1,332 research outputs found

    Battery charging station for electric vehicles based on bipolar dc power grid with grid-to-vehicle, vehicle-to-grid and vehicle-to-vehicle operation modes

    Get PDF
    This paper proposes an electric vehicle (EV) battery charging station (EV-BCS) based on a bipolar dc power grid with the capabilities of returning energy back to the power grid (vehicle-to-grid – V2G mode), as well as to perform power transfer between different EVs connected to the EV-BCS without drawing power from the power grid (vehicle-to-vehicle – V2V mode), besides the traditional battery charging operation (grid-to-vehicle – G2V mode). The proposed EV-BCS is modular, using three-level bidirectional dc-dc converters. In this paper, for simplicity reasons, only two converters, and hence two EVs, are considered in order to validate the previously referred operation modes. Furthermore, unbalanced operation from the EVs side is also considered for all the operation modes, aiming to consider a real scenario of operation. Simulation results verify the correct operation of the EV-BCS in all cases, with balanced and unbalanced current consumption from the EVs resulting always in balanced currents from the bipolar dc power grid side

    Modelling and power-voltage control in unbalanced bipolar multi-terminal HVDC grids

    Get PDF
    Questa tesi investiga il comportamento della strategia di controllo distribuito di tensione (droop control) in una rete VSC-HVDC bipolare multi-terminale e magliata. In particolare sono studiate le conseguenze de fuori servizio di uno dei convertitori della rete. Infine, è matematicamente descritta l’influenza dei parametri di rete, quali resistenza del percorso di richiusura della corrente, lunghezza delle linee e guadagno di droop, sull’accoppiamento tra i poli del sistema bipolare

    Variable-Angle Phase-Shifted PWM for Multilevel Three-Cell Cascaded H-bridge Converters

    Get PDF
    Multilevel cascaded H-bridge converters have become a mature technology for applications where high-power medium ac voltages are required. Normal operation of multilevel cascaded H-bridge converters assumes that all power cells have the same dc voltage, and each power cell generates the same voltage averaged over a sampling period using a conventional phase-shifted pulse width modulation (PWM) technique. However, this modulation method does not achieve good results under unbalanced operation per H-bridge in the power converter, which may happen in grid-connected applications such as photovoltaic or battery energy storage systems. In the paper, a simplified mathematical analysis of the phase-shifted PWM technique is presented. In addition, a modification of this conventional modulation method using variable shift angles between the power cells is introduced. This modification leads to the elimination of harmonic distortion of low-order harmonics due to the switching (triangular carrier frequency and its multiples) even under unbalanced operational conditions. The analysis is particularized for a three-cell cascaded H-bridge converter, and experimental results are presented to demonstrate the good performance of the proposed modulation method

    Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks

    Get PDF
    In the last decade, distribution systems are experiencing a drastic transformation with the advent of new technologies. In fact, distribution networks are no longer passive systems, considering the current integration rates of new agents such as distributed generation, electrical vehicles and energy storage, which are greatly influencing the way these systems are operated. In addition, the intrinsic DC nature of these components, interfaced to the AC system through power electronics converters, is unlocking the possibility for new distribution topologies based on AC/DC networks. This paper analyzes the evolution of AC distribution systems, the advantages of AC/DC hybrid arrangements and the active role that the new distributed agents may play in the upcoming decarbonized paradigm by providing different ancillary services.Ministerio de Economía y Competitividad ENE2017-84813-RUnión Europea (Programa Horizonte 2020) 76409

    Analysis of heterogeneously configured converter stations in HVDC grids under asymmetrical DC operation

