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ABSTRACT
Abstract Load imbalance is a long-standing source of inefficiency 
in high performance computing. The situation has only got worse 
as applications and systems increase in complexity, e.g., adaptive 
mesh refinement, DVFS, memory hierarchies, power and thermal 
management, and manufacturing processes. Load balancing is often 
implemented in the application, but it obscures application logic 
and may need extensive code refactoring. This paper presents an 
automated and transparent dynamic load balancing approach for 
MPI applications with OmpSs-2 tasks, which relieves applications 
from this burden. Only local and trivial changes are required to the 
application. Our approach exploits the ability of OmpSs-2@Cluster 
to offload tasks for execution on  other nodes, and it  reallocates 
compute resources among ranks using the Dynamic Load Balanc-
ing (DLB) library. It employs LeWI to react to fine-grained load 
imbalances and DROM to address coarse-grained load imbalances 
by reserving cores on other nodes that can be reclaimed on demand. 
We use an expander graph to limit the amount of point-to-point 
communication and state. The results show 46% reduction in time-
to-solution for micro-scale solid mechanics on 32 nodes and a 20%
reduction beyond DLB for 𝑛-body on 16 nodes, when one node is 
running slow. A synthetic benchmark shows that performance is 
within 10% of optimal for an imbalance of up to 2.0 on 8 nodes. All 
software is released open source.

ACM Reference Format:
Jimmy Aguilar Mena, Omar Shaaban, Victor Lopez, Marta Garcia, Paul 
Carpenter, Eduard Ayguade, and Jesus Labarta. 2022. Transparent load 
balancing of MPI programs using OmpSs-2@Cluster and DLB. 

© 2022 Association for Computing Machinery.

1 INTRODUCTION
Load imbalance is one of the oldest and most important sources
of inefficiency in high performance computing. The issue is only
getting worse with increasing application complexity, e.g. adap-
tive mesh refinement (AMR) and modern numerics, and system
complexity, e.g. DVFS, complex memory hierarchies, thermal and
power management [2], OS noise, and manufacturing process [27].
Load balancing is usually applied in the application [6, 28, 36], but
it is time consuming to implement, it obscures application logic
and may need extensive code refactoring. It requires an expert in
application analysis and may not be feasible in very dynamic codes.
Static approaches like global partitioning are applied at fixed syn-
chronization points that stop all other work [33, 43], and they rely
on a cost model that may not be accurate. This task gets harder as
the size of the clusters continues to increase.

This paper presents an automated approach for load balancing of
MPI + OmpSs-2 [12] programs that relieves the application from the
burden of balancing the load across nodes. We extend OmpSs-2@-
Cluster [3], which enables OmpSs-2 tasks to be offloaded to other
nodes, to employ Dynamic Load Balancing (DLB) [22] mechanisms
to handle fine-grained and coarse-grained load imbalance. Only
minor and local changes are required to an MPI+OmpSs-2 program
to make it compatible with our model, as no additional markup is
required beyond the existing annotation of the task accesses. The
single mechanism of task accesses is used to compute dependencies
for parallel task execution, for data locality on the node, and for data
transfers and locality optimizations on multiple nodes. We leverage
the malleability of OmpSs-2 and OpenMP in terms of their ability
to adjust to dynamically varying numbers of cores. Our approach
uses DLB as the underlying mechanism through its Lend When
Idle (LeWI) module [23] to react to fine-grained load imbalance and
DLB’s Dynamic Resource Ownership Management (DROM) mod-
ule to address coarse-grained load imbalance by reserving cores on
other nodes that can be reclaimed on demand.

A key aspect of our work is the use of an expander graph inwhich
each MPI rank in the application directly offloads work to a small
number of other nodes. This approach limits the amount of point-
to-point communication and state that needs to be maintained, and
it provides a path to scalability to large numbers of nodes.The final publication is available at ACM via http://dx.doi.org/10.1145/3545008.3545045
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We evaluate application-level imbalance using amicro-scale solid
mechanics application with up to 32 nodes, and reduce the execu-
tion time by 46% compared with single-node DLB. This is only 7%
above the theoretical time-to-solution with perfect load balancing.
We evaluate system-level imbalance by executing an𝑛-body Barnes–
Hut simulation with two ranks per node on up to 16 nodes, one
of which has a reduced clock frequency of 1.8GHz, while the rest
run at 3.0GHz. DLB reduces the execution time by 16% and our ap-
proach reduces the execution time by a further 20%, with respect to
the same baseline. This is an example where our dynamic approach
operates in addition to the application’s own load balancing tech-
nique, in this case Orthogonal Recursive Bisection (ORB), whose
cost model does not adapt to varying node performance. We use a
synthetic benchmark to show that our approach provides good load
balancing across a wide range of application imbalance, within 10%
of perfect load balancing for an imbalance of up to 2.0 on 8 nodes.

The main contributions of this paper are:

• An extension of the OmpSs-2@Cluster model to provide
interoperability with MPI for the purposes of load balance.

• Mechanisms for fine-grained load imbalance (via LeWI) and
coarse-grained load imbalance (via DROM). New core alloca-
tion algorithms, one using local convergence and the other
using a global linear program formulation.

• A way to limit the amount of point-to-point communication
and state by using an expander graph.

