15 research outputs found

    Linear time Constructions of some dd-Restriction Problems

    Full text link
    We give new linear time globally explicit constructions for perfect hash families, cover-free families and separating hash functions

    Perfect Hash Families: The Generalization to Higher Indices

    Get PDF
    Perfect hash families are often represented as combinatorial arrays encoding partitions of kitems into v classes, so that every t or fewer of the items are completely separated by at least a specified number of chosen partitions. This specified number is the index of the hash family. The case when each t-set must be separated at least once has been extensively researched; they arise in diverse applications, both directly and as fundamental ingredients in a column replacement strategy for a variety of combinatorial arrays. In this paper, construction techniques and algorithmic methods for constructing perfect hash families are surveyed, in order to explore extensions to the situation when each t-set must be separated by more than one partition.https://digitalcommons.usmalibrary.org/books/1029/thumbnail.jp

    Anonymity in Shared Symmetric Key Primitives

    Get PDF
    We provide a stronger definition of anonymity in the context of shared symmetric key primitives, and show that existing schemes do not provide this level of anonymity. A new scheme is presented to share symmetric key operations amongst a set of participants according to a (t, n)-threshold access structure. We quantify the amount of information the output of the shared operation provides about the group of participants which collaborated to produce it.

    Robust parent-identifying codes and combinatorial arrays

    Get PDF
    An nn-word yy over a finite alphabet of cardinality qq is called a descendant of a set of tt words x1,…,xtx^1,\dots,x^t if yi∈{xi1,…,xit}y_i\in\{x^1_i,\dots,x^t_i\} for all i=1,…,n.i=1,\dots,n. A code \cC=\{x^1,\dots,x^M\} is said to have the tt-IPP property if for any nn-word yy that is a descendant of at most tt parents belonging to the code it is possible to identify at least one of them. From earlier works it is known that tt-IPP codes of positive rate exist if and only if t≤q−1t\le q-1. We introduce a robust version of IPP codes which allows {unconditional} identification of parents even if some of the coordinates in yy can break away from the descent rule, i.e., can take arbitrary values from the alphabet, or become completely unreadable. We show existence of robust tt-IPP codes for all t≤q−1t\le q-1 and some positive proportion of such coordinates. The proofs involve relations between IPP codes and combinatorial arrays with separating properties such as perfect hash functions and hash codes, partially hashing families and separating codes. For t=2t=2 we find the exact proportion of mutant coordinates (for several error scenarios) that permits unconditional identification of parents

    Separating hash families

    Get PDF
    In der vorliegenden Dissertation wird angestrebt, offene Probleme im Zusammenhang mit sogenannten "separating hash families" zu diskutieren und zu lösen. Separating hash families (SHF) sind interessante kombinatorische Strukturen, die verschiedene bekannte Objekte als Spezialfälle einschließen, wie z.B. perfect hash families (PHF), frameproof codes, secure frameproof codes und codes with identifiable parent property. Ferner finden SHFs zahlreiche kryptographische Anwendungen, z.B. in key distribution patterns, broadcast encryption, secret sharing schemes, visual cryptography und in den Codes für den Urheberrechtsschutz. In dieser Dissertation konzentrieren wir uns auf die Herleitung oberer Schranken für die Anzahl der Spalten einer SHF. Zuerst werden spezifische Typen von SHFs untersucht und einige ihrer Eigenschaften bewiesen. Basierend darauf erzielen wir neue obere Schranken für die maximale Anzahl der Spalten bzw. untere Schranken für die minimale Anzahl der Zeilen einer SHF. Für bestimmte Parameter geben wir Konstruktionen von SHFs, so dass die erzielten Schranken mit Gleichheit erfüllt sind. Damit sind die Schranken im oberen Fall optimal. Anschließend untersuchen wir generelle SHFs und stellen drei neue obere Schranken vor, die schärfer als alle bisher bekannten Schranken sind

    Part I:

