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Zusammenfassung

In letzter Zeit haben einige kombinatorische Strukturen und Codes eine Vielzahl
verschiedener Anwendungen in der Kommunikationstechnik, Kryptographie, Net-
zwerktechnik und der Informatik gefunden.

Der Zweck dieser Dissertation ist, offene Probleme im Zusammenhang mit
verschiedenen kombinatorischen Objekten zu lösen, welche durch praktische An-
wendungen im Bereich der Informatik und Kryptographie motiviert sind. Genauer
gesagt, untersuchen wir perfect hash families, identifiable parent property codes
und covering arrays.

Perfect hash families sind kombinatorische Strukturen, die verschiedene prak-
tische Anwendungen haben, so wie Compilerbau, Probleme der Komplexität von
Schaltkreisen, Datenbank-Verwaltung, Betriebssysteme, derandomization proba-
bilistischer Algorithmen und broadcast encryption.

Wir konzentrieren uns auf explizite Konstruktionsverfahren für perfect hash
families. Erstens liefern wir eine explizite rekursive Konstruktion einer unendli-
chen Klasse von perfect hash families mit dem besten bekannten asymptotischen
Verhalten unter allen̈ahnlichen, bekannten Klassen. Zum zweiten stellen wir ein
neues rekursives Konstruktionsverfahren vor, mit dessen Hilfe man ‘gute’ perfect
hash families f̈ur kleine Parameter erzeugen kann. Durch diese Methode erhalten
wir eine unendliche Klasse von perfect hash families, die eine sehr große Menge
von Parameter-Werten abdeckt. Weiterhin leiten wir eine neue untere Schranke für
die minimale Anzahl von Hash-Funktionen her. Ein Vergleich der existierenden
Schranken zeigt, dass unsere Schranke für einige Parameter-Bereiche schärfer ist
als andere bekannte Schranken.

Identifiable parent property codes (IPP) wurden entwickelt für die Anwendung
in Verfahren, die urheberrechtlich geschützte digitale Daten gegen unerlaubte
Kopien scḧutzen, die gemeinsam von mehreren berechtigten Nutzern hergestellt
werden. TA codes sind eine gut erforschte Teilmenge der IPP-Codes. Wir stellen
zwei neue Konstruktionen für IPP-Codes vor. Unsere erste Konstruktion bietet
eine unendlichen Klasse von IPP-Codes mit dem besten bekannten asymptotis-
chen Verhalten unter allen̈ahnlichen Klassen in der Literatur. Weiterhin beweisen
wir, dass diese Codes ein Verfahren zum Finden von Verrätern mit im Allge-
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meinen LaufzeitO(M) erlauben, wobeiM die Code-Gr̈oße ist. Man beachte,
dass vorher außer den TA-Codes keine IPP-Codes mit dieser Eigenschaft bekannt
waren. F̈ur einige unendliche Unterklassen dieser Codes kann man sogar noch
schnellere Verfahren zum Aufspüren von Verr̈atern finden, mit Laufzeitpoly(logM).
Außerdem wird eine neue unendliche Klasse von IPP-Codes konstruiert, die ‘gute’
IPP-Codes f̈ur nicht zu große Werte vonn liefert, wobein die Code-L̈ange beze-
ichnet. Diese Klasse von IPP-Codes deckt einen großen Bereich von Parameter-
Werten ab. Weiterhin konstruieren wir eine große Klasse vonw-TA-Codes, die
eine positive Antwort auf ein offenes Existenzproblem geben.

Covering arrays sind von vielen Wissenschaftlern intensiv untersucht worden,
aufgrund ihrer zahlreichen Anwendungen in der Informatik, so wie Software-
oder Schaltkreis-Testen, switching networks, Datenkompressions-Probleme, und
etliche mathematische Anwendungen, so wie Differenz-Matrizen, Such-Theorie
und Wahrheits-Funktionen.

Wir untersuchen explizite Konstruktions-Methoden für t-covering arrays. Zu-
erst benutzen wir den Zusammenhang zwischen perfect hash families und cover-
ing arrays, um unendliche Familien vont-covering arrays zu finden, für die wir
beweisen, dass sie besser sind als die augenblicklich bekannten probabilistischen
Schranken f̈ur covering arrays. Diese Familien haben ein sehr gutes asymptotis-
ches Verhalten. Zum zweiten liefern wir, angeregt durch ein Ergebnis von Roux
und auch von einem k̈urzlich erzielten Ergebnis von Chateauneuf und Kreher für
3-covering arrays, verschiedene neue Konstruktionen für t-covering arrays,t ≥ 4,
die als eine Verallgemeinerung dieser Ergebnisse gesehen werden können.

Ich habe diese Arbeit selbständlig verfasst und dabei keine anderen als die in
der Literatureliste aufgeführten Hilfsmittel benutzt.

Sosina Martirosyan
Essen, July 2003
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Chapter 1

Introduction

Recently, several combinatorial structures and codes have found vast range of ap-
plications to communications, cryptography, networking and computer sciences.
Connections of error correcting codes and cryptography are surveyed in [1]. The
paper [3] describes some applications of coding theory to communication com-
binatorial problems. Many practical problems where combinatorial designs have
played a substantial role are discussed in some survey papers such as applica-
tions of combinatorial designs in computer science [2], combinatorial designs and
cryptography [4], applications of combinatorial designs to communications, cryp-
tography, and networking [5].

The purpose of this dissertation is to solve open problems related to several
combinatorial objects motivated by practical applications in the area of computer
sciences and cryptography. Precisely, we study perfect hash families, identifiable
parent property codes and covering arrays.

Perfect hash families were introduced by Mehlhorn in compiler design to
prove lower bounds on the size of a computer program. In the last few years,
perfect hash families have been applied to circuit complexity problems, database
management, operating systems, derandomization of probabilistic algorithms and
broadcast encryption. More recently, they found applications in secret sharing,
key distribution patterns, non-adaptive group testing algorithms, in constructing
cryptographic codes, covering arrays and efficient multicast re-keying schemes.

