127 research outputs found

    Well-posedness and Robust Preconditioners for the Discretized Fluid-Structure Interaction Systems

    Full text link
    In this paper we develop a family of preconditioners for the linear algebraic systems arising from the arbitrary Lagrangian-Eulerian discretization of some fluid-structure interaction models. After the time discretization, we formulate the fluid-structure interaction equations as saddle point problems and prove the uniform well-posedness. Then we discretize the space dimension by finite element methods and prove their uniform well-posedness by two different approaches under appropriate assumptions. The uniform well-posedness makes it possible to design robust preconditioners for the discretized fluid-structure interaction systems. Numerical examples are presented to show the robustness and efficiency of these preconditioners.Comment: 1. Added two preconditioners into the analysis and implementation 2. Rerun all the numerical tests 3. changed title, abstract and corrected lots of typos and inconsistencies 4. added reference

    Parallel algorithms for direct blood flow simulations

    Get PDF
    Fluid mechanics of blood can be well approximated by a mixture model of a Newtonian fluid and deformable particles representing the red blood cells. Experimental and theoretical evidence suggests that the deformation and rheology of red blood cells is similar to that of phospholipid vesicles. Vesicles and red blood cells are both area preserving closed membranes that resist bending. Beyond red blood cells, vesicles can be used to investigate the behavior of cell membranes, intracellular organelles, and viral particles. Given the importance of vesicle flows, in this thesis we focus in efficient numerical methods for such problems: we present computationally scalable algorithms for the simulation of dilute suspension of deformable vesicles in two and three dimensions. Our method is based on the boundary integral formulation of Stokes flow. We present new schemes for simulating the three-dimensional hydrodynamic interactions of large number of vesicles with viscosity contrast. The algorithms incorporate a stable time-stepping scheme, high-order spatiotemporal discretizations, spectral preconditioners, and a reparametrization scheme capable of resolving extreme mesh distortions in dynamic simulations. The associated linear systems are solved in optimal time using spectral preconditioners. The highlights of our numerical scheme are that (i) the physics of vesicles is faithfully represented by using nonlinear solid mechanics to capture the deformations of each cell, (ii) the long-range, N-body, hydrodynamic interactions between vesicles are accurately resolved using the fast multipole method (FMM), and (iii) our time stepping scheme is unconditionally stable for the flow of single and multiple vesicles with viscosity contrast and its computational cost-per-simulation-unit-time is comparable to or less than that of an explicit scheme. We report scaling of our algorithms to simulations with millions of vesicles on thousands of computational cores.PhDCommittee Chair: Biros, George; Committee Member: Alben, Silas; Committee Member: Fernandez-Nieves, Alberto; Committee Member: Hu, David; Committee Member: Vuduc, Richar

    cuIBM -- A GPU-accelerated Immersed Boundary Method

    Full text link
    A projection-based immersed boundary method is dominated by sparse linear algebra routines. Using the open-source Cusp library, we observe a speedup (with respect to a single CPU core) which reflects the constraints of a bandwidth-dominated problem on the GPU. Nevertheless, GPUs offer the capacity to solve large problems on commodity hardware. This work includes validation and a convergence study of the GPU-accelerated IBM, and various optimizations.Comment: Extended paper post-conference, presented at the 23rd International Conference on Parallel Computational Fluid Dynamics (http://www.parcfd.org), ParCFD 2011, Barcelona (unpublished

    Hydrodynamics of Suspensions of Passive and Active Rigid Particles: A Rigid Multiblob Approach

    Get PDF
    We develop a rigid multiblob method for numerically solving the mobility problem for suspensions of passive and active rigid particles of complex shape in Stokes flow in unconfined, partially confined, and fully confined geometries. As in a number of existing methods, we discretize rigid bodies using a collection of minimally-resolved spherical blobs constrained to move as a rigid body, to arrive at a potentially large linear system of equations for the unknown Lagrange multipliers and rigid-body motions. Here we develop a block-diagonal preconditioner for this linear system and show that a standard Krylov solver converges in a modest number of iterations that is essentially independent of the number of particles. For unbounded suspensions and suspensions sedimented against a single no-slip boundary, we rely on existing analytical expressions for the Rotne-Prager tensor combined with a fast multipole method or a direct summation on a Graphical Processing Unit to obtain an simple yet efficient and scalable implementation. For fully confined domains, such as periodic suspensions or suspensions confined in slit and square channels, we extend a recently-developed rigid-body immersed boundary method to suspensions of freely-moving passive or active rigid particles at zero Reynolds number. We demonstrate that the iterative solver for the coupled fluid and rigid body equations converges in a bounded number of iterations regardless of the system size. We optimize a number of parameters in the iterative solvers and apply our method to a variety of benchmark problems to carefully assess the accuracy of the rigid multiblob approach as a function of the resolution. We also model the dynamics of colloidal particles studied in recent experiments, such as passive boomerangs in a slit channel, as well as a pair of non-Brownian active nanorods sedimented against a wall.Comment: Under revision in CAMCOS, Nov 201