    Get PDF

    Perfect hash families, identifiable parent property codes and covering arrays

    Get PDF
    In letzter Zeit haben einige kombinatorische Strukturen und Codes eine Vielzahl verschiedener Anwendungen in der Kommunikationstechnik, Kryptographie, Netzwerktechnik und der Informatik gefunden. Der Zweck dieser Dissertation ist, offene Probleme im Zusammenhang mit verschiedenen kombinatorischen Objekten zu lösen, welche durch praktische Anwendungen im Bereich der Informatik und Kryptographie motiviert sind. Genauer gesagt, untersuchen wir perfect hash families, identifiable parent property codes und covering arrays. Perfect hash families sind kombinatorische Strukturen, die verschiedene praktische Anwendungen haben, so wie Compilerbau, Probleme der Komplexität von Schaltkreisen, Datenbank-Verwaltung, Betriebssysteme, derandomization probabilistischer Algorithmen und broadcast encryption. Wir konzentrieren uns auf explizite Konstruktionsverfahren für perfect hash families. Erstens liefern wir eine explizite rekursive Konstruktion einer unendlichen Klasse von perfect hash families mit dem besten bekannten asymptotischen Verhalten unter allen ähnlichen, bekannten Klassen. Zum zweiten stellen wir ein neues rekursives Konstruktionsverfahren vor, mit dessen Hilfe man gute perfect hash families für kleine Parameter erzeugen kann. Durch diese Methode erhalten wir eine unendliche Klasse von perfect hash families, die eine sehr große Menge von Parameter-Werten abdeckt. Weiterhin leiten wir eine neue untere Schranke für die minimale Anzahl von Hash-Funktionen her. Ein Vergleich der existierenden Schranken zeigt, dass unsere Schranke für einige Parameter-Bereiche schärfer ist als andere bekannte Schranken. Identifiable parent property codes (IPP) wurden entwickelt für die Anwendung in Verfahren, die urheberrechtlich geschützte digitale Daten gegen unerlaubte Kopien schützen, die gemeinsam von mehreren berechtigten Nutzern hergestellt werden. TA codes sind eine gut erforschte Teilmenge der IPP-Codes. Wir stellen zwei neue Konstruktionen für IPP-Codes vor. Unsere erste Konstruktion bietet eine unendlichen Klasse von IPP-Codes mit dem besten bekannten asymptotischen Verhalten unter allen ähnlichen Klassen in der Literatur. Weiterhin beweisen wir, dass diese Codes ein Verfahren zum Finden von Verrätern mit im Allgemeinen Laufzeit O(M) erlauben, wobei M die Code-Größe ist. Man beachte, dass vorher außer den TA-Codes keine IPP-Codes mit dieser Eigenschaft bekannt waren. Für einige unendliche Unterklassen dieser Codes kann man sogar noch schnellere Verfahren zum Aufspüren von Verrätern finden, mit Laufzeit poly(logM). Außerdem wird eine neue unendliche Klasse von IPP-Codes konstruiert, die gute IPP-Codes für nicht zu große Werte von n liefert, wobei n die Code-Länge bezeichnet. Diese Klasse von IPP-Codes deckt einen großen Bereich von Parameter-Werten ab. Weiterhin konstruieren wir eine große Klasse von w-TA-Codes, die eine positive Antwort auf ein offenes Existenzproblem geben. Covering arrays sind von vielen Wissenschaftlern intensiv untersucht worden, aufgrund ihrer zahlreichen Anwendungen in der Informatik, so wie Software- oder Schaltkreis-Testen, switching networks, Datenkompressions-Probleme, und etliche mathematische Anwendungen, so wie Differenz-Matrizen, Such-Theorie und Wahrheits-Funktionen. Wir untersuchen explizite Konstruktions-Methoden für t-covering arrays. Zuerst benutzen wir den Zusammenhang zwischen perfect hash families und covering arrays, um unendliche Familien von t-covering arrays zu finden, für die wir beweisen, dass sie besser sind als die augenblicklich bekannten probabilistischen Schranken für covering arrays. Diese Familien haben ein sehr gutes asymptotisches Verhalten. Zum zweiten liefern wir, angeregt durch ein Ergebnis von Roux und auch von einem kürzlich erzielten Ergebnis von Chateauneuf und Kreher für 3-covering arrays, verschiedene neue Konstruktionen für t-covering arrays, t >_ 4, die als eine Verallgemeinerung dieser Ergebnisse gesehen werden können

    Hash Families and Cover-Free Families with Cryptographic Applications

    Get PDF
    This thesis is focused on hash families and cover-free families and their application to problems in cryptography. We present new necessary conditions for generalized separating hash families, and provide new explicit constructions. We then consider three cryptographic applications of hash families and cover-free families. We provide a stronger de nition of anonymity in the context of shared symmetric key primitives and give a new scheme with improved anonymity properties. Second, we observe that nding the invalid signatures in a set of digital signatures that fails batch veri cation is a group testing problem, then apply and compare many group testing algorithms to solve this problem e ciently. In particular, we apply group testing algorithms based on cover-free families. Finally, we construct a one-time signature scheme based on cover-free families with short signatures
    corecore