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ABSTRACT

In order to fit an unseen surface using statistical shape model (SSM), a correspondence between the unseen
surface and the model needs to be established, before the shape parameters can be estimated based on this
correspondence. The correspondence and parameter estimation problem can be modeled probabilistically by
a Gaussian mixture model (GMM), and solved by expectation-maximization iterative closest points (EM-ICP)
algorithm. In this paper, we propose to exploit the linearity of the principal component analysis (PCA) based
SSM, and estimate the parameters for the unseen shape surface under the EM-ICP framework. The symmetric
data terms are devised to enforce the mutual consistency between the model reconstruction and the shape surface.
The a priori shape information encoded in the SSM is also included as regularization. The estimation method
is applied to the shape modeling of the hippocampus using a hippocampal SSM.

1. INTRODUCTION

Statistical shape models (SSM) are used to describe the shape of biological objects and their variation among
the population. A lower dimensional subspace accounting for most of the variability in the observed samples is
usually determined by a principal component analysis (PCA1), which can be used as prior information to guide
the deformation in tasks such as registration and segmentation. The model parameter of each shape components
can also be used as anatomical descriptors of the object of interest for classification or regression. For instance, in
the investigations into Alzheimer’s disease (AD), it is of particular interest to study the atrophy of hippocampus,
which is shown to be affected at an early stage of neurodeneration process. SSM has been applied to model
the variability in the shape of hippocampal structure among the population.2,3 On the other hand, in order to
segment the hippocampal structure from megnetic resonance (MR) images, method such as active shape model
(ASM4) uses the shape model to fit to the automatically detected image features or manually defined landmarks.5

Using shape information, the elastic deformation of the model to match the intensity profile can be restricted
to a prior shape subspace learned from the training set.6 Knowledge of relative position and distance between
anatomical structures, and texture descriptors have also been added to the ASM segmentation of hippocampus.7

A shape-intensity joint prior model for both hippocampus and amygdala8 has been developed with neighbor
constraints and the level set formulation of shape.9 The aim of this paper is to develop a method that directs
the shape model to fit the landmark data, such as shape surface meshes, using an Expectation-Maximization
(EM) algorithm.

Fitting and estimating the parameters of an unseen shape requires a dense correspondence between the target
shape and the SSM in order to register the model, and map the shape to the legitimate subspace modeled by
the SSM. The estimation result and the quality of the model reconstruction thus depend upon the accuracy
of the correspondence between shape surfaces. In point set registration problems, the popular ICP algorithm
estimates the transformation by minimizing the distance between two point sets based on the nearest neighbor
correspondence. This method is sensitive to incorrect correspondences, and outliers need to be rejected in order
to avoid local minima.

∗Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(www.loni.ucla.edu/ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be
found at: http://loni.ucla.edu/ADNI/Collaboration/ADNI_Authorship_list.pdf
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Instead of deterministic matching between two point sets, a Gaussian mixture model (GMM10,11) can be
used to interpret the correspondence probabilistically as hidden random variables, and the maximum likelihood
(ML) estimation of the transformation can be solved by EM algorithm.12 A symmetric formulation of the energy
function has been proposed to achieve inverse consistency of the transformation.13 Previous work14 using EM-
ICP has been developed for SSMs to estimate the model parameters with latent correspondences probabilities,
and to build the shape model.

The EM-ICP framework is extended here to the extrapolation of a given the PCA-based SSM to estimate
the shape parameters for unseen data, and to improve the estimation by imposing symmetric consistency and
regularization on the estimator. Since PCA provides a linear parameterization of the variation and non-rigid
deformation in the shape space, the formulation of symmetric data terms for consistent estimation has a closed
form least square solution. The deformation of the shape model under the guidance of shape components also
reduces significantly the dimension of the linear system. The shape parameters are associated with a priori
distribution due to the statistical nature of SSM, which facilitates the extension of ML estimator to maximum
a posteriori (MAP) by adding a Tikhonov regularization term.