2 RELATED WORK
Load imbalance is a problem as old as parallel programming. It is
crucial in distributed memory paradigms as the distributed data
usually needs to be explicitly moved. There are many proposed
solutions in the literature, most of them directly provided by the
application itself, e.g., BT-MZ [28], discrete event simulation [36]
or Monte Carlo simulations [6]. However, we consider a general
solution that relieves applications from the load balancing burden.
Moreover, it must be a solution that addresses all sources of load
imbalance. In a general way, load balancing solutions can be di-
vided into two categories, approaches applied before the execution
and approaches that react during the execution. One of the best-
known solutions to distribute the work before the execution is the
mesh partitioner METIS [30]; some studies show that mesh parti-
tioning strongly affects performance [44]. The main limitation of
this approach is that it cannot handle a dynamic load imbalance
that changes during the execution. Repartitioning methods are also
based on mesh partitioning that is applied periodically during the
execution [33, 43]. The two main challenges of these methods are
that it is not trivial to determine a load heuristic to predict the load
and that the repartitioning process is time-consuming. Thus, users
must apply it with caution.

The other kind of methods are those that are applied at execu-
tion time. One of the most common approaches in this direction
is to add a second level of parallelism based on shared memory.
Several shared memory runtime systems implement dynamic work-
sharing and work-stealing among threads to mitigate the effects
of load imbalance in shared memory. The Intel Threading Build-
ing Blocks [41], currently known as oneTBB, is a C++ template
library that provides functions, interfaces, and classes to parallelize

an application. Cilk [16], now known as the OpenCilk project, is
a programming language based on C and C++ designed for mul-
tithreaded parallel computing. OpenMP [38] is the most widely
used shared memory programming model in HPC, the most recent
related works to improve load balance consist of extending it to
increase its malleability [34]. However, several studies [18, 25, 45]
show that hybridizing can help improve load balance, but not in all
situations, depending on the code, level of imbalance, the commu-
nication patterns, and the memory access patterns.

Several approaches choose to redistribute the data so that the
load is better balanced. Charm++ [29] is an object-oriented parallel
programming language that employs object migration to achieve
load balance. The load balancing capabilities of Charm++ must
be triggered manually or automatically after a load imbalance is
detected. Moreover, Charm++ performs permanent migration, i.e.,
workpieces are migrated to a processing unit and will remain there
until a potential new re-balancing step is executed. Adaptive MPI
(AMPI) [15] is an implementation of MPI that uses the load bal-
ancing capabilities of Charm++. Balasubramaniam et al. [7] also
propose a library that dynamically balances MPI processes by pre-
dicting the load and migrating the data accordingly. Martín et al.
propose FLEX-MPI [46] an extension to MPI that, based on profiling
information, will redistribute the data to improve the load balance.
All these solutions need coarse-grained and rather persistent load
imbalances to be efficient.

CHAMELEON [31] is a library for load balancing of task-parallel
MPI+OpenMP programs. It uses the OpenMP target offloading
construct to define task data accesses, and data is copied back to
the parent after task execution. It is the closest approach to ours. In
comparison with CHAMELEON, OmpSs-2@Cluster supports task
dependencies, using the same data access specifications to describe
task dependencies and data locality/copies. We execute the task
in a context with the same virtual address space, simplifying the
porting and debugging of programs that work on data structures
with pointers. We use a small number of helpers per MPI rank
in the program, organized as a sparse expander graph, so as to
limit the amount of communication and coordination among MPI
ranks. Whereas CHAMELEON is only reactive to fine-grained load
imbalance, OmpSs-2@Cluster uses DLB’s LeWImodule [23] to react
to fine-grained load imbalance as well as DLB’s DROMmodule [19]
to reserve cores to address coarse-grained load imbalance.

Load balancing is of concern across a wide range of distributed
systems, beyond HPC. Examples include web search [21] and web
servers [37]. Ingress [1] is a load balancer for Kubernetes [32],
which balances requests from the network across multiple Kuber-
netes pods. These approaches are optimized for external mostly
independent items of work, whereas our approach is tailored for
HPC jobs, which are tightly-coupled batch jobs.

3 BACKGROUND
3.1 OmpSs-2, Nanos6 and Mercurium
OmpSs-2 [12] is the second generation of the OmpSs programming
model. It is open source and mainly used as a research platform
to explore and demonstrate ideas that may be proposed for future
standardization in OpenMP. Like OpenMP, OmpSs-2 is based on di-
rectives and it enables parallelism in a dataflow way [40]. OmpSs-2
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Figure 1: OmpSs-2@Cluster architecture in which each node
is a peer. The main function runs as a task on Node 0.

differs from OpenMP in the thread-pool execution model, targeting
of heterogeneous architectures through native kernels, and asyn-
chronous parallelism as the main mechanism to express concur-
rency. Task data accesses are used as a single mechanism to compute
dependencies for task ordering and to determine data locality/data
copies. OmpSs-2 extends OmpSs and OpenMP to improve task
nesting and fine-grained dependences across nesting levels [4, 39].

The reference implementation comprises the source-to-source
Mercurium [9] compiler and the Nanos6 [10] runtime. The runtime
computes task dependencies and schedules and executes tasks,
respecting the implied task dependency constraints and performing
data transfers and synchronizations.

3.2 OmpSs-2@Cluster
OmpSs-2@Cluster [3, 13] is the task offloading extension of OmpSs-
2, which extends OmpSs-2 tasking across multiple nodes. Any
OmpSs-2 program with a full specification of task dependencies is
compatible with OmpSs-2@Cluster. A functional multi-node ver-
sion of an existing OmpSs-2 program can usually be obtained by
enabling task offload via the configuration file provided to the run-
time system. Improvements beyond the first version can be made
incrementally, based on observations from performance analysis.

