘+1        (15) 

B. Differential Decoding Procedure 

As far as the destination is concerned, consecutive blocks of information codewords have been received 

across different sub-carriers. So far, consecutive quasi-orthogonal matrices 𝑿𝑘 and 𝑿𝑘+1 have been 

generated at the destination by 𝑃 relay nodes based on (7) and (15). We can write 

                                        𝒚𝑘,𝑛 = 𝑿𝑘𝒉𝑘,𝑛 + �̃�𝑘,𝑛 = [�̅�𝑘
𝑇𝑯𝑘 + �̃�𝑘,𝑛

𝑇]
𝑇

,  𝑛 = 1,2, … , Γ                  (16) 

                             𝒚𝑘+1,𝑛 = 𝑿𝑘+1𝒉𝑘+1,𝑛 + �̃�𝑘+1,𝑛 = [�̅�𝑘+1
𝑇𝑯𝑘+1 + �̃�𝑘+1,𝑛

𝑇]
𝑇
   𝑛 = 1,2, … , Γ             (17) 

Note that we intentionally omit the power term √𝜌 for ease of explanation. Using the signals received in 

(16) and (17) in the 𝑘𝑡ℎ block and (𝑘 + 1)𝑡ℎ block respectively, �̅�𝑘+1 = [𝑣𝑘+1(1), … , 𝑣𝑘+1(Γ)]𝑇 can be 

recovered pairwisely at the destination without CSI. For example, for a cooperative network with 𝑃 = 4 

relay nodes and Γ = 4, in order to recover �̅�𝑘+1 we first obtain the quasi-orthogonal signal and channel 

matrices for two consecutive transmission blocks as follows: 



𝑿𝑗 =

[
 
 
 
 

𝑥𝑗(1) 𝑥𝑗(2)

−𝑥𝑗(2)∗ 𝑥𝑗(1)∗

𝑥𝑗(3) 𝑥𝑗(4)

−𝑥𝑗(4)∗ 𝑥𝑗(3)∗

−𝑥𝑗(3)∗ −𝑥𝑗(4)∗

𝑥𝑗(4) −𝑥𝑗(3)

𝑥𝑗(1)∗ 𝑥𝑗(2)∗

−𝑥𝑗(2) 𝑥𝑗(1) ]
 
 
 
 

, 𝑯𝑗 =

[
 
 
 
 
ℎ𝑗(1) ℎ𝑗(2)∗

ℎ𝑗(2) −ℎ𝑗(1)∗

ℎ𝑗(3)∗ ℎ𝑗(4)

ℎ𝑗(4)∗ −ℎ𝑗(3)

ℎ𝑗(3) ℎ𝑗(4)∗

ℎ𝑗(4) −ℎ𝑗(3)∗

−ℎ𝑗(1)∗ −ℎ𝑗(2)

−ℎ𝑗(2)∗ ℎ𝑗(1) ]
 
 
 
 

 

where 𝑿𝑗 and 𝑯𝑗, 𝑗 ∈ {𝑘, 𝑘 + 1} are quasi-orthogonal signal and channel matrices respectively. The 

information signal transmitted by the source node, through the  𝑝𝑡ℎ relay node on the  𝑛𝑡ℎ subcarrier is 

denoted by 𝑥𝑗(𝑛), and ℎ𝑗(𝑝) captures the channel co-efficients between the source node, the  𝑝𝑡ℎ relay 

node, and the destination. Based on this, we can compute  

1 2

1 2

2 1

2 1

0

0 0

0 0

0

0

0

H

j j

X X

X X

X X

X X

 
 


 
 
 
 




X X

1 2

1 2

2 1

2 1

0

0 0

0 0

0

0

0

H

j j

H H

H H

H H

H H

 
 


 
 
 
 




H H

 

where 𝑋1 = ∑ |𝑥𝑗(𝑛)|
24

𝑛=1  is the signal power and  𝑋2 = 2𝑅𝑒(𝑥𝑗(1)𝑥𝑗(4)∗ − 𝑥𝑗(2)𝑥𝑗(3)∗) is a self-

interference parameter. Similarly, 𝐻1 = ∑ |ℎ𝑗(𝑝)|
24

𝑝=1  is the channel power and 𝐻2 = 2𝑅𝑒{ℎ𝑗(1)ℎ𝑗(4)∗ −

ℎ𝑗(2)ℎ𝑗(3)∗} is a self-interference parameter. The elements of �̅�𝑘+1 are then recovered as follows: 

 𝒚𝑘+1,1 𝒚𝑘,1
𝐻 = �̅�𝑘+1𝑿𝑘

𝐻𝑯𝑘+1𝒉𝑘,1
𝐻 + 𝑍1 = �̅�𝑘+1𝑿𝑘𝑿𝑘

𝐻𝑯𝑘+1𝒉𝑘,1
𝐻 + 𝑍1 

            = 𝑣𝑘+1(1)(𝑋1𝐻1 + 𝑋2𝐻2) + 𝑣𝑘+1(4)(𝑋1𝐻2 + 𝑋2𝐻1) + 𝑍1 = 𝑣𝑘+1(1)𝐴 + 𝑣𝑘+1(4)𝐵 + 𝑍1      (18) 

Similarly,   

                             𝒚𝑘+1,1 𝒚𝑘,2
𝐻 = �̅�𝑘+1𝑿𝑘

𝐻𝑯𝑘+1𝒉𝑘,2
𝐻 + 𝑍2 = 𝑣𝑘+1(2)𝐴 − 𝑣𝑘+1(3)𝐵 + 𝑍2                  (19) 

                          𝒚𝑘+1,1 𝒚𝑘,3
𝐻 = �̅�𝑘+1𝑿𝑘

𝐻𝑯𝑘+1𝒉𝑘,3
𝐻 + 𝑍3   = −𝑣𝑘+1(2)𝐵 + 𝑣𝑘+1(3)𝐴 + 𝑍3                (20) 