An (n,M,m)-hash familyis a setH of functions{h : A → B}, where|A| =
M , |B| = m and|H| = n. An (n,M, m,w)-perfect hash familyis an(n,M, m)-
hash family such that for anyX ⊆ A with |X| = w, there is at least one function
h ∈ H such thath is injective when restricted onX.

The main problem is to minimize the number of hash functions. Numerous
upper and lower bounds have been derived on the minimal numbern for which
an (n,M, m,w)-perfect hash family exists. It is proved thatn is Θ(log M) for
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2 CHAPTER 1. INTRODUCTION

any fixedm andw. Such existence results are of probabilistic nature and it turns
out to be a difficult problem to give explicit constructions, which are as good
asymptotically. Several explicit constructions of perfect hash families from error
correcting codes and incomplete block designs are derived which yield perfect
hash families withn = O(log M). However these constructions are restricted
since they do not provide perfect hash families for largen in respect to the alphabet
size m. The known explicit recursive constructions give perfect hash families
wheren is a polynomial function oflog M .

We focus on explicit construction techniques for perfect hash families. Firstly,
we provide an explicit recursive construction of an infinite class of perfect hash
families with the best asymptotic behavior among similar known classes. Sec-
ondly, we present a new recursive construction technique which allows to con-
struct ‘good’ perfect hash families for small sizes ofn. Applying this construc-
tion we obtain an infinite class of perfect hash families covering a very large set
of parameter values. Further, using a rather simple method we obtain a new lower
bound on the minimal number of hash functions. A comparison of the existing
bounds shows that our bound is stronger than other known bounds for some pa-
rameter sets. It is better than Fredman-Komlós and K̈orner-Marton bounds almost
everywhere.

Identifiable parent property (IPP) codes have been introduced by Hollmann,
van Lint, Linnartz and Tolhuizen in 1997. These codes are designed to be used
in the schemes that protect copyrighted digital data against illegal reproduction or
redistribution. A coalition of colluding users can make an illegal copy by com-
bining different segments of their data and broadcast it. After an illegal copy is
detected traitor tracing schemes attempt to reveal at least one traitor. The goal
of such schemes is to handle as many colluders as possible. The practical ap-
plications require to accommodate many users when there is a restriction on the
number of symbols which can be used for marking the data.

We say a code has thew-identifiable parent property if no coalition of size at
mostw can produce ann-tuple that cannot be traced back to at least one member
of the coalition. TA codes are well studied subsets of IPP codes. The TA property
ease the parent identification process allowing efficient traitor tracing algorithms.
Combinatorial properties of IPP codes and TA codes have been studied by several
authors. Relationships of IPP codes with other known combinatorial structures
and codes lead to several sufficient and necessary conditions on the existence of
IPP codes. Probabilistic techniques are used to prove the existence ofw-IPP codes
with n = O(log M), wheren is the length of the codes andM is the size, for any
alphabet of sizeq > w. During the last few years several explicit constructions
of IPP codes have been derived. Certain classes of TA codes are shown to have a
fast traitor tracing algorithm by using the list decoding techniques.
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We present two new explicit construction methods for IPP codes using recur-
sion techniques. Our first construction provides an infinite class of IPP codes
with the best asymptotic behavior among explicitly constructed classes of IPP
codes known in the literature. In fact, for any fixedq > w we are able to con-
struct an infinite class ofw-IPP codes in which the lengthn of the codewords is
O((w2)log∗(M)(log(M)), whereM is the number of codewords andlog∗ is a very
slow growing function. Moreover, we prove that these codes allow a traitor trac-
ing algorithm with a runtime ofO(M) in general. It should be noted that no IPP
codes other than the TA codes with this property were known before. For some
infinite subclasses of these codes, even faster traitor tracing algorithms with run-
time poly(log M) can be obtained. Also, another new infinite class of IPP codes
is constructed which provides ‘good’ IPP codes for small values ofn. This class
of IPP codes covers a wide range of parameter values. The known construction
methods and probabilistic existence results do not prove the existence ofw-TA
codes withq < w2, andb > q, whereb is the size of the code andq is the size
of the alphabet. Thus existence of suchw-TA codes is stated as an open problem
by Staddon, Stinson, and Wei. We provide a positive answer to the problem by
constructing a large class ofw-TA codes withq < w2 andb > q.

Covering arrays have undergone an intensive survey by many researchers due
to their numerous applications in computer science such as software or circuit
testing, switching networks, data compression problem, and also several mathe-
matical applications such as difference matrices, search theory and truth functions.

The application of covering arrays to software system testing is discussed in
many papers. One of the approaches to reduce costs for testing a software system
is to use combinatorial designs to generate an efficient test set. Software system
faults are often caused by interactions among components. The goal of a software
developer is to test all combinations of potential interactions with small number
of tests. For the system where most errors occur because of interactions of its
maximumt components, a test plan can be designed usingt-covering arrays.

We present new explicit construction methods fort-covering arrays. Firstly,
using the relationships between perfect hash families and covering arrays we can
construct infinite families oft-covering arrays which are proved to be better than
currently known probabilistic bounds for covering arrays. These families have
very good asymptotic behavior. Secondly, inspired from a result of Roux and also
from a recent result of Chateauneuf and Kreher for 3-covering arrays, we show
several constructions fort-covering arrays, which can be viewed as generaliza-
tions of their results fort-covering arrays,t ≥ 4. These constructions are more
efficient than the other known constructions when the size of array is not very
large.



4 CHAPTER 1. INTRODUCTION

Thesis Overview

Chapter2 is a brief survey onq-ary code and introduces some significant known
results which are needed in the subsequent chapters. In Section2.7 we present a
new construction forq-ary codes with large Hamming distance which is used in
next chapters to give new classes of traceability codes and perfect hash families.
It is also shown that the construction produces a class of optimalq-ary codes in
the sense that parameters of the codes achieve the Plotkin bound.

Chapter3 studies perfect hash families. A new necessary condition on the
existence of perfect hash families is derived in Section3.4, which is expressed in
form of an upper bound onM . A comparison of some known bounds is provided
which shows that our bound is stronger than other known bounds for some param-
eters sets. Two new explicit recursive constructions are described in Section3.8.
Firstly, we provide an explicit recursive construction of an infinite class of perfect
hash families with very good asymptotic behavior. Secondly, we present a new
construction technique which provides an infinite class of perfect hash families
covering very large parameter ranges.