OmpSs-2@Cluster inherits task ordering from a sequential ver-
sion of the code and it uses a common virtual memory layout across
workers, which avoids address translation and allows direct use
of existing data structures with pointers. All tasks can be marked
as offloadable (to another node) or not (fixed on the same node as
the task’s parent). Task scheduling is flexible, so that an offloadable
task created on any node may be executed locally or offloaded to
any other node (it cannot be migrated once started). Offloadable
tasks may have dependencies just like any other tasks, and the sat-
isfiability of dependencies and data location are passed through a
distributed dependency graph. Data copies are done eagerly where
required, so there is no automatic write-back to the original node,
unless the data value is needed by a task or a taskwait. Each node
runs an instance of the Nanos6 runtime, which coordinate as peers
as shown in Figure 1. The underlying communication for control
messages and data transfers is done using MPI. The instances of
the runtime system overlap the construction of a distributed depen-
dency graph, enforcing of dependencies, task scheduling, transfer-
ring of data, and task execution.

3.3 Dynamic Load Balancing (DLB)
DLB [22] is a library that enables dynamic load balancing among
multiple processes on the same node, from either the same or differ-
ent applications. It exploits the malleability features of OmpSs-2 and
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Figure 2: Architecture of MPI+OmpSs-2@Cluster. Applica-
tion ranks (appranks) communicate viaMPI and helper ranks
on some other nodes can execute tasks of heavily loaded ap-
pranks. The main function runs as tasks on the appranks.

OpenMP; i.e., the ability to dynamically adapt to varying resources
at runtime, in this case the number of cores. DLB is organized into
modules, each of which provides an independent service that is
compatible with and complementary to the other modules. The cur-
rently available modules are Lend When Idle (LeWI) [23], Dynamic
Resource Ownership Management (DROM) [19] and Tracking Ap-
plication Live Performance (TALP) [35].

LeWI enables fine-grained load balancing by providing a straight-
forward API to lend cores when they would otherwise be idle and to
borrow them, when needed, by a different process on the node. Cru-
cially, the lender may reclaim the cores as soon as they are needed
again. Under the control of the runtime (either Nanos6 or OpenMP),
LeWI provides the mechanism to respond to a fine-grained imbal-
ance. DROM enables coarser-grained load balancing by providing
an API to change the semi-permanent ownership of cores among
the processes on the node. Ownership of cores in proportion to the
average load provides the ability for processes to reclaim the right
number of cores when they are needed. TALP is another module
that measures the parallel efficiency by intercepting MPI calls. The
data obtained by TALP is available to the application at runtime
and it can be output as a report at the end.

4 PROGRAMMER’S MODEL
The OmpSs-2@Cluster programmer’s model is extended to support
interoperability with MPI so it can be used for load balancing of
MPI+OmpSs-2 programs. The overall approach is illustrated in
Figure 2. As for any MPI program, the application’s main function
executes in SPMD (Single Program Multiple Data) fashion across
the compute nodes. The MPI ranks visible to the application are
known as appranks (or application ranks), and they communicate
in the normal way using MPI (solid line in Figure 2). Unlike regular
MPI, however, each application rank (or apprank) is supported by
a small number of helper ranks on other nodes. These helper ranks
(connected by dashed lines) can execute tasks offloaded by their
apprank. Suitable tasks are defined using regular OmpSs-2 task
annotations. Figure 3 shows an example 𝑛-body kernel that is a
slightly simplified extract from the 𝑛-body application used in the
evaluation. There is a single offloadable task that calculates the
forces on a number of bodies. The pragma annotation defines the
task together with its inputs and outputs.

The application is compiled in the same way as any MPI+OmpSs-
2 program, using Mercurium, and it is executed in the normal way
for an MPI program, using an extra configuration parameter to the
runtime system to enable task offloading.



1 for ( in t j = 0 ; j < num_bodies ; j += b l o c k _ s i z e ) {
2 in t n = MIN ( b l o c k _ s i z e , num_bodies − j ) ;
3 #pragma os s t a s k in ( b od i e s [ j ; n ] ) out ( f o r c e s [ j ; n ] ) \
4 i n ( c e l l s [ 0 ; num_ce l l s ] )
5 for ( in t k= j ; k< j +n ; k++) {
6 / / Compute f o r c e s [ k ]
7 }
8 }
Figure 3: Example OmpSs-2@Cluster code for 𝑛-body kernel

Two superficial changes are required in the application source
code to support MPI+OmpSs-2@Cluster. Firstly, all occurrences
of MPI_COMM_WORLD should be replaced with a call to the
relevant runtime API call, nanos6_app_communicator(), to obtain
the communicator to be used by the application. Secondly, since
the runtime requires MPI communication before and after the ex-
ecution of the main function, the application should not itself call
MPI_Init() orMPI_Finalize(), as these calls are made by the runtime.
Making these changes in the application, rather than through a
custom mpi.h passed to the application ensures portability across
all systems and maintains the OmpSs-2 property that code without
OmpSs-2 pragmas may be compiled directly with the host compiler.

MPI calls on the application’s communicator are valid, so long
as the task and all its ancestors (i.e. its parent, parent’s parent,
etc.) are non-offloadable. This is consistent with the normal way of
developing MPI+OpenMP or MPI+OmpSs-2 programs, which use
tasks to perform compute operations, but not communication, due
to the risk of deadlock. The intention is to avoid having to intercept
MPI calls to manage MPI communication among offloaded tasks.

We maintain the property of regular OmpSs-2@Cluster that
tasks are always executed in a process with the same virtual address
structure as their apprank [3]. The different appranks have isolated
virtual address spaces, so that different objects on different appranks
may be allocated to the same virtual address, even if they are both
accessed by tasks executed (within different appranks) on the same
physical compute node. This simplifies the porting of applications
that use global or static data or that use libraries that do so. It
allows the programmer to not have to worry about placing global
and static data at different addresses, which could otherwise cause
bugs that are difficult to track down.

