40 research outputs found

    Consistent estimation of shape parameters in statistical shape model by symmetric EM algorithm

    Get PDF
    In order to fit an unseen surface using statistical shape model (SSM), a correspondence between the unseen surface and the model needs to be established, before the shape parameters can be estimated based on this correspondence. The correspondence and parameter estimation problem can be modeled probabilistically by a Gaussian mixture model (GMM), and solved by expectation-maximization iterative closest points (EM-ICP) algorithm. In this paper, we propose to exploit the linearity of the principal component analysis (PCA) based SSM, and estimate the parameters for the unseen shape surface under the EM-ICP framework. The symmetric data terms are devised to enforce the mutual consistency between the model reconstruction and the shape surface. The a priori shape information encoded in the SSM is also included as regularization. The estimation method is applied to the shape modeling of the hippocampus using a hippocampal SSM

    Visualization of the medical imaging data in 3D space using portable format

    Get PDF
    Medical imaging is a set of specific examination procedures taking advantage of physical effects for determination of changes that occurred in patient’s body. It’s a domain of biomedical engineering to define the methods of acquiring, analyzing and visualizing medical images in the way useful for diagnostic, therapeutic, educational or research purposes. This work describes an effective method of automatic creation of 3D objects from the DICOM images. At the beginning DICOM images are read. Then tissues are segmented with a simple thresholding algorithm and filtered. After filtering preliminary 3D model is created. Afterwards obtained geometry is smoothed and decimated to relax the model and reduce the size of data. Such prepared model is embedded into PDF file with use of additional scripts. As the result of this work software called DICOM2PDF3D, combining described above stages of building 3D model in a single procedure, was developed. With use of 3D PDF additional measurements of created geometry were made. Measurements confirmed values obtained from standard preoperative evaluation. The presented solution allows creating and opening three-dimensional visualizations on every desktop computer even by inexperienced users. Created 3D PDF can be used for preoperative evaluation as an assistance for standard procedures

    Transient wall shear stress estimation in coronary bifurcations using convolutional neural networks

    Full text link
    Background and Objective: Haemodynamic metrics, such as blood flow induced shear stresses at the inner vessel lumen, are associated with the development and progression of coronary artery disease. Understanding these metrics may therefore improve the assessment of an individual's coronary disease risk. However, the calculation of such luminal Wall Shear Stress (WSS) using traditional Computational Fluid Dynamics (CFD) methods is relatively slow and computationally expensive. As a result, CFD based haemodynamic computation is not suitable for integrated and large-scale use in clinical settings. Methods: In this work, deep learning techniques are proposed as an alternative method to CFD, whereby luminal WSS magnitude can be predicted in coronary bifurcations throughout the cardiac cycle based on the steady state solution (which takes <120 seconds to calculate including preprocessing), vessel geometry and additional global features. The deep learning model is trained on a dataset of 101 patient-specific and 2626 synthetic left main bifurcation models with 26 separate patient-specific cases used as the test set. Results: The model showed high fidelity predictions with <5% (normalised against mean WSS magnitude) deviation to CFD derived values as the gold-standard method, while being orders of magnitude faster with on average <2 minutes versus 3 hours computation for transient CFD. Conclusions: This method therefore offers a new approach to substantially reduce the computational cost involved in, for example, large-scale population studies of coronary haemodynamic metrics, and may therefore open the pathway for future clinical integration

    Gaussian process machine learning-based surface extrapolation method for improvement of the edge effect in surface filtering

    Get PDF
    Filtering for signal and data is an important technology to reduce and/or remove noise signal for further extraction of desired information. However, it is well known that significant distortions may occur in the boundary areas of the filtered data because there is no sufficient data to be processed. This drawback largely affects the accuracy of topographic measurements and characterizations of precision freeform surfaces, such as freeform optics. To address this issue, a Gaussian process machine learning-based method is presented for extrapolation of the measured surface to an extended measurement area with high accuracy prior to filtering the surface. With the extrapolated data, the edge distortion can be effectively reduced. The effectiveness of this method was evaluated using both simulated and experimental data. Successful implementation of the proposed method not only addresses the issue in surface filtering but also provides a promising solution for numerous applications involving filtering processes

    Triangle mesh duality: reconstruction and smoothing

    Get PDF
    No abstract availabl

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Dual constrained TV-based regularization on graphs

    Get PDF
    26 pagesInternational audienceAlgorithms based on Total Variation (TV) minimization are prevalent in image processing. They play a key role in a variety of applications such as image denoising, compressive sensing and inverse problems in general. In this work, we extend the TV dual framework that includes Chambolle's and Gilboa-Osher's projection algorithms for TV minimization. We use a flexible graph data representation that allows us to generalize the constraint on the projection variable. We show how this new formulation of the TV problem may be solved by means of fast parallel proximal algorithms. On denoising and deblurring examples, the proposed approach is shown not only to perform better than recent TV-based approaches, but also to perform well on arbitrary graphs instead of regular grids. The proposed method consequently applies to a variety of other inverse problems including image fusion and mesh filtering
    corecore