                           𝒚𝑘+1,1 𝒚𝑘,4
𝐻 = �̅�𝑘+1𝑿𝑘

𝐻𝑯𝑘+1𝒉𝑘,4
𝐻 + 𝑍4  = 𝑣𝑘+1(1)𝐵 + 𝑣𝑘+1(4)𝐴 + 𝑍4                   (21) 

where  𝑍𝑛 captures the noise, 𝐴 = 𝑋1𝐻1 + 𝑋2𝐻2 and 𝐵 = 𝑋1𝐻2 + 𝑋2𝐻1 , we refer to 𝐴 and 𝐵 as the 

differential decoding parameters required to recover �̅�𝑘+1. The differential decoding parameters are 

computed at the destination as: 

 𝒚𝑘,1 𝒚𝑘,4
𝐻 = 𝑿𝑘𝒉𝑘,1𝑿𝑘

𝐻𝒉𝑘,4
𝐻 + 𝑍4 = 𝐴 + 𝑍4 

                                                     𝒚𝑘,1 𝒚𝑘,1
𝐻 = 𝑿𝑘𝒉𝑘,1𝑿𝑘

𝐻𝒉𝑘,1
𝐻 + 𝑍1 = 𝐵 + 𝑍1                                (22) 

 



This implies that  𝒚𝑘,1 𝒚𝑘,4
𝐻 ≈ 𝐴 and  𝒚𝑘,1 𝒚𝑘,1

𝐻 ≈ 𝐵 since 𝑍𝑛 ≈ 𝑍𝑛. It is thus obvious from (22) that the 

scheme does not require CSI to recover �̅�𝑘+1. The non-coherent recovery of �̅�𝑘+1 rather depends on 

consecutively received signals in the  𝑘𝑡ℎ block and (𝑘 + 1)𝑡ℎ block under the constraint that 𝑯𝑘 ≅

𝑯𝑘+1. Once 𝐴 and 𝐵 are computed at the destination using (22), the information signals in (18) to (21) 

can be recovered pairwisely. The decoding complexity of our space-frequency codeword is exponential 

in Γ. It is thus necessary to set Γ such that a trade-off is reached between decoding complexity and 

frequency diversity. If we choose 1 ≤ Γ ≤ 𝐿, then our scheme provides enough flexibility such that the 

necessary trade-off is achieved for any design preference.    

IV.      PAIRWISE ERROR PROBABILITY ANALYSIS AND DIVERSITY IMPROVEMENT 

A. Pairwise Error Probability Analysis 

We now proceed to develop sufficient design criteria, based on the PEP analysis, for our code to achieve 

full diversity of order 𝑃Γ while the coding gain is maximized as much as possible. Since each of the 

𝐾  blocks contains arbitrary symbols which are independently distributed across the relay nodes, we only 

require a single block 𝑘  for our PEP analysis, which is valid for any  𝑘 = 1,2, … , 𝐾. The frequency 

response vector between the source node and the relay nodes is denoted by 𝒇𝑘 = [𝑓𝑘(1), … , 𝑓𝑘(𝑃Γ)]𝑇, and 

similarly, the frequency response vector between the relay nodes and the destination is 𝒈𝑘 =

[𝑔𝑘,1(1), … , 𝑔𝑘,1(Γ), … , 𝑔𝑘,𝑃(1), … , 𝑔𝑘,𝑃(Γ)]
𝑇

. The correlation matrix of the channel frequency response 

can be found as 𝑹 = 𝐸{𝒉𝑘𝒉𝑘
𝐻} = 𝐸{(𝒇𝑘 ⊙ 𝒈𝑘)(𝒇𝑘 ⊙ 𝒈𝑘)𝐻}. Unlike the case of multiple antenna 

systems, the cooperative network has the ‘transmit’ and ‘cooperate’ stages, thus 𝑹 can be decomposed 

as 𝑹 = 𝑹1 ⊙ 𝑹2. We can easily show that 𝑹, 𝑹1 and 𝑹2 are full rank based on the following:   

𝑹1 = 𝐸{𝒇𝑘𝒇𝑘
𝐻} = 𝑾1𝐸{𝒇𝑝𝒇𝑝

𝐻}𝑾1
𝐻 

                                                  = 𝑾1𝑑𝑖𝑎𝑔(𝜎𝑆𝑅
2(0), … , 𝜎𝑆𝑅

2(𝐿𝑆𝑅 − 1))𝑾1
𝐻                                              (23) 

𝑹2 = 𝐸{𝒈𝑘𝒈𝑘
𝐻} = 𝑾2𝐸{𝒈𝑝𝒈𝑝

𝐻}𝑾2
𝐻 

                                                  = 𝑾2𝑑𝑖𝑎𝑔(𝜎𝑅𝐷
2(0), … , 𝜎𝑅𝐷

2(𝐿𝑅𝐷 − 1))𝑾2
𝐻           (24) 

           𝑾1 = [𝒘𝛼0𝑇
, … ,𝒘𝛼𝐿−1𝑇

],𝑾2 = [𝒘𝛽0
𝑇
, … ,𝒘𝛽𝐿−1

𝑇
],𝒘 = [1, 𝜔1, … , 𝜔(𝑃Γ−1)] , 𝜔 = 𝑒−𝑗2𝜋Δ𝑓      (25)  



where 𝒇𝑝 = [𝑓𝑝(0), … , 𝑓𝑝(𝐿𝑆𝑅 − 1)]
𝑇

 and 𝒈𝑝 = [𝑔𝑝(0), … , 𝑔𝑝(𝐿𝑅𝐷 − 1)]
𝑇

 and Δ𝑓 = 1 𝑇⁄  is the sub-

carrier spacing. From (25) if 𝑾1 and 𝑾2 are unitary matrices3, (valid if all 𝐿𝑆𝑅 and 𝐿𝑅𝐷 fall within the 

sampling instances of the relay nodes and destination respectively [15][16]) then 𝑾1 and 𝑾2 have full 

rank, 𝑅𝑾1
= Γ ≤ 𝐿 and 𝑅𝑾2

= Γ ≤ 𝐿, respectively. We can then verify that 𝑹, 𝑹1 and 𝑹2 are positive 

definite (full rank correlation matrices) based on the theorem in Section 1.2.4 of [17], which states that; if 

𝑹1 and 𝑹2 are positive definite, then 𝑹 is itself a positive definite (full rank correlation matrix).     