5 IMPLEMENTATION
5.1 Overall architecture
In Figure 2, each apprank and helper rank is a process with multiple
threads that can execute tasks. If the application is well-balanced,
then only the appranks are involved in the computation, in the
same way as any MPI+OmpSs-2 program. In this case, the helper
ranks will remain idle. As normal, multiple appranks on the same
node can respond to small load imbalances, using DLB, by shifting
cores to the appranks with more load. At some point, however, it
will become necessary to break the confinement of a single node
and offload work to helper ranks on other nodes.

The aim is not merely to spread the load of a single heavily loaded
apprank or node, but to avoid any bottlenecks where a local load
imbalance can get “stuck” within a single node or a small group of
nodes. At the same time, we wish to minimise the number of helper
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Figure 4: Work spreading of 32 appranks on 16 nodes. Of-
floading tasks to a small number of other nodes allows the
work to be spread across all nodes used by the application.

ranks in the system, since each helper rank implies point-to-point
communication and state and scheduling complexity.

5.2 Spreading of work
Figure 4(a) represents the mapping of appranks (application ranks)
to nodes when an application executes with 32 appranks on 16
nodes, two appranks per node. Assuming that DLB is enabled,
the load can be balanced among the two appranks (black squares)
on the same node, but any load imbalance is confined to a node.
Figure 4(b) is the opposite extreme, where each apprank executes
its main function on the same rank as before (black square). It can
still balance the load with the other apprank on the same node, but
it can also offload tasks to any other node (grey squares in the same
column). This configuration provides themaximum ability to spread
work, but it requires a lot of state for point-to-point communication
and for each rank to keep track of where to send the work. Changing
behaviour of the different appranks in response to each other causes
a lot of variability in the execution. Finally, Figure 4(c) is an example
following the philosophy of this paper: each apprank executes tasks
across a small number of nodes, providing the ability to spread work
while limiting the amount of state and variability.

Static work spreading: The simplest approach is to allow each
apprank to directly offload tasks to a small number of other nodes
that have been chosen before the application begins execution. A
large body of work exists on expander graphs, which have the prop-
erties we need, so we first translate the problem into the language
of graph theory. Rather than arranging the appranks and nodes
into a grid, we define a bipartite graph of appranks and nodes and
draw an edge between an apprank and a node if the apprank can
execute tasks on that node. Figure 4(d) shows part of the graph
representation of the scenario from Figure 4(c). Not all edges are
drawn, as in the full graph, each apprank has degree three and each
node has degree six. Each edge corresponds to a worker process.
The apprank itself is identified using a thicker solid line and the
helpers are identified with thinner lines.



There are several definitions of an expander graph in the litera-
ture [26], but for our purposes we define a bipartite expander graph 
as a bipartite graph for which |𝑁 (𝐴) | ≥ (1 + 𝜖) |𝐴| for some large 
𝜖 > 0, for every subset 𝐴 of at most half of one of the partitions 
of the graph [20]. In our context, 𝐴 is a subset of the appranks and 
𝑁 (𝐴) is the set of all nodes that are adjacent to at least one apprank 
of 𝐴. |𝐴| is the number of appranks under consideration and |𝑁 (𝐴) |
is the number of nodes over which the work of 𝐴 can be divided. 
The definition means that the work belonging to each subset of the 
appranks can, in principle, be spread across a good number of nodes, 
which grows with the number of appranks. This achieves our aim of 
avoiding bottlenecks on the ability to spread local load imbalances. 
The definition is a strict one that applies to every subset, not merely 
a probabilistic one, so no matter where the load imbalances arise, 
the work can be spread out across a good number of nodes.

It is well-known that a large randomly-chosen graph is an ex-
pander graph with high probability [17, 20]. We add the constraints 
that each apprank has the same number of incident edges, as do 
the nodes (it is bipartite biregular), and generate a random graph 
according to these constraints. Small graphs are generated using a 
heuristic-based search or known-optimal solution. For small graphs 
up to about 32 nodes, we also run some checks to avoid bad graphs, 
i.e., with limited connectivity, by calculating the vertex isoperimet-
ric number (the minimal value of 1 + 𝜖 in the above equation). Each 
graph is stored for future executions so that it is only created once.

The number of edges per apprank is a user-provided parameter, 
known as the offloading degree. An offloading degree of one corre-
sponds to the baseline without task offloading. An offloading degree 
of two means that each apprank can execute tasks on its main node 
and one additional node. Since the offloading degree is known in ad-
vance, as is the assignment of appranks and helper ranks to nodes, 
the initialization of all Nanos6 instances is done at initialization 
time. The results are generally insensitive to the offloading degree, 
so long as it is large enough to accomodate the application’s level 
of imbalance and to provide enough connectivity given the number 
of nodes. It can be set as recommended in Section 7.3.

Dynamic work spreading: The static approach has a parameter 
(the offloading degree), which must be provided by the user. De-
pending on the value of this parameter, a fixed number of helper 
ranks is created at the beginning of the execution. These helper 
ranks require at least one core each, leaving fewer resources for 
the actual computation, even if the helper ranks turn out to not 
be required. Moreover, the optimal bipartite graph depends on the 
application and input data. It could also take account of specific 
communication latencies and thereby depend on the physical topol-
ogy of the nodes allocated to the application.

A better approach may therefore be to grow the expander graph 
dynamically. This would allow the execution to adapt to the pro-
gram and system characteristics, and it would remove the offloading 
degree parameter. Doing so is compatible with all the contributions 
of this paper, and is a natural extension of our work. The main 
change to the runtime would be to extend it to support dynamic pro-
cess spawning. Our experience, however, discussed in Section 7.3, 
shows that the benefit would likely not be sufficient to compensate 
for the extra implementation and evaluation complexity.