Chapter4 introduces identifiable parent property codes (IPP). We describe two
new explicit construction techniques for IPP codes. Our first construction given
in Section4.5 shows an infinite class of IPP codes with very good asymptotic
behavior of parameters. We also prove that for an infinite subclass of these codes
a traitor tracing algorithm with a runtimepoly(log M) exists. Using our second
construction, given in Section4.6, we obtain a new infinite class of IPP codes
covering a very large set of parameters. Further, in Section4.7, we construct a
large class ofw-TA codes and thus give a positive answer to an open problem on
existence ofw-TA codes.

Chapter5 presents covering arrays. In Section5.3 using the relationships
between perfect hash families and covering arrays we obtain infinite families of
t-covering arrays which are proved to be better than currently known probabilis-
tic bounds. These families have a very good asymptotic behavior. Section5.4
includes several new constructions fort-covering arrays,t ≥ 4, which result in
“good” covering arrays of small sizes.



Chapter 2

q-ary Codes

This chapter is a survey onq-ary codes. Codes over an alphabet of sizeq, called
q-ary codes, are well studied objects in the theory of error-correcting codes [9,
10, 13, 26]. We recall some known results and definitions of the theory of error-
correcting codes. Our goal is to present some conceptions and techniques which
are used in the other chapters. In Section2.1 we present preliminaries. Some
know necessary and sufficient conditions on existence ofq-ary codes are surveyed
in Sections2.2 and2.3. Several known codes and combinatorial structures are
presented in Sections2.4, 2.5and2.6.

We present a new construction forq-ary codes with large Hamming distance
in Section2.7 (see also [71]). These codes are used later to obtain new classes
of perfect hash families andTA codes in Chapters3 and4. We show that the
construction produces a class of optimalq-ary codes in the sense that parameters
of the codes achieve the Plotkin bound. Finally, the decoding problem is discussed
in Section2.8.

2.1 Definitions

In this section we present some basic definitions on error correcting codes.
Let Q be an alphabet of sizeq and letC ⊆ Qn. ThenC is called aq-ary code

of lengthn. If |C| = M , then we callC an(n,M, q) code.M is called the size of
the code and the elements ofC are calledcodewordsand each codeword will have
the formx = (x1, . . . , xn), wherexi ∈ Q, 1 ≤ i ≤ n.

A (n,M, q) codeC can be depicted as anM×n matrixC onq symbols, where
each row of the matrix corresponds to one of the codewords.

WhenQ is a field,C is called alinear codeif it is a vector subspace ofQn.
The dimensionk of a linear codeC is defined to be the dimension ofC as a

vector space overQ. Notice that ifQ is a finite field withq elements, then for an

5



6 CHAPTER 2. Q-ARY CODES

(n,M, q) linear codek = logq M . For a linear(n,M, q) code of dimensionk we
will use the notation[n, k, q].

Let C be a linear code of lengthn and dimensionk overQ. Denote byG the
k × n matrix whose rows arek basis vectors ofC. ThenG is called a generator
matrix for C andC = {uG|u ∈ Qk}.

Example 2.1.1 A generator matrix of a [13, 7, 3] code.




1 0 0 0 0 0 0 1 2 1 2 2 2
0 1 0 0 0 0 0 1 0 0 0 1 1
0 0 1 0 0 0 0 2 2 2 1 1 2
0 0 0 1 0 0 0 1 1 0 1 0 0
0 0 0 0 1 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 0 0 1 1 0 1
0 0 0 0 0 0 1 2 1 2 2 2 1




Let x = (x1, x2, . . . , xn) andy = (y1, y2, . . . , yn) be anyq-ary vectors of the
lengthn. TheHamming distancebetweenx andy is

d(x, y) := |{i|xi 6= yi}|.

Definition 2.1.2 The minimum distance ofC is

d := dmin(C) = min {d(x, y) |x, y ∈ C andx 6= y}

The code given in Example2.1.1has minimum distanced = 8.
We use the notation(n, M, q; d) for an(n,M, q) code with minimum distance

d and for a linear code of dimensionk we use the notation[n, k, q; d].

2.2 Bounds

A codeC is ”good” if bothM andd are large with respect ton.
The question is that for fixedn, q andd how large the size of the codeM can

be. We present here necessary conditions for the existence of an(n, M, q; d) code.

Theorem 2.2.1 (Singleton bound) LetC be an (n,M, q; d) code. ThenM ≤
qn−d+1.
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In particular, the bound for linear codes is given byk ≤ n− d + 1. Any code
having parameters which meet the Singleton bound is called anmaximum distance
separable (MDS)code. The main conjecture onMDScodes asserts that allMDS
codes are short in respect to the alphabet size. In practice we are interested in
codes which are long in respect to the alphabet size. The Singleton bound is not
sharp for long codes.

An other bound called the Plotkin bound is given in this form in [29].

Theorem 2.2.2 (Plotkin bound) If there exists an(n,M, q; d) code, then

M(M − 1)d ≤ 2n

q−2∑
i=0

q−1∑
j=i+1

MiMj,

whereMi = b(M + i)/qc.
A weaker form of this bound (see for example [10], p. 58) performed as an

upper bound on the minimum distanced is useful for our discussion in the next
chapters.

Corollary 2.2.3 If there exists a n(n,M, q; d) code, then

d ≤ n

(
1− 1

q

)
M

M − 1
.

In Section2.7we present a new construction technique for(n, M, q; d) codes,
which produces examples of codes parameters of which meet the Plotkin bound.

2.3 Existence Result

Now we state a lower bound on the code size presenting an existence result.

Theorem 2.3.1 (Gilbert-Varshamov bound)

There exists an(n,M, q; d) code, where

M ≥ qn

d−1∑
i=0

(
n
i

)
(q − 1)i

.

