142 research outputs found

    Wideband Autonomous Cognitive Radios: Spectrum Awareness and PHY/MAC Decision Making

    Get PDF
    The cognitive radios (CRs) have opened up new ways of better utilizing the scarce wireless spectrum resources. The CRs have been made feasible by recent advances in software-defined radios (SDRs), smart antennas, reconfigurable radio frequency (RF) front-ends, and full-duplex RF front-end architectures, to name a few. Generally, a CR is considered as a dynamically reconfigurable radio capable of adapting its operating parameters to the surrounding environment. Recent developments in spectrum policy and regulatory domains also allow more flexible and efficient utilization of wider RF spectrum range in the future. In line with the future directions of CRs, a new vision of a future autonomous CR device, called Radiobots, was previously proposed. The goals of the proposed Radiobot surpass the dynamic spectrum access (DSA) to achieve wideband operability and the main features of cognition. In order to ensure the practicality and robust operation of the Radiobot structure, the research focus of this dissertation includes the following aspects: 1) robust spectrum sensing and operability in a centralized CR network setup; 2) robust multivariate non-parametric quickest detection for dynamic spectrum usage tracking in an alien RF environment; 3) joint physical layer and medium access control layer (PHY/MAC) decision-making for wideband bandwidth aggregation (simultaneous operation over multiple modes/networks); and 4) autonomous spectrum sensing scheduling solutions in an alien ultra wideband RF environment. The major contribution of this dissertation is to investigate the feasibility of the autonomous CR operation in heterogeneous RF environments, and to provide novel solutions to the fundamental and crucial problems/challenges, including spectrum sensing, spectrum awareness, wideband operability, and autonomous PHY/MAC protocols, thus bringing the autonomous Radiobot one step closer to reality

    On Myopic Sensing for Multi-Channel Opportunistic Access: Structure, Optimality, and Performance

    Full text link
    We consider a multi-channel opportunistic communication system where the states of these channels evolve as independent and statistically identical Markov chains (the Gilbert-Elliot channel model). A user chooses one channel to sense and access in each slot and collects a reward determined by the state of the chosen channel. The problem is to design a sensing policy for channel selection to maximize the average reward, which can be formulated as a multi-arm restless bandit process. In this paper, we study the structure, optimality, and performance of the myopic sensing policy. We show that the myopic sensing policy has a simple robust structure that reduces channel selection to a round-robin procedure and obviates the need for knowing the channel transition probabilities. The optimality of this simple policy is established for the two-channel case and conjectured for the general case based on numerical results. The performance of the myopic sensing policy is analyzed, which, based on the optimality of myopic sensing, characterizes the maximum throughput of a multi-channel opportunistic communication system and its scaling behavior with respect to the number of channels. These results apply to cognitive radio networks, opportunistic transmission in fading environments, and resource-constrained jamming and anti-jamming.Comment: To appear in IEEE Transactions on Wireless Communications. This is a revised versio

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Cooperative Spectrum Sensing in Cognitive Radio Networks Using Multidimensional Correlations

    Get PDF
    In this paper, a multidimensional-correlation-based sensing scheduling algorithm, (CORN)2, is developed for cognitive radio networks to minimize energy consumption. A sensing quality metric is defined as a measure of the correctness of spectral availability information based on the fact that spectrum sensing information at a given space and time can represent spectrum information at a different point in space and time. The scheduling algorithm is shown to achieve a cost of sensing (e.g., energy consumption, sensing duration) arbitrarily close to the possible minimum, while meeting the sensing quality requirements. To this end, (CORN)2 utilizes a novel sensing deficiency virtual queue concept and exploits the correlation between spectrum measurements of a particular secondary user and its collaborating neighbors. The proposed algorithm is proved to achieve a distributed and arbitrarily close to optimal solution under certain, easily satisfied assumptions. Furthermore, a distributed Selective-(CORN)2 (S-(CORN)2) is introduced by extending the distributed algorithm to allow secondary users to select collaboration neighbors in densely populated cognitive radio networks. In addition to the theoretically proved performance guarantees, the algorithms are evaluated through simulations

    Cooperative Spectrum Sensing in Cognitive Radio Networks Using Multidimensional Correlations

    Get PDF
    In this paper, a multidimensional-correlation-based sensing scheduling algorithm, (CORN)2, is developed for cognitive radio networks to minimize energy consumption. A sensing quality metric is defined as a measure of the correctness of spectral availability information based on the fact that spectrum sensing information at a given space and time can represent spectrum information at a different point in space and time. The scheduling algorithm is shown to achieve a cost of sensing (e.g., energy consumption, sensing duration) arbitrarily close to the possible minimum, while meeting the sensing quality requirements. To this end, (CORN)2 utilizes a novel sensing deficiency virtual queue concept and exploits the correlation between spectrum measurements of a particular secondary user and its collaborating neighbors. The proposed algorithm is proved to achieve a distributed and arbitrarily close to optimal solution under certain, easily satisfied assumptions. Furthermore, a distributed Selective-(CORN)2 (S-(CORN)2) is introduced by extending the distributed algorithm to allow secondary users to select collaboration neighbors in densely populated cognitive radio networks. In addition to the theoretically proved performance guarantees, the algorithms are evaluated through simulations
    • …
    corecore