5.3 Fine-grained load balancing via LeWI
At any time, a fine-grained load imbalance may appear among the
workers on a node. LeWI is the mechanism that allows a worker
process to lend otherwise idle cores to another process on the same
node that can make use of them. As the borrower process completes
tasks more quickly, it can be scheduled more tasks from the main
(or other) process, as explained in Section 5.5.

5.4 Coarse-grained load balancing via DROM
At any time, each CPU core is owned by one of the appranks or
helper ranks executing on that node. At the beginning of the ex-
ecution, each helper rank owns one core (the minimum possible
with DLB), and ownership of the remaining cores is divided equally
among the appranks on the node. On MareNostrum 4, for exam-
ple, which has 48 cores per node, each helper rank of Figure 4(c)
starts with one owned core and each apprank starts with 22 owned
cores. Ownership of cores is updated dynamically as the execution
progresses. We propose two approaches for doing so, a local conver-
gence approach and a global solver approach, both described below.

5.4.1 Local convergence approach. As the program executes, each
apprank’s task scheduler (Section 5.5) tries to balance the load by
exploiting all cores that are assigned to the apprank. At the same
time, the local convergence approach tries to balance the load-per-
core among the workers running on each node. Both processes are
local to the apprank or node. Each worker measures its average
number of busy cores, i.e., the average number of cores execut-
ing tasks or runtime code except the idle loop. The workers on a
node coordinate to ensure that all cores have an owner and that
the number of cores owned by each worker is proportional to its
average number of busy cores. The combined effect of these two
mechanisms is to try to keep all cores in the system equally busy.

This approach is simple to implement and understand, it has no
global communication and low overhead, and it does a good job
of balancing the loads among the appranks. It is not guaranteed,
however, to minimise the amount of task offloading. Figure 5(a)
shows an example with two appranks on two nodes. The 𝑥-axis
is time and the 𝑦-axis shows the number of cores executing for
Apprank 0, in blue, and Apprank 1, in orange. Node 0 is shown
in the top half of the trace and Node 1 is shown in the bottom
half of the trace. The first half of the execution has an unbalanced
load with almost all computation on Apprank 0. We see that the
local approach almost immediately starts executing the tasks of
Apprank 0 on both nodes, making full use of the computational
resources. The second half of the execution, however, has an equally
balanced load across the two appranks. Since before this point, both
nodes have almost all cores owned by Apprank 0, the first expensive
tasks from Apprank 1 must wait for cores to become available. Once
the work of Apprank 0 is complete, the tasks of Apprank 1 are
scheduled across both nodes. Both nodes see the same pattern of
load, and they react in the same way, by increasing the number of
cores owned by Apprank 1, to converge towards equal ownership.
The outcome is that Apprank 0 offloads half of its tasks from Node 0
to Node 1 and Apprank 1 offloads half of its tasks from Node 1 to
Node 0. It is clearly unnecessary to offload tasks when the load is
balanced, and Figure 5(b) shows the optimal approach. It starts in
the same way as Figure 5(a), but once the load becomes balanced,
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Figure 5: Coarse-grained load balancing: The local approach
balances the load but does not minimise task offloading, as
both appranks of the balanced kernel execute tasks across
both nodes. The global approach balances the load and min-
imises task offloading at the cost of global communication.

there is no unnecessary offloading of tasks. It was obtained using
the global solver approach, described in the next section.

5.4.2 Global solver approach. The global approach employs an
external solver to determine how many cores should be allocated
to each worker process. Similarly to the local approach, it uses the
number of busy cores as an estimate of the amount of work, but
the work is summed across all workers in the apprank. It then uses
a linear program formulation to minimise the value of:

max
Apprank 𝑎

Total work on 𝑎

Total cores on 𝑎
, (1)

subject to the constraints that each worker owns at least one
core, the sum of owned cores on each node is at most the number of
physical cores, and that each apprank may only own cores that it is
adjacent to in the bipartite expander graph, e.g., in Figure 4(d). This
is an Integer Linear Program, because the numbers of owned cores
must be integers, but it is sufficient to solve the continuous problem
and round to an integer number of owned cores per worker that
sums to the total number of physical cores. A heuristic counts the
cores on the apprank itself as being marginally faster, in order to
prefer to not offload unless necessary. The precise value of this
incentive is not critical, as the solver will tend to take it no matter
how small, and we use a value of one part in 10−6, i.e. the “Total
work on 𝑎” in the numerator of Equation 1 is the sum of the non-
offloaded work and 1 + 10−6 times the offloaded work. Since the
number of busy cores includes runtime overheads, the global policy
is able to converge to a solution that provides additional resources,
if necessary, for runtime execution overheads.

The global policy has the advantage that it will always find an op-
timal solution that balances the load and minimises task offloading.
Its disadvantages are that it requires periodic global communication
and it centralizes the work of determining the core allocation onto

a single node. The implementation has a separate Python process
using CVXOPT [5], and it executes the global solver every two
seconds. We always run the solver on the first node, which in many
cases happens to be the highest loaded node. But it could of course
be migrated to the least loaded node. The time to solve the global
allocation problems for the 32-node experiments in Section 7 is
approximately 57ms. Running the solver every two seconds gives
an overhead of about 6%. A single global solver process is therefore
sufficient for up to about 64 nodes.

Since the time to solve the linear program grows approximately
quadratically with the size of the graph, larger graphs than 32
nodes should be partitioned and solved in parts on multiple nodes.
These 32-node groups are very likely to contain heavily and lightly
loaded nodes and allow almost complete load balancing. It is a
significant improvement above the existing DLB approach, which
only supports load balancing among the processes on a single node.