The existence result in the last theorem is nonconstructive. It is difficult to
give explicit constructions which produce codes having as good parameters as in
the Gilbert-Varshamov bound.

In next sections we introduce some important classes of q-ary error correcting
codes.
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2.4 Reed-Solomon Codes

The Reed-Solomon codes are very important and well-studied family of linear
codes. These codes employ finite algebra concepts and are suitable for a practical
implementation. A spacial casen = q − 1 had been introduced by Reed and
Solomon in 1960.

Here we give a definition of the Reed-Solomon codes.

Definition 2.4.1 ( Reed-Solomon code(RS))
Letα = {α1, α2, . . . , αn} where theαi are distinct elements ofFq, and letv =

{v1, v2, . . . , vn} where thevi are nonzero (but not necessarily distinct) elements of
Fq. Then the Reed-Solomon code, denoted byRSn,k(α, v), consists of all vectors

(v1f(α1), v2f(α2), . . . , vnf(αn))

wheref(x) ranges over all polynomials of degree less thank with coefficients
fromFq.

Theorem 2.4.2 Let C be a Reed-Solomon code defined above, thenC is a linear
code overFq with lengthn ≤ q and d = n − k + 1 providedk 6= 0 denoted
[n, k, q, d]−RS. In particular,RS codes areMDS codes.

Choose the following particular polynomial basis1, x, · · ·, xi, · · ·, xk−1. In this
basis the generator matrix ofRSn,k(α, v) is the following:




v1 v2 · · · vj · · · vn

v1α1 v2α2 · · · vjαj · · · vnαn
...

...
. ..

...
. ..

...
v1α

i
1 v2α

i
2 · · · vjα

i
j · · · vnα

i
n

...
...

. ..
...

. ..
...

v1α
k−1
1 v2α

k−1
2 · · · vjα

k−1
j · · · vnα

k−1
n




.

The length of a Reed-Solomon code unfortunately cannot exceedq. It is
known that these codes can be naturally extended to codes on the projective line
with k + d = n + 1, n ≤ q + 1.

Now consider the codeC whose generator matrix results in adding a new col-
umn to the generator matrix forRSn,k(α, v) given above:
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


v1 v2 · · · vj · · · vn 0
v1α1 v2α2 · · · vjαj · · · vnαn 0

...
...

.. .
...

.. .
...

...
v1α

i
1 v2α

i
2 · · · vjα

i
j · · · vnα

i
n 0

...
...

.. .
...

.. .
...

...
v1α

k−2
1 v2α

k−2
2 · · · vjα

k−2
j · · · vnαk−2

n 0

v1α
k−1
1 v2α

k−1
2 · · · vjα

k−1
j · · · vnαk−1

n 1




. (2.1)

Definition 2.4.3 (Extended Reed-Solomon Code (ERS)). The codeC with gener-
ator matrix (2.1) is called extended Reed-Solomon code.

Theorem 2.4.4 LetC be an Extended Reed-Solomon code defined above, thenC
is a [n, k, q; d] linear code overFq with lengthn ≤ q + 1 andd = n − k + 1
providedk 6= 0. In particular, ERS codes areMDS codes.

The Reed-Solomon codes have found a wide range of applications in digital
communications and storage. These codes are used to correct errors in many
systems including storage devices (tape, Compact Disk, DVD, barcodes, etc.),
wireless or mobile communications (cellular telephones, microwave links, etc.),
satellite communications digital television, high-speed modems etc. [25]

2.5 Connections of MDS Codes and Orthogonal Ar-
rays

Orthogonal arrays are well studied combinatorial structures which are in fact gen-
eralization of MDS codes. [17, 23]

Definition 2.5.1 (t-orthogonal array) LetC be an×M matrix onv symbols such
that eacht ×M -subarray contains each orderedt-tuple of symbols in exactlyλ
times as a column. ThenC is called a t-orthogonal array, denotedOAλ(t, n, v).
In this case we haveM = λvt.
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Example 2.5.2 The arrayC> is anOA2(2, 7, 3)

C =




0 0 0 0 0 0 0
1 1 1 1 1 1 0
2 2 2 2 2 2 0
0 0 1 2 1 2 0
1 1 2 0 2 0 0
2 2 0 1 0 1 0
0 1 0 2 2 1 1
1 2 1 0 0 2 1
2 0 2 1 1 0 1
0 2 2 0 1 1 1
1 0 0 1 2 2 1
2 1 1 2 0 0 1
0 1 2 1 0 2 2
1 2 0 2 1 0 2
2 0 1 0 2 1 2
0 2 1 1 2 0 2
1 0 2 2 0 1 2
2 1 0 0 1 2 2




(C is obtained by Addelman-Kempthorne construction).

Note that ifλ = 1 thenOA1(t, n, v) is an(n, vt, v; d) code whered = n− t+1
(consider the transpose of the orthogonal array and the fact that any two rows of
the transposition matrix agree in at mostt− 1 positions). Thus it is a MDS code.

Now let C be the corresponding matrix of an MDS(n, vt, v; d) code. Then
transpose matrix ofC denoteC> is anOA1(t, n, v) as eacht rows of the matrix
contain each orderedt-tuple of symbols in exactly one time as a column (other-
wised < n − t + 1 which would give a contradiction to the definition of a MDS
code). ThusOA1(t, n, v) and MDS codes defined above are identical.

The alphabet sizeq of MDS codes given in Theorem2.4.4is a prime power.
The following result is proved for orthogonal arrays withλ = 1 (see also [17]
p.181).

Theorem 2.5.3 [16] For any t and n with 2 ≤ t ≤ n, there is a numbere0 =
e0(t, n) such that for any positive numberv and any prime powerq there is an
orthogonal arrayOA(t, n, v.qe) for all e ≥ e0.

We describe an explicit family of MDS codes with an alphabet size not neces-
sarily a prime power.
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We first describe a simple construction forq-ary codes which has been pre-
sented by Bush (1952) [6] for orthogonal arrays. LetA ⊆ Qn

1 be an(n,M1, q1)
code with minimum distanced1 and|Q1| = q1, and letB ⊆ Qn

2 be an(n,M2, q2)
code with minimum distanced2 and|Q2| = q2. Let Q = Q1 × Q2. We define a
codeC over alphabetQ as follows: For any pair of codewordsa = (a1, . . . , an) ∈
A andb = (b1, . . . , bn) ∈ B we construct a vector

c(a,b) = ((a1, b1), . . . , (an, bn)) ∈ Qn.

