9,553 research outputs found

    Research Directions in Information Systems for Humanitarian Logistics

    Get PDF
    This article systematically reviews the literature on using IT (Information Technology) in humanitarian logistics focusing on disaster relief operations. We first discuss problems in humanitarian relief logistics. We then identify the stage and disaster type for each article as well as the article’s research methodology and research contribution. Finally, we identify potential future research directions

    E-business and circular supply chains : increased business opportunities by IT-based customer oriented return-flow management

    Get PDF
    This paper deals with the application of IT in circular supply chains (CSCs). We consider information on the installed base critical, and present an illustrative example. Next we discuss a framework of different kinds of value contained in a return, and IT-applications useful in supporting its recovery or neutralisation in case of negative externalities. Also we show which kind of CSC is needed for which kind of return. We illustrate our work by three real life case studies.reverse logistics;supply chain management;electronic commerce;product life cycle

    On two-echelon inventory systems with Poisson demand and lost sales

    Get PDF
    We derive approximations for the service levels of two-echelon inventory systems with lost sales and Poisson demand. Our method is simple and accurate for a very broad range of problem instances, including cases with both high and low service levels. In contrast, existing methods only perform well for limited problem settings, or under restrictive assumptions.\u

    The SNS logistics network design : location and vehicle routing.

    Get PDF
    Large-scale emergencies caused by earthquake, tornado, pandemic flu, terrorism attacks and so on can wreak havoc to communities. In order to mitigate the impact of the events, emergency stockpiles of food, water, medicine and other materials have been set up around the US to be delivered to the affected areas during relief operations. One type of stockpile is called the Strategic National Stockpile (SNS). The SNS logistics network is designed to have multiple stages of facilities, each of which is managed by different levels of governmental authorities - federal, state and local authorities. The design of a logistics network for delivery of the SNS materials within a state are explored in this dissertation. There are three major areas of focus in this dissertation: (1) the SNS facility location model, which is used to determine sites for locating Receiving, Staging and Storage (RSS) and Regional Distribution Nodes (RDNs) to form a logistics network to deliver relief material to Points of Demand (PODs), where the materials are directly delivered to the affected population; (2) the SNS Vehicle Routing Problem (VRP), which is used to assist the SNS staff in determining the numbers of various types of trucks, and the routing schedules of each truck to develop an operational plan for delivering the required relief materials to the assigned PODs within the required duration; (3) the location-routing analysis of emergency scenarios, in which the facility location model and the VRP solution are integrated through the use of a computer program to run on several assumed emergency scenarios. Using real data from the department of public health in the Commonwealth of Kentucky, a transshipment and location model is formulated to determine the facility locations and the transshipment quantities of materials; a multiple-vehicle routing model allowing split deliveries and multiple routes per vehicle that must be completed within a required duration is formulated to determine the routing and scheduling of trucks. The facility location model is implemented using Microsoft Solver Foundation and C#. An algorithm combining the Clark and Wright saving algorithm and Simulated Annealing is designed and implemented in C# to solve the VRP. The algorithm can determine whether there is shortage of transportation capacity, and if so, how many of various types of trucks should be added for optimal performance. All the solution algorithms are integrated into a web-based SNS planning tool. In the location-routing analysis of emergency scenarios, a binary location model and an algorithm for solving VRP solution are integrated as a computer program to forecast the feasibility of distribution plans and the numbers of required trucks of various types. The model also compares the costs and benefits of direct and indirect shipment. A large-scale emergency scenario in which a specific type of vaccine is required to be delivered to the entire state of Kentucky is considered. The experiments are designed based on the real data provided by the Kentucky state government. Thus the experimental results provide valuable suggestions for future SNS preparedness planning