5.5 Task scheduling
To maintain load balance, the scheduler makes a tentative sched-
uling decision whenever a task becomes ready. If the best node,
according to data locality, currently has fewer than two tasks per-
core, then the task is scheduled to that node immediately. Otherwise,
it there is an alternative node with fewer than two tasks per core,
the task will be immediately scheduled to that node instead. Two
tasks per core allows one task to be executing and another to have
the data transfer (if any) initiated in advance and be blocked ready
to execute as soon as the executing task finishes. If all nodes already
have at least two tasks per core, then the newly ready task is held
in a queue, and will be stolen as tasks complete.

When calculating the number of tasks per core, the number of
cores is the number owned via DROM. It does not take account
of any short-term lending or borrowing of cores via LeWI. This is
because the lent cores are not really gone, as they can easily be
reclaimed if needed, while borrowed cores may have to be returned
at any moment. Offloading a task is a “final” decision because
once a task has been offloaded to a node, it cannot be recalled
and it cannot be rescheduled or migrated to another node. By not
taking temporary cores for granted, we ensure that there are always
sufficient cores to execute the offloaded tasks in a timely manner.

6 METHODOLOGY
6.1 Quantifying imbalance
We quantify the application’s load imbalance using the imbalance:

Imbalance =
Maximumapprank load

Averageapprank load
≥ 1. (2)

This metric is dimensionless, and it directly relates the maximum
load, which gives a lower bound on the length of the critical path,
to the average load, which estimates the length of the critical path
with perfect load balance. It is preferable to other metrics, such
as the standard deviation of loads, that have no direct connection
to the problem to be solved. As formulated the load imbalance
ignores any imbalance among the cores due to task scheduling. An
imbalance of 1.0 is perfect load balance, whereas an imbalance of
2.0 indicates that the critical path has roughly twice the length that
it would have with a perfect load balance. The maximum possible



value for the imbalance is the number of appranks, which would 
correspond to the case where all of the work is on one apprank.

6.2 Benchmarks
We use two application programs, Alya MicroPP and 𝑛-body. Alya 
MicroPP is a 3D finite element library for micro-scale solid mechan-
ics in composite materials [24]. The code has unbalanced execution 
due to the mix of linear and non-linear finite elements. The 𝑛-body 
code [14] is a parallel implementation of Barnes–Hut [42] using 
Orthogonal Recursive Bisection to equalise the work across the 
ranks. Both applications are implemented in C++ with paralleliza-
tion using MPI and OpenMP/OmpSs-2.

We also use a synthetic benchmark to increase confidence that 
our approach works for a range of scenarios beyond those found 
in the applications. The synthetic benchmark has a configurable 
imbalance (Equation 2). Each iteration of the program has 100 tasks 
per core, of average duration 50 ms. The task durations are different 
on the different appranks to meet the target imbalance. The exe-
cution time of the tasks on the worst-case rank is 50 ms multiplied 
by the target imbalance. The other execution times are uniformly 
distributed over the space of values respecting the constraints.

6.3 Hardware platform
Most experiments in this paper were performed on up to 64 nodes of 
the general-purpose block of the MareNostrum 4 supercomputer [8]. 
MareNostrum 4 comprises 3456 compute nodes, each with two 24-
core Intel Xeon Platinum sockets. We use normal memory capacity 
nodes, which have 96 GB physical memory (2 GB per core). The in-
terconnect is 100 Gb Intel Omni-Path with a full-fat tree. The experi-
ments with a slow node were performed on Nord3 [11], which has a 
newer version of Slurm that supports heterogeneous allocations, as 
needed to run different nodes of the same job at different clock fre-
quencies. Nord3 has 756 compute nodes, each with two 8-core Intel 
E5-2670 SandyBridge sockets at 3.0 GHz (normal) or 1.8 GHz (slow).

7 RESULTS
7.1 Application performance
Figure 6 shows the application performance results for MicroPP 
and 𝑛-body weak scaling. The 𝑦-axis is the execution time and the 
𝑥-axis is the number of nodes. Figure 6(a) and (b) show the results 
for MicroPP on two to 64 nodes of MareNostrum 4. Figure 6(a) 
has one apprank per node and Figure 6(b) has two appranks per 
node, i.e. 4 to 64 appranks. The baseline result (blue) is without 
task offloading or DLB. When there is just one apprank per node, 
single-node DLB makes no difference, as expected. When there are 
two appranks per node, the benefit from DLB alone (degree one) 
is also generally small, because some of the heavily loaded ranks 
share a node. All baseline and degree one results have no helper 
ranks, so all cores are used for computation.

Enabling task offloading via OmpSs-2@Cluster, however, makes 
a large improvement to performance in all situations. Assuming a 
moderate offloading degree of four, the time-to-solution is reduced 
by 49% on 4 nodes and 47% on 32 nodes, compared with DLB. Both 
are close to the perfect load balancing. Offload to a single extra node 
(degree two) has good results for small numbers of nodes, but as the 
number of nodes increases the limited graph connectivity becomes
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(c) 𝑛-body on Nord3 with one slow node (2 appranks per node)

Figure 6: MicroPP and 𝑛-body application performance with
global allocation policy. With an offloading degree of four,
i.e., when each apprank can execute tasks across four nodes
including its own, the global policy improves load balance
beyond DLB, for all configurations.

a constraint on the ability to balance the load. An offloading degree
of three or four provides good results in all situations. Increasing
the offloading degree to an excessive value, of eight or more, starts
to affect performance, justifying the design decision to use few
helper ranks per apprank.