Then it is easy to verify thatC = {c(a,b) : a ∈ A,b ∈ B} ⊆ Qn is an
(n,M1M2, q1q2) code with minimum distanced = min {d1, d2}.

Thus we have the following result:

Theorem 2.5.4 Suppose there exist(n,M1, q1) code and(n, M2, q2) code with
minimum distanced1 andd2, respectively. Then there exists an(n,M1M2, q1q2)
code with minimum distanced = min {d1, d2}.

Theorem2.5.4can be used to constructMDS codes for whichq is not a prime
power. In fact, in the language of orthogonal arrays an(n, M, q) MDS code with
minimum distanced is anOA1(n − d + 1, n, q); here we haveM = qn−d+1. We
record this special case of the Bush construction in the following theorem:

Theorem 2.5.5 The existence of(n, qt
1, q1) and(n, qt

2, q2) MDS codes having the
same minimum distanced = n− t+1 implies the existence of an(n, (q1q2)

t, q1q2)
MDS code with minimum distanced.

As a consequence of Theorem2.5.5, we have the following corollary.

Corollary 2.5.6 For any integern ≥ 2 and s with a prime factorizations =
pe1

1 . . . per
r such thatn ≤ pei

i + 1, i = 1, . . . , r, there is an(n, st, s) MDS code,
for all 2 ≤ t ≤ n.

Proof: The corollary follows from the existence of(n, (pei
i )t, (pei

i )) MDS (Reed
-Solomon) codes fori = 1, . . . , r (see Theorem2.4.4).

2.6 Algebraic Geometry Codes

In 1977, using algebraic curves over finite fields, V. D. Goppa defined a large class
of codes, calledGoppa codes or Algebraic geometry codes (AG). The asymptotic
performance of these codes exceeds the Gilbert-Varshamov bound forq ≥ 49.
Definitions and basic properties of these codes can be found in [12, 14, 22].
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Later in 1982 Tsfasman, Vladut, and Zink, using sequences of modular curves,
construct algebraic geometry codes with asymptotic performance giving improve-
ment upon the Gilbert-Varshamov bound for the caseq is a perfect square and
bigger than 25. In [11] an algorithm for constructing these codes is given, which
has complexityO(n30). The complexity is of course too high for the practical
purpose.

In [15, 19] Garcia and Stichtenoth give an explicit description for sequences
of algebraic curves. TheAG codes constructed on these curves have better per-
formance than Gilbert-Varshamov bound.

The known low-complexity algorithm for constructing “one-point”AG codes
on G-S curves has a runtime upper-bounded by(n logq n)3, wheren the length of
the code and the complexity is measured in terms of multiplications and divisions
over the finite fieldFq2 [28].

We describe a class of linearAG codes defined on the Garcia-Stichtenoth
(G-S) curves [15, 19] below. Thelth curveXl overFq2 in the sequence of Garcia-
Stichtenoth curves is defined by the equations

xq
i + xi =

xq
i−1

xq−1
i−1 + 1

, i = 1, 2, . . . , l.

The number of rational points ofXl is more thanql(q2 − q) and the genusgl

of Xl is less thanql+1. The “one-point”AG codes constructed on the G-S curve
is as follows: LetP = {P1, . . . , Pn, P} ben + 1 distinctFq2-rational points and
let L(mP ) be theFq2-vector space consisting of all functions defined on the curve
such that the only pole of anyf ∈ L(mP ) is P and the pole order is at mostm.
Define an evaluation map

θ : L(mP ) −→ Fn
q2

f 7→ (f(P1), . . . , f(Pn)).

Then, the imageC = Imθ is referred to as a “one-point”AG code. Now, take

n = ql(q2 − q),

2gl − 2 < m < n.

ThenC is a linear code with parameters(n, q2k, q2; d), wherek = m − gl + 1
andd ≥ ql(q2 − q) − m. Thus,ql+1 ≤ k ≤ ql+2 − 2ql+1 + 1. We will write
k = duql+1e, whereu is a real number satisfying1 ≤ u ≤ q − 2. So, d ≥
ql(q2 − q)− d(u + 1)ql+1e+ 2.

The parameters ofC are then

(ql(q2 − q), q2duql+1e, q2; d).

We rewrite it in the next theorem.
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Theorem 2.6.1 [27] For any prime powerq there exists a linear code[ql(q2− q),
q2duql+1e, q2; d] whereu is a real number satisfying1 ≤ u ≤ q − 2 and d ≥
ql(q2−q)−d(u+1)ql+1e+2. Furthermore, the runtime of a construction algorithm
of a generator matrix for such a code isO(n3).

2.7 New Construction of(n,M, q; d) Codes

We depict an(n, M, q; d) codeC as anM × n arrayA(C) on q symbols, where
each row of the array corresponds to one of the codewords ofC. For anya ∈ Q,
define

mj(a) = |{i : A(C)(i, j) = a}|,
i.e.,mj(a) is the frequency ofa on thejth column ofA(C). Define

m(C) = max
1≤j≤n,a∈Q

(mj(a)).

Definition 2.7.1 LetC be an(n,M, q; d) code. We say thatC has anσ-resolution
if the codewords ofC can be partitioned intos subsetsA1, . . . , As, where|Ai| = σ,
for i = 1, . . . , s, in such a way that eachAi is a code of minimum distance equal
to n, i.e., any two codewords ofAi agree in no position.

2.7.1 Construction

Let C1 be an(n1,M1, q1; d1) code over an alphabetQ1. Let C2 be an(n2,M2, q2;
d2) code with aσ-resolutionA1, . . . , As. Supposes ≥ m(C1). For eacha ∈ Q1

denote byC2(a) a copy ofC2 defined over an alphabetQ(a) such thatQ(a1) ∩
Q(a2) = ∅ if a1 6= a2. Denote byA1(a), . . . , As(a) aσ-resolution ofC2(a).