Since we have established that 𝑹 has full rank, we now proceed to discuss the criteria to achieve 

maximum diversity. We define statistically independent samples of the 𝑆 − 𝑅 channel as  𝒇 =

[𝑓1(0), … , 𝑓1(𝐿𝑆𝑅 − 1),… , 𝑓𝑃(0), … , 𝑓𝑃(𝐿𝑆𝑅 − 1)]. Similarly, statistically independent samples of the 𝑅 −

𝐷 channel are defined as  𝒈 = [𝑔1(0), … , 𝑔1(𝐿𝑅𝐷 − 1),… , 𝑔𝑃(0), … , 𝑔𝑃(𝐿𝑅𝐷 − 1)]. Under the 

assumption that all 𝑓𝑝(𝑙)and 𝑔𝑝(𝑙) are independent identically distributed complex Gaussian variables, we 

can imply that 𝒉 = [ℎ1(0), … , ℎ1(𝐿 − 1), … , ℎ𝑃(0), … , ℎ𝑃(𝐿 − 1)],  ℎ𝑝(𝑙) = 𝑓𝑝(𝑙) ∙ 𝑔𝑝(𝑙). For any 𝑘𝑡ℎ 

block, the SF codeword can be viewed as a collection of symbols transmitted across Γ sub-carriers by 𝑃 

relay nodes. Based on this, the consecutively received signals at the destination in the  𝑘𝑡ℎ block and 

(𝑘 + 1)𝑡ℎ block can be rewritten as (26) under the constraint that the sub-channel gain of adjacent blocks 

of sub-carriers is almost constant.          

𝒀𝑘 = �̅�𝑘𝚲𝒉 + 𝒁𝑘 

                                                                        𝒀𝑘+1 = �̅�𝑘+1𝚲𝒉 + 𝒁𝑘+1                       (26) 

where 𝒀𝑘 = [𝒚1
𝑘, … , 𝒚Γ

𝑘]
𝑇
, 𝒚𝑛

𝑘 = [𝑦𝑘(1), … ,  𝑦𝑘(Γ)]𝑇,𝒀𝑘+1 = [𝒚1
𝑘+1, … , 𝒚Γ

𝑘+1]
𝑇
,𝒚𝑛

𝑘+1 = [𝑦𝑘+1(1), … ,  𝑦𝑘+1(Γ)]𝑇 , 

�̅�𝑘 = 𝑑𝑖𝑎𝑔[𝒙𝑘,1, … , 𝒙𝑘,Γ],𝒙𝑘,𝑛 = [𝑥𝑘,𝑛(1),… , 𝑥𝑘,𝑛(𝑃)],�̅�𝑘+1 = 𝑑𝑖𝑎𝑔[𝒙𝑘+1,1, … , 𝒙𝑘+1,Γ],𝒙𝑘+1,𝑛 =

[𝑥𝑘+1,𝑛(1), … , 𝑥𝑘+1,𝑛(𝑃)], 𝚲 = [𝚲(1), … , 𝚲(Γ)]𝑇,𝚲(𝑛) = 𝑰𝑃 ⊗ 𝝎𝑇, 𝝎 = [1, 𝑒−𝑗2𝜋𝑛 𝑁⁄ , … , 𝑒−𝑗2𝜋𝐿−1𝑛 𝑁⁄ ]
𝑇

. 

Using the following notations: 

𝒀 = [𝒀𝑘𝑇
, 𝒀𝑘+1𝑇

]
𝑇
, 𝑽𝑘+1 = 𝑑𝑖𝑎𝑔[𝒗𝑘+1,1, … , 𝒗𝑘+1,Γ],  𝒗𝑘+1,𝑛 = [𝑣𝑘+1,𝑛(1), … , 𝑣𝑘+1,𝑛(𝑃)], 𝑿 =

[𝑰PΓ
𝑇 , 𝑽𝑘+1𝑇

] , 𝒁 = [𝒁𝑘𝑇
, 𝒁𝑘+1𝑇

]
𝑇
, and the recursion 

                                                            
3Generally in OFDM systems, the FFT process causes correlation among the frequency sub-carriers. Based on the assumption 

that the FFT matrix is unitary and all the path delays fall within the sampling instances of the receiver, then 𝑾1 and 𝑾2 which 

are part of the FFT matrix, are unitary matrices. 



�̅�𝑘+1 = {
𝑽𝑘+1�̅�𝑘 ,         𝑘 ≥ 1 
𝑰PΓ,               𝑘 = 0

. 

we can show that the performance of our code is determined by 𝑹, 𝚲𝐻𝚲 and (�́�𝑘+1 − 𝑽𝑘+1)
𝐻
(�́�𝑘+1 −

𝑽𝑘+1), the derivations leading to this deduction is given in Appendix A. We have already established that 

𝑹 has full rank, thus our scheme will achieve maximum diversity if and only if 𝚲𝐻𝚲 and (�́�𝑘+1 −

𝑽𝑘+1)
𝐻
(�́�𝑘+1 − 𝑽𝑘+1) have full rank. Since we are interested in achieving maximum diversity while the 

coding gain is maximized as much as possible, the code must be designed such that �́�𝑘+1 − 𝑽𝑘+1 has full 

rank 𝑃𝐿 over all possible pairwise errors. When maximum diversity is achieved, that is when �́�𝑘+1 −

