379 research outputs found

    UAV Relay Assisted Cooperative Jamming for Covert Communications over Rician Fading

    Get PDF
    Covert communication can hide the legitimate transmission from unauthorized eavesdropping. Benefiting from the deployment flexibility, unmanned aerial vehicles (UAVs) can be utilized to enhance communication confidentiality. In this correspondence, we consider a covert communication network with the aid of a full-duplex UAV relay, which is employed to help the transmission and confuse the warden. The warden adopts a radiometer to detect the covert transmission. We first find the optimal detection threshold and calculate the minimum detection error probability. Furthermore, a closed-form expression of outage probability via UAV relaying is derived over Rician fading. Then, a power optimization problem is formulated to maximize the effective convert throughput with covertness constraint. Numerical results illustrate that the cooperative jamming can disrupt the warden, and the optimal power tradeoff can guarantee the covert transmission effectively

    A Unified Framework for HS-UAV NOMA Networks: Performance Analysis and Location Optimization

    Get PDF
    In this paper, we propose a unified framework for hybrid satellite/unmanned aerial vehicle (HS-UAV) terrestrial non-orthogonal multiple access (NOMA) networks, where satellite aims to communicate with ground users with the aid of a decode-forward (DF) UAV relay by using NOMA protocol. All users are randomly deployed to follow a homogeneous Poisson point process (PPP), which is modeled by the stochastic geometry approach. To reap the benefits of satellite and UAV, the links of both satellite-to-UAV and UAV-to-ground user are assumed to experience Rician fading. More practically, we assume that perfect channel state information (CSI) is infeasible at the receiver, as well as the distance-determined path-loss. To characterize the performance of the proposed framework, we derive analytical approximate closed-form expressions of the outage probability (OP) for the far user and the near user under the condition of imperfect CSI. Also, the system throughput under delay-limited transmission mode is evaluated and discussed. In order to obtain more insights, the asymptotic behavior is explored in the high signal-to-noise ratio (SNR) region and the diversity orders are obtained and discussed. To further improve the system performance, based on the derived approximations, we optimize the location of the UAV to maximize the sum rate by minimizing the average distance between the UAV and users. The simulated numerical results show that: i) there are error floors for the far and the near users due to the channel estimation error; ii) the outage probability decreases as the Rician factor K increasing, and iii) the outage performance and system throughput performance can be further improved considerably by carefully selecting the location of the UAV

    Unmanned aerial vehicle-aided cooperative regenerative relaying network under various environments

    Get PDF
    This paper studies a cooperative relay network that comprises an unmanned aerial vehicle (UAV) enabling amplify-and-forward (AF) and power splitting (PS) based energy harvesting. The considered system can be constructed in various environments such as suburban, urban, dense urban, and high-rise urban where the air-to-ground channels are model by a mixture of Rayleigh and Nakagami-m fading. Then, outage probability and ergodic capacity are provided under different environment-based parameters. Optimal PS ratios are also provided under normal and high transmit power regimes. Finally, the accuracy of the analytical results is validated through Monte Carlo methods
    • …
    corecore