14,086 research outputs found

    An Exponential Lower Bound on the Complexity of Regularization Paths

    Full text link
    For a variety of regularized optimization problems in machine learning, algorithms computing the entire solution path have been developed recently. Most of these methods are quadratic programs that are parameterized by a single parameter, as for example the Support Vector Machine (SVM). Solution path algorithms do not only compute the solution for one particular value of the regularization parameter but the entire path of solutions, making the selection of an optimal parameter much easier. It has been assumed that these piecewise linear solution paths have only linear complexity, i.e. linearly many bends. We prove that for the support vector machine this complexity can be exponential in the number of training points in the worst case. More strongly, we construct a single instance of n input points in d dimensions for an SVM such that at least \Theta(2^{n/2}) = \Theta(2^d) many distinct subsets of support vectors occur as the regularization parameter changes.Comment: Journal version, 28 Pages, 5 Figure

    A Divide-and-Conquer Solver for Kernel Support Vector Machines

    Full text link
    The kernel support vector machine (SVM) is one of the most widely used classification methods; however, the amount of computation required becomes the bottleneck when facing millions of samples. In this paper, we propose and analyze a novel divide-and-conquer solver for kernel SVMs (DC-SVM). In the division step, we partition the kernel SVM problem into smaller subproblems by clustering the data, so that each subproblem can be solved independently and efficiently. We show theoretically that the support vectors identified by the subproblem solution are likely to be support vectors of the entire kernel SVM problem, provided that the problem is partitioned appropriately by kernel clustering. In the conquer step, the local solutions from the subproblems are used to initialize a global coordinate descent solver, which converges quickly as suggested by our analysis. By extending this idea, we develop a multilevel Divide-and-Conquer SVM algorithm with adaptive clustering and early prediction strategy, which outperforms state-of-the-art methods in terms of training speed, testing accuracy, and memory usage. As an example, on the covtype dataset with half-a-million samples, DC-SVM is 7 times faster than LIBSVM in obtaining the exact SVM solution (to within 10610^{-6} relative error) which achieves 96.15% prediction accuracy. Moreover, with our proposed early prediction strategy, DC-SVM achieves about 96% accuracy in only 12 minutes, which is more than 100 times faster than LIBSVM

    Extending twin support vector machine classifier for multi-category classification problems

    Get PDF
    © 2013 – IOS Press and the authors. All rights reservedTwin support vector machine classifier (TWSVM) was proposed by Jayadeva et al., which was used for binary classification problems. TWSVM not only overcomes the difficulties in handling the problem of exemplar unbalance in binary classification problems, but also it is four times faster in training a classifier than classical support vector machines. This paper proposes one-versus-all twin support vector machine classifiers (OVA-TWSVM) for multi-category classification problems by utilizing the strengths of TWSVM. OVA-TWSVM extends TWSVM to solve k-category classification problems by developing k TWSVM where in the ith TWSVM, we only solve the Quadratic Programming Problems (QPPs) for the ith class, and get the ith nonparallel hyperplane corresponding to the ith class data. OVA-TWSVM uses the well known one-versus-all (OVA) approach to construct a corresponding twin support vector machine classifier. We analyze the efficiency of the OVA-TWSVM theoretically, and perform experiments to test its efficiency on both synthetic data sets and several benchmark data sets from the UCI machine learning repository. Both the theoretical analysis and experimental results demonstrate that OVA-TWSVM can outperform the traditional OVA-SVMs classifier. Further experimental comparisons with other multiclass classifiers demonstrated that comparable performance could be achieved.This work is supported in part by the grant of the Fundamental Research Funds for the Central Universities of GK201102007 in PR China, and is also supported by Natural Science Basis Research Plan in Shaanxi Province of China (Program No.2010JM3004), and is at the same time supported by Chinese Academy of Sciences under the Innovative Group Overseas Partnership Grant as well as Natural Science Foundation of China Major International Joint Research Project (NO.71110107026)

    Recurrent kernel machines : computing with infinite echo state networks

    Get PDF
    Echo state networks (ESNs) are large, random recurrent neural networks with a single trained linear readout layer. Despite the untrained nature of the recurrent weights, they are capable of performing universal computations on temporal input data, which makes them interesting for both theoretical research and practical applications. The key to their success lies in the fact that the network computes a broad set of nonlinear, spatiotemporal mappings of the input data, on which linear regression or classification can easily be performed. One could consider the reservoir as a spatiotemporal kernel, in which the mapping to a high-dimensional space is computed explicitly. In this letter, we build on this idea and extend the concept of ESNs to infinite-sized recurrent neural networks, which can be considered recursive kernels that subsequently can be used to create recursive support vector machines. We present the theoretical framework, provide several practical examples of recursive kernels, and apply them to typical temporal tasks
    corecore