𝑽𝑘+1 has full rank, the coding gain is only determined by  det(𝚲𝐻𝚲) and det [(�́�𝑘+1 − 𝑽𝑘+1)
𝐻
(�́�𝑘+1 −

𝑽𝑘+1)]. In order to maximize the coding gain, the first step is to provide 𝑃𝐿 uncorrelated channels such 

that det(𝚲𝐻𝚲) is maximized. For the second step, we consider the diversity product 𝜁𝑐 which measures 

the quality of the code given as 𝜁𝑐 =
1

2
min

�́�𝑘+1≠𝑽𝑘+1∀𝓥
|det(�́�𝑘+1 − 𝑽𝑘+1)|

1

𝑃𝐿 where 𝜁𝑐 > 0 achieves 

maximum diversity. Thus the coding gain is maximized when we maximize 𝜁𝑐 under the constraint 

that: 0 ≤ 𝜁𝑐 ≤ 1 and(�́�𝑘+1 − 𝑽𝑘+1), ∀ �́�𝑘+1 ≠ 𝑽𝑘+1.  Next we discuss the measures taken to maximize 

𝜁𝑐 based on code construction and to maximize  det(𝚲𝐻𝚲)  based on sub-carrier grouping. 

B. Diversity Improvement Based on Code Design 

We now discuss the criteria for our block-diagonal quasi-orthogonal code 𝓥𝑘 , 𝑘 = 1,2, … , 𝐾 of (11) to 

achieve full diversity. When SNR is high and when the relay nodes and destination are unable to acquire 

CSI, we have identified that the performance of our code is determined by the diversity product 𝜁𝑐 which 

is given in the previous section. Hence our focus is to build constellations that maximize 𝜁𝑐 as much as 

possible. As a first step, we prove that our code satisfies the full diversity criterion for space-frequency 

codes given in Theorem 3.1 of [10], the proof is provided in Appendix B. Based on this, we can calculate 

the overall diversity product  

𝜁𝑒𝑞 =
1

2
min

∀�́�𝑘≠𝓥𝑘∈𝓥
|𝑑𝑒𝑡 ([(𝓥𝑘 − 𝓥𝑘

́ )
𝐻
(𝓥𝑘 −  𝓥𝑘

́ )] ⊙ 𝑹)|

1

2𝑃Γ
 

=
1

2
min

∀�́�𝑘≠𝒗𝑘∈𝓥
∏ |𝑣𝑝 − 𝑣�́�|

1

𝑃Γ
𝑃Γ

𝑝=1
|det(𝑹)|

1

2Γ 



                                =
1

2
min

∀�́�𝑘+1≠𝑽𝑘+1́ ∈𝓥
|det(�́�𝑘+1 − 𝑽𝑘+1)|

1

𝑃Γ|det(𝑹)|
1

2Γ = 𝜁𝑐 . |det(𝑹)|
1

2Γ                   (27) 

where 𝓥𝑘 and 𝓥𝑘
́  are two distinct pair of codewords. From (27) we can observe that if our code is 

constructed such that ∏ |𝑣𝑝 − 𝑣�́�|
2

≠ 0𝑃Γ
𝑝=1 , then 𝜁𝑒𝑞 is non-zero and our scheme achieves diversity order 

of  𝑃Γ, Γ ≤ 𝐿. Thus |det(𝑹)|
1

2𝐿  which is determined by the power profile of the channel, 𝜎(𝑙) =

𝜎𝑆𝑅(𝑙) ∙ 𝜎𝑅𝐷(𝑙), is independent of the code structure. Likewise 𝜁𝑐 which is independent of the power 

profile, is only dependent on the constellation design and code structure which are optimized for 

maximum 𝜁𝑐.  

C. Diversity Improvement based on Sub-carrier Interleaving 

In order to improve the diversity product, an appropriate sub-carrier allocation method which 

maximizes det(𝚲𝐻𝚲) must be selected. The distribution of 𝐾 codewords across  𝑃Γ equally spaced blocks 

of sub-carriers as implemented in our system model has been shown to maximize  det(𝚲𝐻𝚲) in [18]. This 

is subject to the assumption that 𝚲 is unitary.  To further improve the coding gain of the DQSFC scheme 

we introduce a sub-carrier allocation method based on the permutation scheme of [10] which requires 

prior knowledge of the channel. However, if the source node and the relay nodes lack prior knowledge of 

the power delay profile (𝜎𝑆𝑅
2, 𝜎𝑅𝐷

2,  𝛼𝑙 and 𝛽𝑙) of the channels, a randomized interleaving scheme can be 

utilized [10].   

The elements of the quasi-orthogonal codeword 𝒗𝑘 = [𝑣1, … , 𝑣𝑃, … , 𝑣𝑃Γ]
𝑇 , 𝑘 = 1,2, … , 𝐾 of (12) are re-

allocated to a new set of sub-carriers such that we obtain the interleaved version of  𝒗𝑘 which is given 

by   𝜚(𝒗𝑘). Given the difference operation (𝒗𝑘 −  𝒗𝑘́ ), ∀�́�𝑘 ≠ 𝒗𝑘, we can equivalently write (𝑣𝑝 −

 𝑣�́�), ∀�́�𝑝 ≠ 𝑣𝑝, where 𝑝 = 1,2, … , 𝑃Γ. Based on the sub-carrier allocation method, (𝑣𝑝 −  𝑣�́�) is now set 

as the 𝑛𝑝𝑡ℎ entry of 𝜚{(𝒗 − �́�)}, or in simpler terms, 𝑣𝑝 which was initially transmitted on the 𝑛𝑡ℎ sub-

carrier is now transmitted on the 𝑛𝑝𝑡ℎ (0 ≤ 𝑛𝑝 ≤ 𝑁 − 1) sub-carrier. Specifically, for any 𝑘𝑡ℎ block all 

the (𝑛(𝑝−1)Γ+i, 𝑛(𝑝−1)Γ+j)𝑡ℎ
 entries of 𝜚[(𝒗 − �́�)]𝜚[(𝒗 − �́�)]𝐻 are non-zero, where 𝑝 = 1,2, … , 𝑃 and 1 ≤