    A MATHEMATICAL FRAMEWORK FOR OPTIMIZING DISASTER RELIEF LOGISTICS

    Get PDF
    In today's society that disasters seem to be striking all corners of the globe, the importance of emergency management is undeniable. Much human loss and unnecessary destruction of infrastructure can be avoided with better planning and foresight. When a disaster strikes, various aid organizations often face significant problems of transporting large amounts of many different commodities including food, clothing, medicine, medical supplies, machinery, and personnel from several points of origin to a number of destinations in the disaster areas. The transportation of supplies and relief personnel must be done quickly and efficiently to maximize the survival rate of the affected population. The goal of this research is to develop a comprehensive model that describes the integrated logistics operations in response to natural disasters at the operational level. The proposed mathematical model integrates three main components. First, it controls the flow of several relief commodities from sources through the supply chain until they are delivered to the hands of recipients. Second, it considers a large-scale unconventional vehicle routing problem with mixed pickup and delivery schedules for multiple transportation modes. And third, following FEMA's complex logistics structure, a special facility location problem is considered that involves four layers of temporary facilities at the federal and state levels. Such integrated model provides the opportunity for a centralized operation plan that can effectively eliminate delays and assign the limited resources in a way that is optimal for the entire system. The proposed model is a large-scale mixed integer program. To solve the model, two sets of heuristic algorithms are proposed. For solving the multi-echelon facility location problem, four heuristic approaches are proposed. Also four heuristic algorithms are proposed to solve the general integer vehicle routing problem. Overall, the proposed heuristics could efficiently find optimal or near optimal solution in minutes of CPU time where solving the same problems with a commercial solver needed hours of computation time. Numerical case studies and extensive sensitivity analysis are conducted to evaluate the properties of the model and solution algorithms. The numerical analysis indicated the capabilities of the model to handle large-scale relief operations with adequate details. Solution algorithms were tested for several random generated cases and showed robustness in solution quality as well as computation time

    Public-private perspectives on supply chains of essential goods in crisis management

    Get PDF
    Public authorities are responsible to maintain the population’s supply with essential goods like food or drugs at any time. Such goods are produced, transported and sold by companies in supply chains. Past supply crises all over the world have showcased numerous examples of spontaneous collaboration between public authorities and companies in supply chains. However, insights on formal collaboration which is agreed upon in the preparedness phase is rare in both practice and literature. Therefore, this dissertation’s first research objective is to identify under which circumstances companies are most willing to collaborate with public authorities. In this context, public authorities\u27 and companies\u27 characteristics, resources and roles in a collaboration are identified from literature research as well as real-life cases in Study A. Study B empirically determines companies\u27 preferred preconditions for collaboration: Companies value the continuity of their business processes and expect to be compensated monetarily or by lifted restrictions. The second research objective is to develop collaborative supply chain concepts and evaluate them from public and private perspectives. Study C develops a collaboration concept in a real-time setting in which commercial trucks are jointly re-routed into crisis regions. In Study D, public authorities coordinate tactical use of commercial last-mile delivery vehicles for the home supply with food and drugs. In Study E, strategic collaboration in using dual-use warehouses is investigated with a focus on logistics networks. Study F determines the impact of demand shortfalls and payment term extensions on financial and physical flows in food supply chains. In Studies C-F, the main drivers for effectiveness and efficiency are investigated. By examining collaboration between companies and public authorities in supply crises, this dissertation contributes to the research streams of supply chain risk management and so-called extreme supply chain management. The results provide public decision-makers with insights into companies\u27 motivation to engage in public crisis management. The developed collaborative supply chain concepts serve public authorities as a basis for collaboration design and companies as starting points for integrating public-private collaboration into their endeavors to make supply chains more resilient

    Control of the Supply Chain Optimization with Vehicle Scheduling of Logistics under Uncertain Systems

    Get PDF
    AbstractVehicle routing problem to operations research theory and practice closer together production, achieved a lot in recent decades, the field of operations research in recent decades one of the most successful research. Vehicle routing problem is to optimize transportation and supply chain optimization organization's core problem. This collection of domestic and foreign scholars through the research literature on the VRP data and literature data collation, classification, details of VRP problems at home and abroad Research on VRP models and algorithms were analyzed by the introduction of uncertain systems using system optimization based on uncertainty, so that you can use the methods for processing, logistics and vehicle scheduling the final decision to provide a scientific basis for decision making; through the VRP problem, models, algorithms and factor analysis, the proposed vehicle scheduling for logistics system development proposals