Let colj = (a1,j, a2,j, . . . , aM1,j)
T be thejth column ofA(C1), 1 ≤ j ≤ n1.

Let a(1), . . . , a(t), say, bet positions ofcolj at which symbola ∈ Q1 appears.
Note thatt ≤ m(C1). Now replacea at positiona(1) by A1(a), a at positiona(2)
by A2(a), etc., anda at positiona(t) by At(a). Perform this process for every
symbol ofQ1 and for every column ofA(C1). The resulting codeC obtained by
this replacement has parameters(n1n2, σM1, q1q2; n1n2 − (n1 − d1)(n2 − d2)).

Obviously, the length and the number of codewords ofC is n1n2 andσM1

respectively. Further, any two codewordsc1, c2 ∈ C agree in at most(n1 − d1)
positions. After replacementc1 andc2 correspond to two subsetsR1 andR2 of
σ codewords each. Any two codewords inR1 (resp. R2) agree in no position,
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whereas a codeword fromR1 and a codeword fromR2 agree in at most(n1 −
d1)(n2−d2) positions. Hence the minimum distance ofC is n1n2−(n1−d1)(n2−
d2), as stated.

Further, ifq1q2 ≥ M1 thenC can be extended to a codeC∗ having parameters
(n1n2 + 1, σM1, q1q2; d), whered = min{n1n2, n1n2 + 1− (n1 − d1)(n2 − d2)}.
Let Q = {a1, a2, . . . , aq1q2} be the alphabet ofC and letC1 = {c1, c2, . . . , cM1}.

By construction, any codewordci ∈ C1 corresponds to a subsetRi of σ code-
words. For anyi = 1, . . . , M1, we add symbolai to the (n1n2 + 1)th column
of each codeword ofRi. This forms a setR∗

i . The collection of allR∗
i forms an

(n1n2 + 1, σM1, q1q2; d) codeC∗ with d = min{n1n2, n1n2 + 1− (n1− d1)(n2−
d2)}. This can be seen as follows: Any two codewordsx∗ andy∗ of C∗ belong
either to someR∗

i or to two differentR∗
i andR∗

j . In the first case their distance is
n1n2 because their components agree only at the(n1n2 + 1)th column, and in the
second case their distance is at leastn1n2 + 1− (n1 − d1)(n2 − d2) because their
components at the(n1n2 + 1)th column are distinct.

We record the result of the construction in the following theorem:

Theorem 2.7.2 Suppose there is an(n1,M1, q1; d1) codeC1 and there is an(n2,M2,
q2; d2) codeC2 with aσ-resolutionA1, . . . , As such thats ≥ m(C1). Then the fol-
lowing hold.

(i) There is an(n1n2, σM1, q1q2; n1n2 − (n1 − d1)(n2 − d2)) codeC.

(ii) Further, if q1q2 ≥ M1, thenC can be extended to a codeC∗ having param-
eters(n1n2 + 1, σM1, q1q2; d), whered = min{n1n2, n1n2 + 1 − (n1 −
d1)(n2 − d2)}.

2.7.2 Example

We illustrate the construction in Theorem2.7.2by the following example.

Example 2.7.3 Let C1 be a(3, 4, 2; 2) code over the alphabetQ1 = {0,1} given
by

C1 =

0 0 0
0 1 1
1 0 1
1 1 0

Let C2(0) be a(3, 6, 3; 2) code on the alphabet{1, 2, 3} having a 3-resolution
A1(0) andA2(0):
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A1(0) =
1 2 3
2 3 1
3 1 2

A2(0) =
1 3 2
2 1 3
3 2 1

Let C2(1) be a copy ofC2(0) on the alphabet{4, 5, 6} with the corresponding
3-resolution

A1(1) =
4 5 6
5 6 4
6 4 5

A2(1) =
4 6 5
5 4 6
6 5 4

Replacing entries ofA(C1) by Ai(j) gives

A1(0) A1(0) A1(0)
A2(0) A1(1) A1(1)
A1(1) A2(0) A2(1)
A2(1) A2(1) A2(0)

Thus, we obtain a(9, 12, 6; 8) codeC. Now, since the conditionq1q2 > M1 is
satisfied,C can be extended to a(10, 12, 6; 9) codeC∗.

C =

1 2 3 1 2 3 1 2 3
2 3 1 2 3 1 2 3 1
3 1 2 3 1 2 3 1 2

1 3 2 4 5 6 4 5 6
2 1 3 5 6 4 5 6 4
3 2 1 6 4 5 6 4 5

4 5 6 1 3 2 4 6 5
5 6 4 2 1 3 5 4 6
6 4 5 3 2 1 6 5 4

4 6 5 4 6 5 1 3 2
5 4 6 5 4 6 2 1 3
6 5 4 6 5 4 3 2 1

C∗ =

1 2 3 1 2 3 1 2 3 1
2 3 1 2 3 1 2 3 1 1
3 1 2 3 1 2 3 1 2 1

1 3 2 4 5 6 4 5 6 2
2 1 3 5 6 4 5 6 4 2
3 2 1 6 4 5 6 4 5 2

4 5 6 1 3 2 4 6 5 3
5 6 4 2 1 3 5 4 6 3
6 4 5 3 2 1 6 5 4 3

4 6 5 4 6 5 1 3 2 4
5 4 6 5 4 6 2 1 3 4
6 5 4 6 5 4 3 2 1 4

2.7.3 A New Class of(n,M, q; d) Codes

In this section we discuss a concrete application of the construction above. We
see that the method is suitable for constructingq-ary codes with large distance,
and therefore, by Theorem4.3.13, for constructingw-TA codes with largew.

We need following definitions:
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Definition 2.7.4 (Latin Square ) A Latin square onq symbols is anq × q array
such that each of theq symbols occurs once in each row and in each column. The
numberq is called the order of the square.

If A = (aij) andB = (bij) are any twoq × q arrays, thejoin (A,B) of A and
B is then× n array whose(i, j)th entry is the pair(aij, bij).