𝑖, 𝑗 ≤ Γ. Thus all the (𝑛(𝑝−1)Γ+i, 𝑛(𝑝−1)Γ+j)𝑡ℎ
 entries of (𝜚[(𝒗 − �́�)]𝜚[(𝒗 − �́�)]𝐻) ⊙ 𝑹 are non-zero. We 

define 𝑻𝑝, 𝑝 = 1,2, … , 𝑃 as the Γ × Γ matrix which determines the entries of 



(𝜚[(𝒗 − �́�)]𝜚[(𝒗 − �́�)]𝐻) ⊙ 𝑹. In other words, the (𝑖, 𝑗)𝑡ℎ entries of  𝑻𝑝 (where 1 ≤ 𝑖, 𝑗 ≤ Γ) is the 

(𝑛(𝑝−1)Γ+i, 𝑛(𝑝−1)Γ+j)𝑡ℎ
 entry of (𝜚[(𝒗 − �́�)]𝜚[(𝒗 − �́�)]𝐻) ⊙ 𝑹. 

Using the derivations in Appendix C we can calculate the overall diversity product after interleaving as 

𝜁𝑒𝑞 =
1

2
min

�́�𝑘+1≠𝐕𝑘+1∀𝓥
|det(�́�𝑘+1 − 𝑽𝑘+1)|

1

𝑃Γ. (∏ |𝑑𝑒𝑡(𝑾𝑝𝑑𝑖𝑎𝑔(𝜎(0)
2 , … , 𝜎(𝐿−1)

2 )𝑾𝑝
𝐻)|

P

𝑝=1
)

1

2PΓ

 

                                                                                           = 𝜁𝑐 . 𝜁𝑠                                                                       (28) 

where 𝑾𝑝 = [𝒘0𝑇
, … ,𝒘(𝐿−1)𝑇]

𝑇

 , 𝒘 = [1, 𝜔1, … , 𝜔(𝑃𝐿−1)]. We observe from (28) above that 𝜁𝑠 is only 

determined by the power delay profile and thus the interleaving approach can independently maximize 𝜁𝑠. 

On the other hand, 𝜁𝑐 which was defined earlier is only dependent on the constellation design and code 

structure. 

V. PERFORMANCE EVALUATION 

In this section, we present simulation results to demonstrate the performance of our proposed differential 

DQSFC protocols. The settings for our cooperative broadband network are based on the specifications 

described in the IEEE802.16e Mobile WiMax standard. The number of sub-carriers used is 𝑁 = 200 with 

a channel bandwidth of 3.5MHz. We assume that neither the relay nodes nor destination can acquire CSI. 

The frequency selective channels of the source-relay and relay-destination links remain approximately 

constant within two consecutive blocks, which is required for differential decoding as explained earlier. 

We illustrate the frequency diversity performance of our proposed differential DQSFC protocol using 

BPSK modulation. In our simulation, we observe that for scenarios where 𝐿𝑆𝑅1
≠ ⋯ ≠ 𝐿𝑆𝑅𝑝

 and 𝐿𝑅𝐷1
≠

⋯ ≠ 𝐿𝑅𝐷𝑝
, the achievable diversity order is bounded by 𝑚𝑖𝑛 {𝐿𝑆𝑅1

, … , 𝐿𝑆𝑅𝑝
} and 𝑚𝑖𝑛 {𝐿𝑅𝐷1

, … , 𝐿𝑅𝐷𝑝
}. 

This implies that the presence of additional fading paths on any of the source-relay or relay-destination 

links cannot provide additional diversity gain. Based on this, we only present results for the case of: 

𝐿𝑆𝑅1
= ⋯ = 𝐿𝑆𝑅𝑝

,  𝐿𝑅𝐷1
= ⋯ = 𝐿𝑅𝐷𝑝

, 𝐿𝑆𝑅 = {1, … ,4… },𝐿𝑅𝐷 = {1,… ,4… } 

𝛼𝑙 = 𝛽𝑙 ∈ {0𝜇𝑠, 0.5𝜇𝑠, 1.5𝜇𝑠, 5𝜇𝑠},  𝜎𝑆𝑅(1) = ⋯ = 𝜎𝑆𝑅(𝐿𝑆𝑅) = 1,  𝜎𝑅𝐷(1) = ⋯ = 𝜎𝑅𝐷(𝐿𝑆𝑅) = 1 

For frequency diversity analysis, we consider two main scenarios; the symmetric case where 𝐿𝑆𝑅 = 𝐿𝑅𝐷, 

and the asymmetric case where 𝐿𝑆𝑅 ≠ 𝐿𝑅𝐷. We consider the symmetric case in Fig.3, for 𝑃 = 4 relay 

nodes, we first set 𝐿 =  𝐿𝑆𝑅 = 𝐿𝑅𝐷 = 2 to form the basis for comparing our differential DQSFC scheme 



with the non-differential DSFC scheme of [20] where 𝐿 = 2 and  𝑃 = 4 . We consider SER performance 

to enable fair comparison with the scheme of [20]. From the results, we observe that the SER 

performance of our scheme slightly surpasses that of [20] despite the 3dB loss incurred by our scheme 

due to differential decoding. Our curve denoted ‘Differential DQSFC 𝐿 = 2 𝑃 = 4’ also has a similar 

slope to that of [20]. This indicates that, like coherent designs, our non-coherent design exploits the 

maximum spatial and frequency diversity available in frequency selective channels even in scenarios 

where CSI cannot be acquired. In addition, while the scheme in [20] has full symbol rate, our scheme has 

the additional advantage of full code rate for 𝑃 ≥ 2 relays. We also observe that our scheme shows 

corresponding performance improvement when the number of channel taps increases from 𝐿 = 1 

(corresponding to a flat fading channel) to 𝐿 = 3.   