    ОПТИМАЛЬНАЯ МАРШРУТИЗАЦИЯ ВОЗДУШНЫХ СУДОВ И МАШИН СКОРОЙ ПОМОЩИ В ЛОГИСТИКЕ ПРИ СТИХИЙНЫХ БЕДСТВИЯХ

    Get PDF
    One of the most vital aspects of emergency management studies is the development and examination of post-disaster search and rescue activities and treatment facilities. One of such issues to be considered while performing these operations is to reach the disaster victims within minimum time and to plan disaster logistics in the most efficient manner possible. In this study, the problem of planning debris scanning activities with Unmanned Aerial Vehicles after an earthquake and transporting the injured people to the hospitals by ambulances within minimum time was discussed, and mathematical models were developed to solve the problem. The ambulance routing problem and the mathematical model to be used in the solution to the problem are discussed for the first time in the literature. The developed model was tested on the problem sets created by taking into account the data of the province under investigation.Одним из наиболее важных аспектов исследований по управлению рисками и чрезвычайными ситуациями является разработка и изучение поисково-спасательных мероприятий и очистных сооружений после стихийных бедствий. Одним из вопросов, которые необходимо учитывать при выполнении этих операций, является обеспечение доступа к жертвам стихийных бедствий в минимальные сроки и планирование логистики в случае стихийных бедствий наиболее эффективным способом. В данном исследовании рассматривается проблема планирования работ по спасению с помощью беспилотных летательных аппаратов после землетрясения и транспортировки пострадавших людей в больницы на машинах скорой помощи за минимальное время. Для решения этой проблемы были разработаны и предложены математические модели. Впервые рассматривается задача маршрутизации скорой помощи и математическая модель, которая будет использоваться для решения этой задачи. Разработанная модель была протестирована на множествах задач, созданных с учетом реальных данных исследуемой провинции Турции

    A multi-objective evolutionary optimisation model for heterogeneous vehicles routing and relief items scheduling in humanitarian crises

    Get PDF
    In a disaster scenario, relief items distribution is required as early as possible for the disaster victims to reduce the associated risks. For the distribution tasks, an effective and efficient relief items distribution model to generated relief items distribution schedules is essential to minimise the impact of disaster to the disaster victims. However, developing efficient distribution schedules is challenging as the relief items distribution problem has multiple objectives to look after where the objectives are mostly contradictorily creating a barrier to simultaneous optimisation of each objective. Also, the relief items distribution model has added complexity with the consideration of multiple supply points having heterogeneous and limited vehicles with varying capacity, cost and time. In this paper, multi-objective evolutionary optimisation with the greedy heuristic search has been applied for the generation of relief items distribution schedules under heterogeneous vehicles condition at supply points. The evolutionary algorithm generates the disaster region distribution sequence by applying a global greedy heuristic search along with a local search that finds the efficient assignment of heterogeneous vehicles for the distribution. This multi-objective evolutionary approach provides Pareto optimal solutions that decision-makers can apply to generate effective distribution schedules that optimise the distribution time and vehicles’ operational cost. In addition, this optimisation also incorporated the minimisation of unmet relief items demand at the disaster regions. The optimised distribution schedules with the proposed approach are compared with the single-objective optimisation, weighted single-objective optimisation and greedy multi-objective optimisation approaches. The comparative results showed that the proposed multi-objective evolutionary approach is an efficient alternative for finding the distribution schedules with optimisation of distribution time and operational cost for the relief items distribution with heterogeneous vehicles

    Optimal logistics scheduling with dynamic information in emergency response: case studies for humanitarian objectives

    Get PDF
    The mathematical model of infectious disease is a typical problem in mathematical modeling, and the common infectious disease models include the susceptible-infected (SI) model, the susceptible-infected-recovered model (SIR), the susceptible-infected-recovered-susceptible model (SIRS) and the susceptible-exposed-infected-recovered (SEIR) model. These models can be used to predict the impact of regional return to work after the epidemic. In this paper, we use the SEIR model to solve the dynamic medicine demand information in humanitarian relief phase. A multistage mixed integer programming model for the humanitarian logistics and transport resource is proposed. The objective functions of the model include delay cost and minimum running time in the time-space network. The model describes that how to distribute and deliver medicine resources from supply locations to demand locations with an efficient and lower-cost way through a transportation network. The linear programming problem is solved by the proposed Benders decomposition algorithm. Finally, we use two cases to calculate model and algorithm. The results of the case prove the validity of the model and algorithm
    corecore