Definition 2.7.5 Two Latin squaresA, B of order q are said to be orthogonal if
all the entries in the join ofA andB are distinct.

Definition 2.7.6 A set of Latin squaresA1, . . . , Ar are called mutually orthogonal
or a set of MOLS, ifAi andAj are orthogonal for all1 ≤ i < j ≤ r.

Theorem 2.7.7 For any prime powerq there exists a set of(q−1) MOLS of order
q.

For other basic facts on MOLS, we refer to [17].
Now we are ready to prove the following theorem:

Theorem 2.7.8 (i) Letq0 be a prime power. If there is a set of at least(q0− 1)
mutually orthogonal Latin squares (MOLS) of orderσ, then there is an
(n,M, q; d) code with

n = (q0 + 1)σm

M = q2
0σ

m

q = q0σ
m

d = (q0 + 1)σm − 1,

for any positive integerm.

(ii) There is an(n,M, q; d) code with

n = (...(((q0 + 1) q1 + 1)q1 + 1)...q1 + 1)︸ ︷︷ ︸
m

M = q2
0q

m
1

q = q0q
m
1

d = n− 1,

whereq1 ≥ q0 are prime powers andm ≥ 1 is an integer.
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Proof: TakeC0 to be anOA1(2, q0 + 1, q0) orthogonal arrayA, see e.g., [17],
i.e., C0 is a (q0 + 1, q2

0, q0; q0) extended Reed-Solomon code. The arrayA
has the property that any symbol appears exactlyq0 times in each column.
A remark upon MOLS, which are used here, needs to be made. It is known
that any given set ofu MOLSM1, . . . , Mu can be transformed in such a way
that any two rows from differentMi andMj agree in at most one column.
Here, we assume that our MOLS have this property.

(i) Now suppose we have a set ofq0 MOLS M1, . . . , Mq0 of orderσ. In the
case that we only have(q0 − 1) MOLS M1, . . . , Mq0−1, we will takeM0 to
be theσ × σ matrix with entries from theσ symbols of the latin squares
such that each symbol appearsσ times in exactly one row. In either cases,
M0,M1, . . . ,Mq0−1 together form aσ resolution of a(σ, q0σ, σ; σ−1) code
C. Applying Theorem2.7.2 gives a((q0 + 1)σ, q2

0σ, q0σ; (q0 + 1)σ − 1)
codeC1. As each symbol of the alphabet appears in each column ofA(C1)
q0 times, Theorem2.7.2can be applied toC1 andC again. This recursive
procedure gives rise to codes in (i).

(ii) If σ = q1 (≥ q0) is a prime power, then there areq1 − 1 MOLS
M1, . . . , Mq1−1 of orderq1. M1, . . . , Mq1−1 andM0 together form a code
C with a q1 resolution. ExtendC1 in (i) to a codeC∗1 by adding one more
column, as shown in Theorem2.7.2. Observe that inC∗1 a symbol appears
q1 or q0 times in each column. Thus, we can apply Theorem2.7.2to C∗1 and
C. Therefore, if at each step the obtained code is extended before applying
Theorem2.7.2, the resulting code afterm steps will have parameters given
in (ii).

It is worth noting that the construction method in Theorem2.7.2can produce
goodq-ary codes.

Consider, for example, the codes in Theorem2.7.8 (ii). It is easy to check
that if q0 = q1, the parameters of these codes meet the Plotkin bound presented in
Theorem2.2.2with equality.

In the case whenq0 6= q1 we study the following example.

Example 2.7.9 From Theorem2.7.8(ii) we obtain:

q0 = 2, q1 = 3, i = 1 (10, 12, 6; 9)
q0 = 3, q1 = 4, i = 1 (17, 36, 12; 16)
q0 = 4, q1 = 5, i = 1 (26, 80, 20; 25)

The (10,12,6;9) code in the example is optimal. The codes (17,36,12;16) and
(26,80,20;25) are ‘quasi’ optimal because the maximum value forM derived from
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the Plotkin bound given in Theorem2.2.2 is 37 in the first case and 81 in the
second case.

2.8 The Decoding Problem

The decoding problem for an(n,M, q; d) code is as follows: For a given vector
x ∈ Qn, find a codeword inC which has a fixed given Hamming distance tox.
The problem of finding efficient decoding algorithm for certain classes of codes
is one of main important problems studied in algebraic coding theory. Several
efficient decoding algorithms have been derived for certain classes ofq-ary codes.

The list decoding problem was introduced independently by Elias [7] and
Wozencraft [8] in the late 50’s. The notation of list decoding is used for the
decoding algorithm for which the goal is to output the list of all codewords within
a specified distance from the given arbitrary vector.

The list decoding problem can be described as follows:
Given an(n,M, q; d) codeC and an arbitrary vectorx ∈ Qn. Find all code-

words inC within a specified Hamming distance fromx.
In [20, 21], Sudan develops a first efficient list decoding algorithm for Reed-

Solomon codes, which has polynomial runtime in the length of the code,poly(n).
The method has been improved since then.

In [24, 27] Guruswami and Sudan present efficient list decoding algorithms for
Reed-Solomon codes, algebraic-geometric and certain concatenated codes. Their
algorithms discover all codewords that lie within some multiple of half the mini-
mum distance from the given vector.

List decoding techniques have found applications for the traceability codes for
digital fingerprinting presented in Chapter4.



Chapter 3

Perfect Hash Families

3.1 Introduction

Perfect hash families (PHF), due to their significant applications in information
retrieval, have undergone considerable investigation, see, e.g., [40] and [44] for
extensive surveys.

Recently, perfect hash families have found numerous interesting applications
to computer sciences and cryptography. Perfect hash families were introduced by
Mehlhorn in compiler design to prove lower bounds on the size of a computer
program. In the last few years, perfect hash families have been applied to circuit
complexity problems, database management, operating systems, derandomization
of probabilistic algorithms and broadcast encryption. More recently, they found
applications in secret sharing, key distribution patterns, non-adaptive group test-
ing algorithms, in constructing cryptographic codes, covering arrays and efficient
multicast re-keying schemes.