In Fig.4 we include the results for scenarios where 𝐿𝑆𝑅 ≠ 𝐿𝑅𝐷 to verify the achievable diversity gain 

based on our PEP analysis. From the results, we observe that the SER curve of our differential DQSFC 

scheme when  𝐿𝑆𝑅 = 2 and  𝐿𝑅𝐷 = 3  has the same slope as that of  𝐿𝑆𝑅 = 3 and  𝐿𝑅𝐷 = 2 which signifies 

that for cases where 𝐿𝑆𝑅 ≠ 𝐿𝑅𝐷 the diversity performance is bounded by 𝑃𝐿 = 𝑃(𝑚𝑖𝑛{𝐿𝑆𝑅 , 𝐿𝑅𝐷}) which 

is consistent with the achievable diversity order based on our PEP analysis. Thus maximal diversity order 

is achieved when the coding at the source node and relay nodes are designed using 𝐿 = 𝑚𝑖𝑛{𝐿𝑆𝑅 , 𝐿𝑅𝐷}. 

We also observe that a gain of about 1dB is achieved when 𝐿𝑆𝑅 exceeds 𝐿𝑅𝐷. This implies that the extra 

channel taps on the source-relay link provides stronger error performance in comparison with the case 

when 𝐿𝑅𝐷 exceeds 𝐿𝑆𝑅. This is owed to the fact that when 𝐿𝑆𝑅 exceeds 𝐿𝑅𝐷, the relay nodes deliver less 

erroneous symbols to the destination. We then vary the number of channel taps using 𝐿 = 1 and 𝐿 = 2 for 

different number of relay nodes 𝑃 = 2 and 𝑃 = 4. We can observe from Fig.4 that for different cases, a 

diversity order of 𝑃𝐿 is achieved. For example, the differential DQSFC curve with 𝐿 = 1 and 𝑃 = 4 has 

an identical slope to that of  𝐿 = 2 and 𝑃 = 2. This confirms that our scheme exploits the achievable 

spatial and frequency diversity when quasi-orthogonal codes are utilized in scenarios where CSI is 

unavailable. In terms of SER performance, we can also deduce that the spatial diversity advantage (due to 

number of relays) slightly supersedes the multipath diversity advantage (due to number of channel taps). 

In Fig.5 we analyse the diversity performance of our full rate quasi-orthogonal design using optimum 

rotation angles and sub-carrier interleaving, where 𝑃 = 4, 𝐿 = 2. For our quasi-orthogonal codes, the 



optimum rotation angles are set as {1, 𝜋 𝑀⁄ }, where 𝑀 = 2 is the constellation size. To illustrate the 

diversity gain due to constellation rotation, we include the SER curve of non-rotated differential DQSFC 

schemes. We observe from Fig.5 that compared to our differential DQSFC scheme with optimum rotation 

angles, non-rotated differential DQSFC schemes exhibit similar performance at SNR values below 15dB. 

At higher SNR values, our differential DQSFC scheme with optimum rotation angles exhibits better 

performance. Simulation results also show that when interleaving is applied, there is a 1-2.5dB 

improvement compared to the case where interleaving is not applied. The curve for coherent DQSFC 

(where the effect of differential decoding parameters 𝐴 and 𝐵 is negligible) shows that a BER loss of 

about 1.5dB is incurred by our differential DQSFC scheme due to the noise impairing parameters. 

However, since the curve for coherent DQSFC has a similar slope to that of differential DQSFC, the loss 

in diversity performance is very small.  

VI.     CONCLUSIONS 

The problem of designing full rate full diversity space-frequency codes for non-coherent cooperative 

broadband networks is addressed in this work. Apart from providing non coherent detection, our proposed 

DQSFC scheme offers a systematic design of quasi-orthogonal codes that can exploit the achievable 

spatial and frequency diversity available in frequency-selective fading cooperative networks. Through 

PEP analysis, we show that the diversity performance of our scheme can be improved by appropriate code 

construction and sub-carrier allocation. Based on this, we devise a code structure and sub-carrier 

allocation method to maximize the diversity performance of our scheme. Simulation results show that our 

proposed schemeexploits the maximum spatial and frequency diversity available in frequency selective 

channels even in scenarios where CSI cannot be acquired. The results also show that the availability of 

different number of paths on the source-relay and relay-destination links provides additional diversity 

gains. We note from simulation results that although the non-coherent detection algorithm employed by 

our scheme incurs slight degradation in error performance, the achievable diversity gain is sufficiently 

preserved.    

 

 

 



APPENDIX A 

In this appendix, we show that the performance of our quasi-orthogonal code is determined by 𝑹, 𝚲𝐻𝚲 

and (�́�𝑘+1 − 𝑽𝑘+1)
𝐻
(�́�𝑘+1 − 𝑽𝑘+1). The consecutively received signals at the destination in (26) can be 

written in matrix form as: 

                                                                                   𝒀 = 𝑿𝐖𝒉 + 𝒁        (29) 

The conditional probability density function of the receive signal matrix 𝒀 is 

                                  𝑝(𝒀|𝑽𝑘+1) =
exp(−𝑡𝑟{𝒀(𝑰PΓ + Υ𝑿𝚲𝑹𝚲𝐻𝑿𝐻)−1𝒀𝐻})

𝜋𝑃Γdet(𝑰PΓ + Υ𝑿𝚲𝑹𝚲𝐻𝑿𝐻)
                                                 (30) 

where 𝐂v = (𝑰PΓ + Υ𝑿𝚲𝑹𝚲𝐻𝑿𝐻) is the covariance matrix of 𝒀, 𝑡𝑟 denotes the trace function and Υ is the 

average SNR of the received signal given as  Υ =
𝑃Υ𝑆𝑅Υ𝑅𝐷

1+Υ𝑆𝑅+𝑃Υ𝑅𝐷
. Thus the non-coherent ML decoder is 

given by:  