2. METHODS

2.1 Statistical shape models

We build the SSM upon the training set of surfaces with optimized correspondence of the nx landmarks. Incorrect
correspondences may affect the generalizability and specificity of the shape model and give rise to false variations.
The correspondence problem can be solved by optimization of an information theoretic objective function based
on the minimum description length (MDL) of the shape model.15 To facilitate the interpolation of the landmarks
in reparameterization, the parameterization in spherical coordinate (θ, φ) can be re-mapped to the Cartesian
system in R

2, and the correspondence over the training set can be established by a groupwise optimization and
fluid regularization on the shape image.16 Once the correspondence is established, the surfaces can be aligned by
using Procrustes analysis via rigid-body transformations to the size-and-shape space (Kendall’s SΣnx

3 space17)
or similarity transformations normalizing the volume (Σnx

3 ).

For a set of landmarks {x1,x2, · · · ,xns
} ⊂ SΣnx

3 or Σnx
3 consisting of ns samples with established correspon-

dence, each sample is represented by the coordinates of its nx landmarks concatenated as a 3nx-vector
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where we use the superscript to denote the k-th landmark point on xi such that xk
i =

(
xk
i , y

k
i , z

k
i

)T
. A PCA can

be performed on the data matrix (x1,x2, · · · ,xns
), and the shape data can be expressed as

xi = x̄+Wbi, (2)

where x̄ is the mean of {xi}, W is the matrix consisting of the eigenvectors of the covariance matrix of the
training data, and the elements in vector bi = (bi1, bi1, · · · , bins−1)

T are the parameters describing the i-th
shape.

For a shape vector x /∈ {xi, i = 1, · · · , ns} given explicit correspondence with and aligned to the mean x̄, the
b descriptors can be calculated by least-square estimation b = WT (x− x̄), since W is orthonormal.

For a target y of ny points {yk ∈ R
3, k = 1, 2, · · · , ny} without the assumption of correspondence or alignment

between y and the model x̄, the parameter estimation problem is to find the optimal transformation T = (TA,b),
such that

T (x̄) = TA(x̄+Wb) (3)

is the best representation of y, where TA is the affine part of transformation T restricted to a similarity trans-
formation of 7 degrees of freedom ((R+ × SO(3))� R

3), the vector b describes the mode of model deformation
(cf. eq. 2). Based on the correspondence found by ICP, the minimization problem can be solved by black-box
optimizers. However, the assumption of ICP that the point in closest pair corresponds to each other does not
hold when the geometry of y and x̄ are related via a non-rigid deformation modeled by SSM.
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2.2 Gaussian mixture model and EM algorithm

Gaussian mixture model for point set registration models the transformed points T (x̄) as samples from a mixture
of Gaussian distribution with the mean at target points in y

p(T (x̄),A|y) =
∏

j,k

(
πjk · p

(
T (x̄j)

∣
∣yk
))Ajk

, (4)

where A = (Ajk) is the binary matching matrix of which each entry Ajk = 1 if point yk corresponds to x̄j on
the model with a priori probability P (Ajk = 1) = πjk. By applying the Bayes’ rule, the distribution density of
the matching matrix A given the transformation T

p(A|T (x̄),y) =
∏

j,k

(
πjk · p(T (x̄j)|yk)
∑

l πjl · p(T (x̄j)|yl)

)Ajk

(5)

gives the conditional expectation

E(Ajk|T ) =
πjk · p(T (x̄j)|yk)
∑

l πjl · p(T (x̄j)|yl)
. (6)

Viewing the correspondence matching matrix A as hidden variables, EM algorithm can be used to find the
solution to the estimation problem. In implementation, isotropic Gaussian noise with covariance σ2I is assumed

p(T (x̄j)|yk) =
1

(2π)
3
2σ3

exp

(
− 1

2σ2

∥
∥T (x̄j)− yk

∥
∥2
)

(7)

where ‖T (x̄j)− yk‖ is the Euclidean distance between the transformed model point T (x̄j) = TA

(
x̄j + (Wb)j

)

and the target point yk, with (Wb)j ∈ R
3 indicating the displacement of the j-th model point given the

parameter vector b. The prior distribution is set to be uniform

πjk =
1

ny
, ∀j, k. (8)

The EM algorithm estimates the hidden matchA and the transformation T alternatively. In the Expectation-
step (E-step), the algorithm estimates the expectation of the match matrix A based on the current estimate of
T

A∗
jk = E(Ajk|T ) =

e−‖T (x̄j)−yk‖2/2σ2

∑
l e

−‖T (x̄j)−yl‖2/2σ2
, (9)

In the Maximization-step (M-step), the transformation T is estimated by minimizing the energy