Figure 6(c) shows the results for 𝑛-body on Nord3 with one slow
node. 𝑛-body is in itself a balanced application, as it uses Orthogo-
nal Recursive Bisection (ORB) each timestep to rebalance the work.
In this example with a slow node, however, ORB does not perform
well. Here, on 16 nodes and two appranks per node, we see a 16%
improvement when employing single-node DLB and a further 20%
improvement (with respect to the same baseline) when enabling
OmpSs-2@Cluster task offloading with degree 3. The single ap-
prank per node results are not shown as the baseline performance
was much worse, likely due to an issue with scheduling tasks across
the two NUMA nodes. Nord3 has an older CPU architecture, with
16 cores per node, so with two appranks per node, the offloading de-
gree should be at most four. From both applications, the conclusion
is that the global core allocation achieves excellent improvements
in load balance, with an offloading degree of four.

7.2 Local core allocation
Figure 7 shows the results using the local allocation policy. Overall,
local allocation performs slightly worse than global allocation due
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2 4 8 162 4 8 162 4 8 162 4 8 162 4 8 16
0

25

50

75

100

125

Ex
ec

. t
im

e 
pe

r t
im

es
te

p 
(s

ec
s)

Number of nodes (each has 2 appranks)

No DLB
degree 1
degree 2

degree 3
degree 6

(c) 𝑛-body on Nord3 with one slow node (2 appranks per node)

Figure 7: MicroPP and 𝑛-body performance with local
allocation policy. The local policy has about 10% higher
optimal execution time for MicroPP on 32 nodes than
the global policy and it is generally more sensitive to the
offloading degree (number of nodes among which each
apprank can execute tasks).

to the issue with unnecessary task offloading (Section 5.4.1). We
see that the local policy provides similar results for small numbers
of nodes: reducing the time for two appranks per node on 4 nodes
by 43%. But the local policy tends to offload too many tasks, and on
32 nodes the improvement is only 38%, compared with 47% found
above for the global policy. It also tends to be more sensitive to
a well-tuned offloading degree, with execution time rising for an
offloading degree above 4 for MicroPP.

7.3 Sensitivity analysis on kernel imbalance
Figure 8 is a sweep of the execution time, as a function of the
imbalance, for the synthetic test program (Section 6.2). The 𝑥-axis is
the imbalance, defined in Equation 2, and the𝑦-axis is the execution
time per iteration, in seconds. In all three subplots, the baseline
MPI+OmpSs-2 program with single-node DLB is indicated with the
blue line. Since there is one apprank per node, there is no benefit
from single-node DLB, so the case without DLB is not shown.

Figures 8(a), (b) and (c) show that, on four to 64 nodes, an of-
floading degree of four (red) provides the best results across the
whole range of application imbalance from 1.0 to 4.0. This is similar
to MicroPP, where an offloading degree of four also generally pro-
vided the best results. For small numbers of nodes, up to about eight
nodes, it is sufficient for the offloading degree to be at least as large

as the imbalance. This is clearly seen in Figure 8(a), on four nodes,
where an offloading degree of 2 is sufficient for up to an imbalance
of 2.0 and an offloading degree of 3 is sufficient for an imbalance
up to 3.0. But there is no penalty for a moderately higher offload-
ing degree. For larger numbers of nodes, the graph connectivity
becomes an issue. On 64 nodes, an offloading degree of 4 provides
the most dependable results even for small levels of imbalance, and
is within 20% of optimal for imbalances in the range 1.0 to 2.0. The
conclusion is that for up to 64 nodes, an offloading degree of four
is sufficient, which is dramatically lower than full connectivity (an
offloading degree of 64). The fact that there is no benefit for smaller
offloading degrees when the imbalance is small supports our claim
that a static expander graph is sufficient (Section 5.2).

7.4 Fine-grain (LeWI) and coarse-grain (DROM)
In order to understand the role of LeWI and DROM, Figure 9 shows
execution traces for MicroPP with and without LeWI and DROM,
with four appranks on four nodes. The outcome is similar for larger
numbers of nodes, but this example gives more intelligible traces.
The 𝑥-axis is time, and all timelines have the same scale, so the
length of the trace is proportional to execution time. The𝑦-axis indi-
cates the number of cores for each apprank (colours), busy executing
tasks or non-idle-loop runtime code (left-hand traces) or owned
(right-hand traces). The four nodes are shown from top to bottom.

Figure 9(a) shows the original MPI+OmpSs-2 trace, in which
there is a clear imbalance among the nodes, due to the greater
amount of work done by Apprank 0. We see in Figure 9(b) that each
apprank owns the cores on its node. Figure 9(c) employs LeWI, but
not DROM. In this case, once Apprank 1 finishes an iteration, LeWI
reacts to the fine-grained load imbalance by allowing tasks from
Apprank 0 to be offloaded to Node 1, and Apprank 0 executes its
tasks across both nodes. The use of remote cores when temporarily
borrowing cores is well under 100% due to the issue described in
Section 5.5. It is important not to be too aggressive when making
use of borrowed cores, because the cores could be reclaimed at any
moment. In fact, Apprank 1 reclaims its cores at the beginning of
the next iteration. Figure 9(d) shows the same static assignment
of core ownership, since LeWI does not change the ownership of
cores. The execution time is reduced to 83% of that of the baseline.