                                                                      �̂�𝑘+1 = arg max
𝑽𝑘+1∈𝓥

𝑝(𝒀|𝑽𝑘+1)       (31) 

Substituting 𝒀𝑘into 𝒀𝑘+1in (26) and using �̅�𝑘+1 = 𝑽𝑘+1�̅�𝑘 we have 𝒀𝑘+1 = 𝑽𝑘+1𝒀𝑘 + �̀�𝑘+1 

where�̀�𝑘+1 = 𝒁𝑘+1 − 𝑽𝑘+1𝒁𝑘. The non-coherent ML decoder can thus be simplified as 

                                               �̂�𝑘+1 = arg max
𝑽𝑘+1∈𝓥

‖𝒀𝑘 + 𝑽𝑘+1𝐻
𝒀𝑘+1‖                   (32) 

where ‖∙‖ is the Frobenius norm. The Chernoff bound on the PEP of mistaking  𝑽𝑘+1 by �́�𝑘+1 can be 

given as [18] [19]. 

         𝑃𝐸𝑃(𝑽𝑘+1 − �́�𝑘+1) =
1

2
{
det[𝜆(𝑰PΓ + Υ𝑿𝚲𝑹𝚲𝐻𝑿𝐻) + (1 − 𝜆)(𝑰PΓ + Υ�́�𝚲𝑹𝚲𝐻�́�𝑯)]

det𝜆(𝑰PΓ + Υ𝑿𝚲𝑹𝚲𝐻𝑿𝐻) ∙ det(1−𝜆)(𝑰PΓ + Υ�́�𝚲𝑹𝚲𝐻�́�𝑯)
}              (33) 

where 𝑿   and �́� are two distinct codewords, �́� = [𝑰PΓ
𝑇 , �́�𝑘+1𝑇

] and 𝜆 = 𝐸{exp(𝜆[ln𝑝(𝒀|𝑽𝑘+1) −

𝑝(𝒀|�́�𝑘+1)])} is used to get the tightest bound. By simple algebraic manipulation (33) can be simplified 

as  

                     𝑃𝐸𝑃(𝑽𝑘+1 − �́�𝑘+1) =
1

2
{
det[𝑰PΓ + Υ𝚲𝑹𝚲𝐻(𝑿𝜆𝑿𝑯 + �́�(1 − 𝜆)�́�𝑯)]

det[𝑰PΓ + 2Υ𝚲𝑹𝚲𝐻]
}                               (34) 

Since the relay nodes in our scheme linearly process their received signals, our achievable diversity order 

is bounded by  𝐿 = 𝑚𝑖𝑛{𝐿𝑆𝑅 , 𝐿𝑅𝐷}. Thus, targeting maximum diversity order we choose Γ = 𝐿. Other 

values of Γ may be desirable, for example, when targeting minimum decoding complexity or when high 



SNR is considered. We can deduce from (34) that for all values of  𝑘, if  �́�𝑘+1 − 𝑽𝑘+1 or similarly if �́� −

𝑿  has full rank, then our scheme will achieve a diversity order of  𝑃𝐿. At high SNR, the term in (34) can 

be further bounded as (35) where 𝜆 = 1 2⁄  is selected to get the tightest bound [18].  

                 𝑃𝐸𝑃(𝑽𝑘+1 − �́�𝑘+1) ≤ (
𝛶

8
(det(𝚲𝑹𝚲𝐻) det [(�́�𝑘+1 − 𝑽𝑘+1)

𝐻
(�́�𝑘+1 − 𝑽𝑘+1)])

1
𝑃𝐿

)

−𝑃𝐿

        (35) 

APPENDIX B 

In this appendix, we prove that our quasi-orthogonal code satisfies the full diversity criterion for space-

frequency codes. 

Proof: Given two distinct pair of codewords 𝓥𝑘 = 𝑑𝑖𝑎𝑔[𝒢(𝑣1, 𝑣2), … , 𝒢(𝑣𝑃Γ−1, 𝑣𝑃Γ)] and 𝓥𝑘
́ =

𝑑𝑖𝑎𝑔[𝒢(𝑣1́, 𝑣2́), … , 𝒢(𝑣𝑃Γ−1́ , 𝑣𝑃Γ́ )], the coding gain difference (CGD) is given by [14, Section 5.2].   

𝑑𝑒𝑡 [(𝓥𝑘 − 𝓥𝑘
́ )

𝐻
(𝓥𝑘 −  𝓥𝑘

́ )] = 𝑃Γ𝑑𝑒𝑡[(𝒢(𝑣1, 𝑣2) − 𝒢(𝑣1́, 𝑣2́))]𝑑𝑒𝑡[(𝒢(𝑣3, 𝑣4) − 𝒢(𝑣3́, 𝑣4́))]... 

𝑑𝑒𝑡[(𝒢(𝑣𝑃Γ−1, 𝑣𝑃Γ) − 𝒢(𝑣𝑃Γ−1́ , 𝑣𝑃Γ́ ))]                          (36) 

= (|𝑣1 − 𝑣1́|
2 + |𝑣2 − 𝑣2́|

2)2(|𝑣3 − 𝑣3́|
2 + |𝑣4 − 𝑣4́|

2)2 …(|𝑣𝑃Γ−1 − 𝑣𝑃Γ−1́ |2 + |𝑣𝑃Γ − 𝑣𝑃Γ́ |2)2        (37) 

where  𝑣1́ = v1́ + ṽ3́ + ⋯, 𝑣2́ = v2́ + ṽ4 + ⋯́ , 𝑣3́ = v1́ − ṽ3 − ⋯́ ,  𝑣4́ = v2́ − ṽ4 − ⋯́  and so on. The bit 

label ṽ𝑖
́  is the rotated version of v�́� by 𝜃. In order to guarantee that the code achieves full diversity, the 

rotation angles {𝜃1, 𝜃2, … , 𝜃𝑃Γ} corresponding to {v1, v2, … , v𝑃Γ} and {v1́, v2́, … , v𝑃Γ́ } are selected such 

that 𝑑𝑒𝑡 [(𝒢(𝑣𝑖 , 𝑣𝑗) − 𝒢(𝑣�́�, 𝑣�́�))] ≠ 0, ∀ 𝑖, 𝑗 ∈ {1,2, … , 𝑃Γ}. This equivalently means that (v𝑖 − v�́�) +

(v𝑗 − v�́�) ≠ 0, ∀ 𝑖, 𝑗 ∈ {1,2, … , 𝑃Γ}. Therefore we can deduce from (37) that ∏ |𝑣𝑝 − 𝑣�́�|
2

≠ 0𝑃Γ
𝑝=1 .  