T ∗ = argmin
T

1

nxσ2

∑

j,k

A∗
jk

∥
∥T (x̄j)− yk

∥
∥2 . (10)

Noting that A is row-stochastic, and consequently its conditional expectation also statisfies that
∑

k A
∗
jk = 1,

we can transform the estimation in the M-step into a least square problem

T ∗ = argmin
T

∑

j

1

nxσ2
‖T (x̄j)− cjy‖2 (11)

where cjy ≡
∑

k A
∗
jky

k is the correspondence of the model point x̄j on the target surface y weighted by the
conditional expectation of A. The optimization of T in the M-step can be divided further into:

M.1 b∗ = argminb
∑

j
1

nxσ2 ‖TA(x̄
j+(Wb)j)−cjy‖2, which has the least square solution b∗ = WT (T−1

A (cy)−x̄),
where T−1

A is the inverse of the affine component in the current estimation;

M.2 T ∗
A = argminTA

∑
j ‖TA(x̄

j + (Wb∗)j)− cjy‖2, which is the least square estimation of the pose TA.

The algorithm for deforming the SSM to fit the target y is listed in the following algorithm.
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Algorithm 1 EM-ICP estimation of the deformation and the pose of the shape model.

1: {Initialization}
2: Estimate the pose TA by ICP
3: b← 0
4: T ← (TA,b)
5: while T not converged do
6: {E-step}
7: A∗ ← E(A|T ) (eq. 9)
8: {M-step}
9: cy ← A∗y

10: M.1 b←WT (T−1
A (cy)− x̄)

11: M.2 TA ← argmin
TA

‖TA(x̄+Wb)− cy‖2

12: Update T ← (TA,b)
13: end while

2.3 Estimation with symmetrical consistency and shape priors

The energy function (10) to be minimized in M.1 is asymmetric since it is the mean square distance from each

point in T (x̄) to cy. Symmetrically, a mean square data term 1
nyσ2

∑
j,k B

∗
kj

∥
∥T (x̄j)− yk

∥
∥2 from each point on

y to T (x̄) can be added to the energy, where B = (Bkj) is the row-stochastic match matrix, which is updated
in the E-step

B∗
kj = E(Bkj |T ) =

e−‖T (x̄(j))−y(k)‖2/2σ2

∑
l e

−‖T (x̄(l))−y(k)‖2/2σ2
. (12)

The formulation of SSM allows the shape priors based on the distribution of b parameters bm ∼ N (0, λm),
where λm is the m-th eigenvalue of the covariance matrix. To include a priori information of parameters,
a Tikhonov regularization term is added to the energy function, which penalize the coefficients of the lesser
components. Hence the cost function for symmetric consistent estimation with regularization

E =
1

2σ2

⎛

⎝ 1

nx

∑

j,k

A∗
jk

∥
∥T (x̄j)− yk

∥
∥2 +

α

ny

∑

j,k
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kj

∥
∥T (x̄j)− yk

∥
∥2
⎞

⎠+
β

2

∑

m

b2m
λm

, (13)

where α and β control the amount of symmetric consistency and regularization. Fixing the affine part TA in T ,
and noting that all rows in A and B sum to 1, we can rewrite the cost function as

E =
s

2nxσ2
‖x̄+Wb− T−1

A (cy)‖2 +
αs

2nyσ2
‖cx − T−1

A (y) + B̃Wb‖2 + β

2
bTΛ−1b, (14)

where s is the scaling factor in TA, c
k
x ≡

∑
j B

∗
kj x̄

j , and Λ is the diagonal matrix of eigenvalues {λi} in the

PCA of the shape model. As opposed to B ∈ R
ny×nx , B̃ ∈ R

3ny×3nx is left multiplied to Wb ∈ R
3nx , which is

modified from B∗

B̃ =

⎛

⎜
⎜
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...
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. (15)

The minimum is reached with the derivative ∂E/∂b = 0, which is the solution to the linear system

(
1

nx
I+

α

ny
WT B̃T B̃W +

σ2β

s
Λ−1

)
b =

1

nx
WT (T−1

A (cy)− x̄)

+
α

ny
WT B̃T (T−1

A (y)− cx).
(16)

Proc. of SPIE Vol. 8314  83140R-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 12/09/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



Table 1. Accuracy of parameter estimation. Normalized MSE of ̂b, average of 40 randomly generated phantoms.