    Get PDF
    Additional technologies different from classical high voltage alternating current (HVAC) transmission are necessary to deal with the higher renewable energy integration in the current energetic framework. High voltage direct current (HVDC) transmission based on modular multilevel voltage source converters (MMC-VSC) is a promising alternative for some applications. Thus, the number of HVDC projects is increasing worldwide. This makes possible their future gradual interconnection to constitute an overlay DC grid that offers numerous additional advantages but still many challenges. Even if the development of the HVDC technology overcomes all the present challenges in the future, the lack of standardisation will lead to a DC grid integrated by different HVDC station topologies, grounding schemes, DC-DC converters, or control strategies. During normal operation, the DC grid is assumed to work symmetrically, and some aspects, such as the topology or the grounding scheme, do not intervene in the system response. However, in case of working asymmetrically due to a fault or outage affecting a single pole of the DC network, all the aspects mentioned above affect the system operation. However, such a heterogeneous DC grid under asymmetrical DC operation has yet to be addressed in the literature. Thus, it constitutes the general objective of this thesis. To achieve this objective, the asymmetrical DC operation in different heterogeneous DC systems is studied using load flow, dynamic EMT simulation, and small-signal stability analysis. The analysis of a system of these characteristics under asymmetrical DC operation is an original contribution of the thesis. First, a DC grid connecting different AC zones and formed by different HVDC station topologies and DC-DC converters is modelled to perform the load-flow assessment. The asymmetrical DC operation is examined by causing an asymmetrical contingency in the DC network. The analysis is carried out considering different grounding resistances, control strategies, control parameters, and galvanic isolation ability of the DC-DC converters. The results obtained regarding DC current and voltage asymmetry, which are related to the overloading of elements and excessive voltage deviation, allow for assessing the impact of the asymmetrical operation under different circumstances. Second, the dynamic assessment aims to identify the main aspects involved in the transient response during asymmetrical DC operation. The connection of a symmetrical monopolar station to a bipolar system is modelled, and the outage of one of the converters of a bipolar station is simulated. The effect of the grounding impedance and the control strategy on the dynamic response of the system is assessed. Therefore, the main system parameters and issues that may appear are identified. Furthermore, the effect of the connection of the symmetrical monopole station over the existing protections of the bipolar system is assessed by considering different grounding impedances in the monopolar station. Finally, the small-signal analysis of a system composed of different topologies focuses on the asymmetrical DC operation. A new suitable model is developed and validated against EMT simulations. The small-signal analysis is carried out, and the main aspects that impact the small-signal stability during asymmetrical operation are identified. Furthermore, a new controller that enhances the system stability during asymmetrical DC operation is developed.Para hacer frente a la mayor integración de energías renovables en el marco energético actual se necesitan tecnologías adicionales distintas de la transmisión clásica en corriente alterna en alta tensión (HVAC). La transmisión de corriente continua en alta tensión (HVDC) basada en convertidores multinivel modulares de fuente de tensión (MMCVSC) es una alternativa prometedora para algunas aplicaciones. Por tanto, el número de proyectos HVDC está aumentando en todo el mundo. Esto hace posible que se interconecten gradualmente en el futuro para formar una red de corriente continua (CC) que ofrece numerosas ventajas adicionales, pero todavía muchos retos. Aunque el desarrollo de la tecnología HVDC supere todos los retos actuales en el futuro, la falta de normalización dará lugar a una red de CC integrada por diferentes topologías de estaciones HVDC, esquemas de puesta a tierra, convertidores CC-CC o estrategias de control. Durante el funcionamiento normal, la red de CC funciona simétricamente y algunos aspectos, como la topología o el esquema de puesta a tierra, no intervienen en la respuesta del sistema. Sin embargo, en caso de funcionamiento asimétrico, debido a una falta o desconexión que afecte a un solo polo de la red de CC, todos los aspectos mencionados anteriormente afectan al funcionamiento del sistema. Este tipo de red de CC heterogénea en funcionamiento asimétrico aún no se ha abordado en el estado del arte. Por ello, constituye el objetivo general de esta tesis. Para lograr este objetivo, se estudia el funcionamiento asimétrico de CC en diferentes sistemas heterogéneos de CC utilizando diferentes enfoques como el flujo de cargas, la simulación dinámica EMT y el análisis de estabilidad de pequeña señal. El análisis de un sistema de estas características en funcionamiento asimétrico en CC constituye la principal contribución de la tesis. Para realizar la evaluación del flujo de cargas, se modela una red de CC que conecta diferentes zonas de CA y está formada por diferentes topologías de estaciones HVDC y convertidores CC-CC. A continuación, se examina el funcionamiento asimétrico de CC provocando una contingencia asimétrica en la red de CC. El análisis se lleva a cabo considerando diferentes resistencias de puesta a tierra, estrategias de control, parámetros de control y capacidad de aislamiento galvánico de los convertidores CC-CC. Los resultados obtenidos sobre la asimetría de corriente y tensión en CC, relacionados con la sobrecarga de los elementos y la desviación excesiva de la tensión, permiten evaluar el impacto del funcionamiento asimétrico en distintas circunstancias. La evaluación dinámica pretende identificar los principales aspectos que intervienen en la respuesta transitoria durante el funcionamiento asimétrico en CC. En primer lugar, se modela la conexión de una estación monopolar simétrica a un sistema bipolar. A continuación, se simula la interrupción de uno de los convertidores de una estación bipolar y se evalúa el efecto de la impedancia de puesta a tierra y de la estrategia de control en la respuesta dinámica del sistema. Por último, se identifican los principales parámetros del sistema y los problemas que pueden aparecer. Además, se evalúa el efecto de la conexión de la estación monopolar simétrica sobre las protecciones existentes del sistema bipolar, considerando diferentes impedancias de puesta a tierra en la estación monopolar. Por último, se realiza el análisis de pequeña señal de un sistema compuesto por diferentes topologías centrándose en el funcionamiento asimétrico en CC. Para ello, primero se desarrolla un nuevo modelo adecuado para este análisis y se valida con simulaciones EMT. A continuación, se lleva a cabo el análisis de pequeña señal y se identifican los principales aspectos que afectan a la estabilidad de pequeña señal durante el funcionamiento asimétrico. Además, se desarrolla un nuevo controlador que mejora la estabilidad del sistema durante el funcionamiento asimétrico en CC.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: José Luis Rodríguez Amenedo.- Secretario: Eduardo Prieto Araujo.- Vocal: Dunixe Marene Larruskain Escoba