Figure 9(e) employs DROM rather than LeWI. DROM updates the
ownership of cores to ensure load balance and high utilization in
the later iterations. After a few iterations, almost all cores on Node 0
and Node 1 are consistently used by Apprank 0. In order to let this
happen, Apprank 1 shifts its work to Node 2. The trace shown in Fig-
ure 9(e) uses the global core allocation policy, but the same effect oc-
curs with the local policy. We see that the execution time is reduced
further, to 65% of that of the baseline execution. Figure 9(f) shows
how the core ownership converges to this optimal result. Finally,
Figure 9(g) employs both LeWI and DROM. LeWI is active in the first
iteration, by reacting to the load imbalance immediately. But DROM
quickly adjusts to the steady-state imbalance, ensuring an optimal
load balance in later iterations. This shows how LeWI and DROM
complement each other and together give the best execution.
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Figure 8: Execution time of synthetic application, with one apprank per node, using LeWI and DROM, as a function of the
imbalance. An offloading degree of four provides consistently good results on up to 64 nodes.

Apprank 0 Apprank 1 Apprank 2 Apprank 3

Node 0
Node 1
Node 2
Node 3

(a) No offload: MicroPP timeline of busy cores
(Original imbalance=2.0; time: 79.8 s: 100%)

(b) No offload: MicroPP timeline of owned cores

Node 0
Node 1
Node 2
Node 3

(c) Using LeWI but not DROM: busy cores
(Imbalance=1.33; time: 66.6 s, 83%)

(d) Using LeWI but not DROM: owned cores

Node 0
Node 1
Node 2
Node 3

(e) Using DROM but not LeWI: busy cores
(Imbalance=1.15; time: 51.6 s, 65%)

(f) Using DROM but not LeWI: owned cores

Node 0
Node 1
Node 2
Node 3

(g) Using LeWI and DROM: busy cores
(Imbalance among nodes is now 1.22; time: 49.9 s: 63%)

(h) Using LeWI and DROM: owned cores

Figure 9: Traces of Alya MicroPP on four nodes with degree two. LeWI allows Apprank 0 to borrow cores on Node 1 when they
would otherwise be idle. DROM adapts the long-term ownership of cores to address the steady load imbalance.
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Figure 10: Synthetic test program with one emulated slow
node (3 times slower than the other nodes), showing that
tasks are offloaded to balance the loads.
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Figure 11: Convergence of imbalance among nodes for syn-
thetic benchmark. Local converges faster than global when
LeWI is enabled. DROM is essential to reduce the node im-
balance to close to 1.0.

7.5 Sensitivity analysis with slow node
Figure 10 shows a sweep of the execution time as a function of the
imbalance, for a synthetic test case with one slow node that is three
times slower than the other nodes. Being a synthetic example unlike

𝑛-body, it is not actually a slow node, just emulated by the task
durations. The 𝑦-axis is the execution time per iteration, and the
𝑥-axis is the imbalance. Increasing imbalance to the left indicates
the case where the slow node has the least work and increasing
imbalance to the right indicates that the slow node has the most
work. Figure 10(a) has two nodes, and a degree of 2 has almost flat
execution time per iteration, close to the optimal (grey line) across
the whole range of imbalance. With eight nodes, we see a similar
story to before.When the slow node has themost work (to the right),
the execution time is close to flat, as long as the offloading degree is a
little higher than the imbalance. As before, we see that on offloading
degree of four provides the best and most consistent results, and
it is able to handle the imbalance up to an imbalance of 4.0.

7.6 Convergence with synthetic benchmark
Figure 11 shows time series plots for the synthetic benchmark:
two nodes with an imbalance of 2.0 and four nodes with an imbal-
ance of 4.0. The 𝑥-axis is time and the𝑦-axis is the imbalance among
the nodes, given by (Maximumnode load)/ (Averagenode load). The
current load is the total average number of busy cores (see Sec-
tion 5.4), meaning that the imbalance among nodes is updated more
frequently than application-level measurements.

We see a similar picture in both subplots of Figure 11. Both the
local and global policies, when using DROM (with or without LeWI)
are able to reduce the imbalance among the nodes to close to 1.0.
Using LeWI but not DROM, the imbalance fluctuates around 1.2 in
both scenarios, which is consistent with the behaviour observed in
the MicroPP traces (Section 7.4). The local policy converges quicker
than the global policy, as it operates continuously whereas the
global policy is updated every two seconds. We also see that LeWI
helps to accelerate the speed of convergence of the local policy, in
both scenarios, since cores are allocated to a helper rank in propor-
tion to the average number of busy cores. By offloading tasks in
reaction to a fine-grained load imbalance, LeWI helps to accelerate
core usage. LeWI does not accelerate the speed of convergence
of the global policy, as the solver responds to the total work on
the apprank, but LeWI does reduce the peak near the beginning
of the application, in Figure 11(a). Overall we again see that the
combination of LeWI and DROM provides the best results.

8 CONCLUSIONS
Load balancing has been an important concern of high-performance
computing for a long time. This paper introduces an automatic
and transparent load balancing mechanism for MPI + OmpSs-2
programs, which relieves the application programmer from the
burden of balancing loads across nodes. We keep the programming
model as simple as possible, with only minor local changes be-
ing needed to existing MPI+OmpSs-2 programs. Our method uses
OmpSs-2@Cluster to offload tasks to other nodes and it employs
DLB as the underlying mechanism to allocate the resources (cores)
on each node. We leverage the DROM module of DLB to reserve
cores on other nodes and thereby address coarse-grained load imbal-
ances, and use the LeWI module to react to fine-grained imbalances.
Our system uses a sparse expander graph to minimise the amount
of point-to-point communication and state. We show 46% reduction
in time-to-solution for MicroPP solid mechanics on 32 nodes and



20% reduction beyond DLB for 𝑛-body on 16 nodes, when one node 
is slow. We perform a sensitivity analysis on imbalance, and obtain 
results within 10% of perfect load balancing for an imbalance of up 
to 2.0 on 8 nodes. All software is released open source, with the 
hope that our work can be expanded upon and adopted in practice.
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