60% decimation 80% decimation
Asymmetric Symmetric Asymmetric Symmetric

w/o regularization 1.30 0.115 1.14 0.498
β = 0.2 0.117 0.078 0.117 0.103

We can impose sparsity on B̃ by restricting the search of correspondence in (12) within neighborhood of radius
ρ.

3. EXPERIMENTAL RESULTS

In the experiments, we first built SSMs for hippocampus based on the semi-automated segmentations from
the ADNI database. Then we tested the performance of the EM-ICP based model extrapolation method we
proposed. We compared the performace of the symmetric and asymmetric estimation both with and without
regularization. The reconstruction error and the accuracy of the parameter estimation are evaluated.

3.1 SSM parameter estimation

We used the SSM of left hippocampus built previously in the experiments of model extrapolation and parameter
estimation. We evaluate the effect of the symmetric consistency and regularization on the performance of the
estimation by measuring the accuracy of the estimated shape parameters b compared to the phantom ground
truth, and the precision of the estimated shape surfaces. Two experiments were carried out, and in each of the
experiments, we performed both the symmetric and asymmetric shape parameter estimation, with and without
regularization.

In the first experiment, we aim to evaluate the accuracy of the estimated parameters by generating phantom
samples from the SSM. The phantom shapes were generated by a random vector b in which each component bm ∼
N (0, λm). Gaussian random noises (0.05‖b‖) were added to the coordinates of surface points, and regularized
by smoothing with a windowed sinc function.18 These surfaces were further decimated,19 reducing 60% to 80%
of triangles, to create missing correspondences between the phantom and the SSM, and match the density of
marching cube meshes produced from hippocampal segmentations. The error of the estimation b̂ were measured
by normalized mean squared error (MSE)

E(‖b̂− b‖2/‖b‖2) = E

(
∑

m

(bm − b̂m)2/
∑

i

b2m

)

, (17)

with respect to b as the ground truth.

In the second experiment, we evaluated the precision of the estimated shapes by testing our method to
represent smoothed marching cube surfaces obtained from an unseen testing set of hippocampal volumes (20
controls and 20 AD from ADNI). We deformed the SSM to fit the surfaces and measure the root mean square
(RMS) error and the Hausdorff distance between SSM-reconstructed surface and the testing surface.

3.2 Results and discussion

The results parameter estimation accuracy of first experiment are listed in Table. 1. The results of reconstruction
precision in the second experiment are plotted listed in Figure 1. One example of reconstruction is shown in
Figure 2 with the effect of regularization shown in Figure 3.

The formulation of shape parameter estimation as a least square problem results in the explicit optimization
for the RMS error. Thus the lowest RMS error from the reconstruction based on asymmetric estimation without
regularization is unsurprising. A closer look at one example (Figure 2(b)) reveals mismatch and inconsistent
geometry in the regions with high-frequency of change and high-curvature details. The mismatch was corrected by
the symmetric estimation, which ensures a mutually consistent match, and thus the Hausdorff distance between
the reconstruction and the target were significantly reduced.
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Figure 1. The precision of the model reconstruction with the estimated shape parameter. The errors were measured on
the average of 40 unseen cases in the testing set. Black: Asymmetric estimator; red: symmetric estimator.

The closeness of reconstruction to the data based on un-regularized estimation may also be due to the effect of
overfitting. It results in the foldings on the reconstructed surface, which can be seen for instance in Figure 3(a).
This effect of folding and overfitting is eliminated by regularization, which takes the shape priors modeled by the
SSM into account. With the presence of noise and occlusion of correspondence, the MAP (regularized) estimator
provides more accurate estimates of shape parameters, while ML is more sensitive to the noise.

4. CONCLUSION

In summary, we adopted the EM-ICP framework for point set registration to the application of SSM shape
parameter estimation, modeling the correspondence between the shape surface and the SSM as a hidden random
variable. We exploit the linear decomposition of shape variation in SSM to formulate the symmetric data terms.
The proposed symmetric consistent estimation resulted in a significant decrease in the error in terms of Hausdorff
distance. The shape priors of SSM are included as regularization to the estimator, in order to avoid overfitting
and increase robustness against the missing correspondence and random noise. Future work will look at extending
current linear PCA driven SSM to the models with kernel-PCA.
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