13,149 research outputs found

    Myopic inventory policies using individual customer arrival information

    Get PDF
    We investigate optimality of myopic policies using the single-unit decomposition approach in inventory management. We derive, under certain conditions, closed-form replenishment decisions, which we call a base-probability policy. That is, the order associated with a given customer is placed if and only if its arrival probability within the lead-time is higher than a threshold.inventory management; base-stock policies; myopic policies;

    Optimal Dynamic Procurement Policies for a Storable Commodity with L\'evy Prices and Convex Holding Costs

    Get PDF
    In this paper we study a continuous time stochastic inventory model for a commodity traded in the spot market and whose supply purchase is affected by price and demand uncertainty. A firm aims at meeting a random demand of the commodity at a random time by maximizing total expected profits. We model the firm's optimal procurement problem as a singular stochastic control problem in which controls are nondecreasing processes and represent the cumulative investment made by the firm in the spot market (a so-called stochastic "monotone follower problem"). We assume a general exponential L\'evy process for the commodity's spot price, rather than the commonly used geometric Brownian motion, and general convex holding costs. We obtain necessary and sufficient first order conditions for optimality and we provide the optimal procurement policy in terms of a "base inventory" process; that is, a minimal time-dependent desirable inventory level that the firm's manager must reach at any time. In particular, in the case of linear holding costs and exponentially distributed demand, we are also able to obtain the explicit analytic form of the optimal policy and a probabilistic representation of the optimal revenue. The paper is completed by some computer drawings of the optimal inventory when spot prices are given by a geometric Brownian motion and by an exponential jump-diffusion process. In the first case we also make a numerical comparison between the value function and the revenue associated to the classical static "newsvendor" strategy.Comment: 28 pages, 3 figures; improved presentation, added new results and section

    The influence of demand variability on the performance of a make-to-stock queue

    Get PDF
    Variability, in general, has a deteriorating effect on the performance of stochastic inventory systems. In particular, previous results indicate that demand variability causes a performance degradation in terms of inventory related costs when production capacity is unlimited. In order to investigate the effects of demand variability in capacitated production settings, we analyze a make-to-stock queue with general demand arrival times operated according to a basestock policy. We show that when demand inter-arrival distributions are ordered in a stochastic sense, increased arrival time variability indeed leads to an augmentation of optimal base-stock levels and to a corresponding increase in optimal inventory related costs. We quantify these effects through several numerical examplesproduction/inventory; make-to-stock; base-stock; stochastic comparisons; GI/M/1, POLICIES; COSTS; SYSTEMS; LEAD

    Simple heuristics for push and pull remanufacturing policies

    Get PDF
    Inventory policies for joint remanufacturing and manufacturing have recently received much attention. Most efforts, though, were related to (optimal) policy structures and numerical optimization, rather than closed form expressions for calculating near optimal policy parameters. The focus of this paper is on the latter. We analyze an inventory system with unit product returns and demands where remanufacturing is the cheaper alternative for manufacturing. Manufacturing is also needed, however, since there are less returns than demands. The cost structure consists of setup costs, holding costs, and backorder costs. Manufacturing and remanufacturing orders have non-zero lead times. To control the system we use certain extensions of the familiar (s,Q) policy, called push and pull remanufacturing policies. For all policies we present simple, closed form formulae for approximating the optimal policy parameters under a cost minimization objective. In an extensive numerical study we show that the proposed formulae lead to near-optimal policy parameters.inventory control;remanufacturing;heuristics
    corecore