APPENDIX C 

Given that the correlation matrix 𝑹 = 𝑹1 ⊙ 𝑹2, and 𝑹, 𝑹1 and 𝑹2 have the structure of a Toeplitz matrix, 

the correlation co-efficient between the (𝑖, 𝑗)𝑡ℎ(0 ≤ 𝑖, 𝑗 ≤ 𝑁 − 1)entries of 𝑹1 and 𝑹2 are given 

respectively as 𝑅1𝑖,𝑗 = ∑ 𝜎𝑆𝑅𝑙
2𝐿𝑆𝑅−1

𝑙=0 𝜔(𝑖−𝑗)𝛼𝑙 and 𝑅2𝑖,𝑗 = ∑ 𝜎𝑅𝐷𝑙
2𝐿𝑅𝐷−1

𝑙=0 𝜔(𝑖−𝑗)𝛽𝑙.  From this we obtain the 

correlation co-efficient between the (𝑖, 𝑗)𝑡ℎ(0 ≤ 𝑖, 𝑗 ≤ 𝑁 − 1) entries of 𝑹 as 

                                                                           𝑅𝑖,𝑗 = ∑ 𝜎𝑙
2𝐿−1

𝑙=0 𝜔(𝑖−𝑗)𝜏𝑙                                    (38) 

where 𝜎𝑙
2 = 𝜎𝑆𝑅𝑙

2 ∙ 𝜎𝑅𝐷𝑙
2 and 𝜏𝑙 = 𝑚𝑖𝑛(𝛼𝑙 , 𝛽𝑙). Thus the correlation co-efficient between the (𝑖, 𝑗)𝑡ℎ(1 ≤

𝑖, 𝑗 ≤ Γ) entries of 𝑻𝑝 can be given by   

                                                            𝑇𝑝𝑖,𝑗 = Δ∑ 𝜎𝑙
2𝐿−1

𝑙=0 𝜔(𝑛(𝑝−1)Γ+i,𝑛(𝑝−1)Γ+j)𝜏𝑙                (39) 



where Δ = 𝑃. [(𝑣𝑐 − 𝑣�́�)(𝑣𝑑 −  𝑣�́�)∗], 𝑐 = (𝑝 − 1)Γ + 𝑖, and  𝑑 = (𝑝 − 1)Γ + 𝑗. The Γ × Γ matrix 

𝑻𝑝, 𝑝 = 1, … , 𝑃 can be represented by 

                                                           𝑻𝑝 = Δ̅𝑾𝑝𝑑𝑖𝑎𝑔(𝜎(0)
2 , … , 𝜎(𝐿−1)

2 )𝑾𝑝
𝐻Δ̅𝐻                      (40) 

where Δ̅ = √𝑃. [(𝑣𝑐 −  𝑣𝑐́ )(𝑣𝑑 −  𝑣�́�)∗] and 𝑾𝑝 = [𝒘0𝑇
, … ,𝒘(𝐿−1)𝑇]

𝑇

 , 𝒘 = [1, 𝜔1, … , 𝜔(𝑃𝐿−1)] 

We can calculate the determinant of 𝑻𝑝 as 

                                 𝑑𝑒𝑡(𝑻𝑝) = 𝑃Γ ∏ |(𝑣𝑐 −  𝑣𝑐́ )|
2Γ

𝑖=1 𝑑𝑒𝑡(𝑾𝑝𝑑𝑖𝑎𝑔(𝜎(0)
2 , … , 𝜎(𝐿−1)

2 )𝑾𝑝
𝐻)                       (41) 

Thus the overall diversity product after interleaving is 

𝜁𝑒𝑞 =
1

2
min

�́�𝑘≠𝓥𝑘∀𝓥
(∏ |(𝑣𝑐 −  𝑣𝑐́ )|

PΓ

𝑝=1
)

1

PΓ

(∏ |𝑑𝑒𝑡(𝑾𝑝𝑑𝑖𝑎𝑔(𝜎(0)
2 , … , 𝜎(𝐿−1)

2 )𝑾𝑝
𝐻)|

P

𝑝=1
)

1

2PΓ

 

       =
1

2
min

�́�𝑘+1≠𝐕𝑘+1∀𝓥
|det(�́�𝑘+1 − 𝑽𝑘+1)|

1

𝑃Γ. (∏ |𝑑𝑒𝑡(𝑾𝑝𝑑𝑖𝑎𝑔(𝜎(0)
2 , … , 𝜎(𝐿−1)

2 )𝑾𝑝
𝐻)|

P

𝑝=1
)

1

2PΓ

 

                                                                                 = 𝜁𝑐 . 𝜁𝑠                                                                               (42) 
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Fig.1 P-relay Cooperative Network 

 

 

    

 

 

 

Fig.2. Differential DQSFC System Architecture 
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Fig.3 Frequency diversity performance of differential DQSFC scheme for the symmetric case 

 

Fig.4 Frequency diversity performance of differential DQSFC scheme for the asymmetric case 
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Fig.5 Diversity performance of differential DQSFC scheme with optimum constellation rotation 

and interleaving 
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