    Preconditioning for hyperelasticity-based mesh optimisation

    Get PDF
    A robust mesh optimisation method is presented that directly enforces the resulting deformation to be orientation preserving. Motivated by aspects from mathematical elasticity, the energy functional of the mesh deformation can be related to a stored energy functional of a hyperelastic material. Formulating the functional in the principal invariants of the deformation gradient allows fine grained control over the resulting deformation. Solution techniques for the arising nonconvex and highly nonlinear system are presented. As existing preconditioners are not sufficient, a PDE-based preconditioner is developed

    Matrixfreie voxelbasierte Finite-Elemente-Methode für Materialien mit komplizierter Mikrostruktur

    Get PDF
    Modern image detection techniques such as micro computer tomography (μCT), magnetic resonance imaging (MRI) and scanning electron microscopy (SEM) provide us with high resolution images of the microstructure of materials in a non-invasive and convenient way. They form the basis for the geometrical models of high-resolution analysis, so called image-based analysis. However especially in 3D, discretizations of these models reach easily the size of 100 Mill. degrees of freedoms and require extensive hardware resources in terms of main memory and computing power to solve the numerical model. Consequently, the focus of this work is to combine and adapt numerical solution methods to reduce the memory demand first and then the computation time and therewith enable an execution of the image-based analysis on modern computer desktops. Hence, the numerical model is a straightforward grid discretization of the voxel-based (pixels with a third dimension) geometry which omits the boundary detection algorithms and allows reduced storage of the finite element data structure and a matrix-free solution algorithm. This in turn reduce the effort of almost all applied grid-based solution techniques and results in memory efficient and numerically stable algorithms for the microstructural models. Two variants of the matrix-free algorithm are presented. The efficient iterative solution method of conjugate gradients is used with matrix-free applicable preconditioners such as the Jacobi and the especially suited multigrid method. The jagged material boundaries of the voxel-based mesh are smoothed through embedded boundary elements which contain different material information at the integration point and are integrated sub-cell wise though without additional boundary detection. The efficiency of the matrix-free methods can be retained.Moderne bildgebende Verfahren wie Mikro-Computertomographie (μCT), Magnetresonanztomographie (MRT) und Rasterelektronenmikroskopie (SEM) liefern nicht-invasiv hochauflösende Bilder der Mikrostruktur von Materialien. Sie bilden die Grundlage der geometrischen Modelle der hochauflösenden bildbasierten Analysis. Allerdings erreichen vor allem in 3D die Diskretisierungen dieser Modelle leicht die Größe von 100 Mill. Freiheitsgraden und erfordern umfangreiche Hardware-Ressourcen in Bezug auf Hauptspeicher und Rechenleistung, um das numerische Modell zu lösen. Der Fokus dieser Arbeit liegt daher darin, numerische Lösungsmethoden zu kombinieren und anzupassen, um den Speicherplatzbedarf und die Rechenzeit zu reduzieren und damit eine Ausführung der bildbasierten Analyse auf modernen Computer-Desktops zu ermöglichen. Daher ist als numerisches Modell eine einfache Gitterdiskretisierung der voxelbasierten (Pixel mit der Tiefe als dritten Dimension) Geometrie gewählt, die die Oberflächenerstellung weglässt und eine reduzierte Speicherung der finiten Elementen und einen matrixfreien Lösungsalgorithmus ermöglicht. Dies wiederum verringert den Aufwand von fast allen angewandten gitterbasierten Lösungsverfahren und führt zu Speichereffizienz und numerisch stabilen Algorithmen für die Mikrostrukturmodelle. Es werden zwei Varianten der Anpassung der matrixfreien Lösung präsentiert, die Element-für-Element Methode und eine Knoten-Kanten-Variante. Die Methode der konjugierten Gradienten in Kombination mit dem Mehrgitterverfahren als sehr effizienten Vorkonditionierer wird für den matrixfreien Lösungsalgorithmus adaptiert. Der stufige Verlauf der Materialgrenzen durch die voxelbasierte Diskretisierung wird durch Elemente geglättet, die am Integrationspunkt unterschiedliche Materialinformationen enthalten und über Teilzellen integriert werden (embedded boundary elements). Die Effizienz der matrixfreien Verfahren bleibt erhalten
    corecore