10,237 research outputs found

    Recent Advances in Graph Partitioning

    Full text link
    We survey recent trends in practical algorithms for balanced graph partitioning together with applications and future research directions

    Transparent load balancing of MPI programs using OmpSs-2@Cluster and DLB

    Get PDF
    Load imbalance is a long-standing source of inefficiency in high performance computing. The situation has only got worse as applications and systems increase in complexity, e.g., adaptive mesh refinement, DVFS, memory hierarchies, power and thermal management, and manufacturing processes. Load balancing is often implemented in the application, but it obscures application logic and may need extensive code refactoring. This paper presents an automated and transparent dynamic load balancing approach for MPI applications with OmpSs-2 tasks, which relieves applications from this burden. Only local and trivial changes are required to the application. Our approach exploits the ability of OmpSs-2@Cluster to offload tasks for execution on other nodes, and it reallocates compute resources among ranks using the Dynamic Load Balancing~(DLB) library. It employs LeWI to react to fine-grained load imbalances and DROM to address coarse-grained load imbalances by reserving cores on other nodes that can be reclaimed on demand. We use an expander graph to limit the amount of point-to-point communication and state. The results show 46% reduction in time-to-solution for micro-scale solid mechanics on 32 nodes and a 20% reduction beyond DLB for nn-body on 16 nodes, when one node is running slow. A synthetic benchmark shows that performance is within 10% of optimal for an imbalance of up to 2.0 on 8 nodes. All software is released open source.This research has received funding from the European Union’s Horizon 2020/EuroHPC research and innovation programme under grant agreement No 955606 (DEEP-SEA) and 754337 (EuroEXA). It is supported by the Spanish State Research Agency - Ministry of Science and Innovation (contract PID2019-107255GB and Ramon y Cajal fellowship RYC2018-025628-I) and by the Generalitat de Catalunya (2017-SGR-1414).Peer ReviewedPostprint (author's final draft

    Energy-aware Load Balancing Policies for the Cloud Ecosystem

    Full text link
    The energy consumption of computer and communication systems does not scale linearly with the workload. A system uses a significant amount of energy even when idle or lightly loaded. A widely reported solution to resource management in large data centers is to concentrate the load on a subset of servers and, whenever possible, switch the rest of the servers to one of the possible sleep states. We propose a reformulation of the traditional concept of load balancing aiming to optimize the energy consumption of a large-scale system: {\it distribute the workload evenly to the smallest set of servers operating at an optimal energy level, while observing QoS constraints, such as the response time.} Our model applies to clustered systems; the model also requires that the demand for system resources to increase at a bounded rate in each reallocation interval. In this paper we report the VM migration costs for application scaling.Comment: 10 Page

    The Iray Light Transport Simulation and Rendering System

    Full text link
    While ray tracing has become increasingly common and path tracing is well understood by now, a major challenge lies in crafting an easy-to-use and efficient system implementing these technologies. Following a purely physically-based paradigm while still allowing for artistic workflows, the Iray light transport simulation and rendering system allows for rendering complex scenes by the push of a button and thus makes accurate light transport simulation widely available. In this document we discuss the challenges and implementation choices that follow from our primary design decisions, demonstrating that such a rendering system can be made a practical, scalable, and efficient real-world application that has been adopted by various companies across many fields and is in use by many industry professionals today
    • …
    corecore