4,421 research outputs found

    Age Minimization in Energy Harvesting Communications: Energy-Controlled Delays

    Full text link
    We consider an energy harvesting source that is collecting measurements from a physical phenomenon and sending updates to a destination within a communication session time. Updates incur transmission delays that are function of the energy used in their transmission. The more transmission energy used per update, the faster it reaches the destination. The goal is to transmit updates in a timely manner, namely, such that the total age of information is minimized by the end of the communication session, subject to energy causality constraints. We consider two variations of this problem. In the first setting, the source controls the number of measurement updates, their transmission times, and the amounts of energy used in their transmission (which govern their delays, or service times, incurred). In the second setting, measurement updates externally arrive over time, and therefore the number of updates becomes fixed, at the expense of adding data causality constraints to the problem. We characterize age-minimal policies in the two settings, and discuss the relationship of the age of information metric to other metrics used in the energy harvesting literature.Comment: Appeared in Asilomar 201

    Optimal Status Updating with a Finite-Battery Energy Harvesting Source

    Full text link
    We consider an energy harvesting source equipped with a finite battery, which needs to send timely status updates to a remote destination. The timeliness of status updates is measured by a non-decreasing penalty function of the Age of Information (AoI). The problem is to find a policy for generating updates that achieves the lowest possible time-average expected age penalty among all online policies. We prove that one optimal solution of this problem is a monotone threshold policy, which satisfies (i) each new update is sent out only when the age is higher than a threshold and (ii) the threshold is a non-increasing function of the instantaneous battery level. Let Ï„B\tau_B denote the optimal threshold corresponding to the full battery level BB, and p(â‹…)p(\cdot) denote the age-penalty function, then we can show that p(Ï„B)p(\tau_B) is equal to the optimum objective value, i.e., the minimum achievable time-average expected age penalty. These structural properties are used to develop an algorithm to compute the optimal thresholds. Our numerical analysis indicates that the improvement in average age with added battery capacity is largest at small battery sizes; specifically, more than half the total possible reduction in age is attained when battery storage increases from one transmission's worth of energy to two. This encourages further study of status update policies for sensors with small battery storage.Comment: 15 pages, 6 figure

    Age-Minimal Transmission in Energy Harvesting Two-hop Networks

    Full text link
    We consider an energy harvesting two-hop network where a source is communicating to a destination through a relay. During a given communication session time, the source collects measurement updates from a physical phenomenon and sends them to the relay, which then forwards them to the destination. The objective is to send these updates to the destination as timely as possible; namely, such that the total age of information is minimized by the end of the communication session, subject to energy causality constraints at the source and the relay, and data causality constraints at the relay. Both the source and the relay use fixed, yet possibly different, transmission rates. Hence, each update packet incurs fixed non-zero transmission delays. We first solve the single-hop version of this problem, and then show that the two-hop problem is solved by treating the source and relay nodes as one combined node, with some parameter transformations, and solving a single-hop problem between that combined node and the destination.Comment: Appeared in IEEE Globecom 201

    Age of Information in Multicast Networks with Multiple Update Streams

    Get PDF
    We consider the age of information in a multicast network where there is a single source node that sends time-sensitive updates to nn receiver nodes. Each status update is one of two kinds: type I or type II. To study the age of information experienced by the receiver nodes for both types of updates, we consider two cases: update streams are generated by the source node at-will and update streams arrive exogenously to the source node. We show that using an earliest k1k_1 and k2k_2 transmission scheme for type I and type II updates, respectively, the age of information of both update streams at the receiver nodes can be made a constant independent of nn. In particular, the source node transmits each type I update packet to the earliest k1k_1 and each type II update packet to the earliest k2k_2 of nn receiver nodes. We determine the optimum k1k_1 and k2k_2 stopping thresholds for arbitrary shifted exponential link delays to individually and jointly minimize the average age of both update streams and characterize the pareto optimal curve for the two ages
    • …
    corecore