324 research outputs found

    Optimal precoding for a QoS optimization problem in two-user MISO-NOMA downlink

    Get PDF
    In this letter, based on the non-orthogonal multiple access (NOMA) concept, a quality-of-service optimization problem for two-user multiple-input-single-output broadcast systems is considered, given a pair of target interference levels. The minimal power and the optimal precoding vectors are obtained by considering its Lagrange dual problem and via Newton's iterative algorithm, respectively. Moreover, the closed-form expressions of the minimal transmission power for some special cases are also derived. One of these cases is termed quasi-degraded, which is the key point and will be discussed in detail in this letter. Our analysis further figures out that the proposed NOMA scheme can approach nearly the same performance as optimal dirty paper coding, as verified by computer simulations

    Multiple Access in Aerial Networks: From Orthogonal and Non-Orthogonal to Rate-Splitting

    Get PDF
    Recently, interest on the utilization of unmanned aerial vehicles (UAVs) has aroused. Specifically, UAVs can be used in cellular networks as aerial users for delivery, surveillance, rescue search, or as an aerial base station (aBS) for communication with ground users in remote uncovered areas or in dense environments requiring prompt high capacity. Aiming to satisfy the high requirements of wireless aerial networks, several multiple access techniques have been investigated. In particular, space-division multiple access(SDMA) and power-domain non-orthogonal multiple access (NOMA) present promising multiplexing gains for aerial downlink and uplink. Nevertheless, these gains are limited as they depend on the conditions of the environment. Hence, a generalized scheme has been recently proposed, called rate-splitting multiple access (RSMA), which is capable of achieving better spectral efficiency gains compared to SDMA and NOMA. In this paper, we present a comprehensive survey of key multiple access technologies adopted for aerial networks, where aBSs are deployed to serve ground users. Since there have been only sporadic results reported on the use of RSMA in aerial systems, we aim to extend the discussion on this topic by modelling and analyzing the weighted sum-rate performance of a two-user downlink network served by an RSMA-based aBS. Finally, related open issues and future research directions are exposed.Comment: 16 pages, 6 figures, submitted to IEEE Journa

    On the application of quasi-degradation to MISO-NOMA downlink

    Get PDF
    In this paper, the design of non-orthogonal multiple access (NOMA) in a multiple-input-single-output (MISO) downlink scenario is investigated. The impact of the recently developed concept, quasi-degradation, on NOMA downlink transmission is first studied. Then, a Hybrid NOMA (H-NOMA) precoding algorithm, based on this concept, is proposed. By exploiting the properties of H-NOMA precoding, a low-complexity sequential user pairing algorithm is consequently developed, to further improve the overall system performance. Both analytical and numerical results are provided to demonstrate the performance of the H-NOMA precoding through the average power consumption and outage probability, while conventional schemes, as dirty-paper coding and zero-forcing beamforming, are used as benchmarking

    NOMA Made Practical: Removing the SIC through Constructive Interference

    Get PDF
    In this paper a novel constructive multiple access (CoMA) scheme is proposed. The new CoMA technique aligns the superimposed signals to the users constructively to the signal of interest. Accordingly, there is no need to remove it at the receiver using successive interference cancellation (SIC) technique. In this regard, optimal CoMA precoders are designed for user paring NOMA multiple-input-single-output (MISO) systems. The results in this paper show that CoMA is an attractive solution for NOMA systems with low number of antennas, and transmission power
    • …
    corecore