    Effects of grounding configurations on post-contingency performance of MTDC system: a 3-terminal example

    Get PDF
    The grounding system is extremely important, as it affects the performance of the MTDC system virtually in any possible mode: normal (asymmetrical operation) and abnormal operation (faults), steady-state and dynamic. The objective of this paper is to introduce a simple approach to assess the steady-state post-contingency of multi-Terminal HVDC System and uses it order to illustrate the effects of grounding configurations on steady-state post-contingency performance. A 3-terminal HVDC system is used to formulate the main theoretical framework for performance prediction on post-contingency steady-state of MTDC system as well as for demonstrative purposes

    Energy Storage in Grid-Connected Photovoltaic Plants

    Get PDF

    Power Quality Enhancement in Electricity Grids with Wind Energy Using Multicell Converters and Energy Storage

    Get PDF
    In recent years, the wind power industry is experiencing a rapid growth and more wind farms with larger size wind turbines are being connected to the power system. While this contributes to the overall security of electricity supply, large-scale deployment of wind energy into the grid also presents many technical challenges. Most of these challenges are one way or another, related to the variability and intermittent nature of wind and affect the power quality of the distribution grid. Power quality relates to factors that cause variations in the voltage level and frequency as well as distortion in the voltage and current waveforms due to wind variability which produces both harmonics and inter-harmonics. The main motivation behind work is to propose a new topology of the static AC/DC/AC multicell converter to improve the power quality in grid-connected wind energy conversion systems. Serial switching cells have the ability to achieve a high power with lower-size components and improve the voltage waveforms at the input and output of the converter by increasing the number of cells. Furthermore, a battery energy storage system is included and a power management strategy is designed to ensure the continuity of power supply and consequently the autonomy of the proposed system. The simulation results are presented for a 149.2 kW wind turbine induction generator system and the results obtained demonstrate the reduced harmonics, improved transient response, and reference tracking of the voltage output of the wind energy conversion system.Peer reviewedFinal Accepted Versio
    corecore