Two application examples of perfect hash families, namely codes with trace-
ability property and covering arrays, are studied in the next chapters.

One of the fundamental and most studied problems in computer science is
the dictionary problem. For a given setX of w keys belonging to a universe
A = {1, 2, ..., M} , X ⊆ A it is required to store the keyx ∈ X in some data
structure so that the membership queries of the form‘is x in X?’ can be answered
quickly.

Perfect hashing is one of the best methods to solve this problem in the static
case, when no deletion or insertion of elements inX occurs. An overview of the
perfect hashing is given in [40].

A hash functionis a functionh : A −→ B, where|A| = M ≥ |B| = m, that
map the keys fromA into set of integersB. Given a keyx ∈ A, the hash function
computes an address, i.e., an integer fromB, for the storage ofx. The storage

19
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area used to store keys is known as ahash table.
The functionh is called a perfect hash function forX ⊆ A if it is injective on

X. Thus a perfect hash function transforms each key ofX into an unique address
in the hash table.

The family of hash functions is called aperfect hash familyfor the universeA
if for any subsetX ⊆ A such that|X| ≤ w, there exists at least one hash function
which is perfect onX.

Perfect hash families are used in constructing hash tables see, for example,
[33]. When perfect hash families are used, there is no need to know the subsetX
beforehand as the existence of a perfect hash function for each subset is guaranteed
from the definition.

Combinatorial structures of perfect hash families have been studied by several
researchers.

Necessary conditions for the existence of a perfect hash family can be found
in [32, 35, 37, 43]. We provide a new necessary condition for the existence of a
perfect hash family as upper bound on the sizeM of universeA. This result has
been presented in the papers [41], [42] and [45]. A comparison of the existing
bounds shows that our bound is stronger than other known bounds for some pa-
rameter sets. It is better than Fredman-Komlós and K̈orner-Marton bounds almost
everywhere.

Probabilistic methods are used to obtain sufficient conditions on existence of
perfect hash families in [30, 32, 35, 43, 47]. These results together with necessary
conditions theoretically state that for any fixedm andw, m ≥ w there exists
an infinite class of perfect hash families withn = Θ(log M), wheren is the
number of hash functions. However, these existence results are not constructive
and it is believed to be a difficult problem to give explicit constructions, which
are as good asymptotically. Several explicit constructions have been presented in
[34, 37, 38, 43, 46, 48, 49].

We focus on explicit construction techniques for perfect hash families. Firstly,
we provide an explicit recursive construction of an infinite class of perfect hash
families with the best known asymptotic behavior among similar known classes.
Secondly, we present a new construction technique for perfect hash families using
mutually orthogonal Latin squares, orthogonal arrays and recursive techniques.
As result we obtain an infinite class of perfect hash families covering very large
parameter ranges. The first construction has been presented also in the papers [42]
and [45] and the second construction in the [72], [82] and [83].

In Section3.2we define perfect hash families and present notation and exam-
ples. Section3.3 is a survey on known necessary conditions, upper bounds on the
size of universeA. A new upper bound is presented in Section3.4. Section3.5
includes comparison of bounds. Several known existence results are given in Sec-
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tions3.6 and3.7. Some open research problems are discussed. Two new classes
of perfect hash families are emphasized in Theorems3.7.7and3.7.8. Our new
recursive constructions are described in Section3.8. As result infinite classes of
perfect hash families are obtained. Finally, Section3.9summarizes the chapter.

3.2 Definitions

A finite setH of n functionsh : A −→ B, where|A| = M ≥ |B| = m, is called
an(n,M, m)-hash family, denoted by(n,M, m)−HF .

Definition 3.2.1 Let M , m, w be integers such thatM ≥ m ≥ w ≥ 2. An
(n,M, m)-hash familyH is called an(n, M,m, w)-perfect hash family , denoted
(n,M, m, w) − PHF , if for any subsetX ⊆ A with |X| = w, there is at least
one functionh ∈ H such thath is injective onX.

Instead ofm we will also use the notationq to emphasize the fact thatq is a power
of a prime number.

An (n,M, q) codeC can be depicted as anM × n matrix C on q symbols,
where each row of the matrix corresponds to one of the codewords. Similarly, an
(n,M, m)−HF ,H, can be presented as anM × n matrix onm symbols, where
each column of the matrix corresponds to one of the functions inH.

Definition 3.2.2 Let C be anM × n matrix onm symbols corresponding to an
(n,M, m, w)-perfect hash family. Then for any fixedw′ rows ofC, w′ ≤ w, there
is at least one column ofC with all distinct symbols on that fixed rows. MatrixC
satisfying this property is called aw-separate(M,n, m) matrix.

It is clear that if there exists aw-separate(M, n,m) matrix then there exists
also an(n,M,m, w)-perfect hash family.

Definition 3.2.3 For any fixedn,m and w denote the maximal value ofM for
which an(n,M, m, w)− PHF exists byM(n,m,w). For any fixedM, m andw
denote the minimal number of hash functionsn for which an(n,M, m,w)−PHF
exists byn(M, m, w). An (n,M,m, w) perfect hash family is called optimal if
M = M(n,m, w).

For any fixedw andm we are interested in studying the behavior ofM(n,m, w)
as a function onn.

We present two examples of optimal perfect hash families. In the first example
we have an optimal(4, 9, 3, 3)− PHF . It is not difficult to check that the matrix
given in the example is a 3-separate(9, 4, 3) matrix, i.e., an(4, 9, 3, 3) − PHF .
The optimality will be proved in Section3.4.
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Example 3.2.4 An optimal(4, 9, 3, 3)− PHF , i.e., 3-separate(9, 4, 3) matrix.

C =




1 1 1 1
1 2 2 2
1 3 3 3
2 1 2 3
2 2 3 1
2 3 1 2
3 1 3 2
3 2 1 3
3 3 2 1




The second example presented here was found by computer (Tran van Trung).
The optimality of this family also will be proved in Section3.4.

Example 3.2.5 An optimal(6, 8, 4, 4)− PHF , i.e., 4-separate(8, 6, 4) matrix.

C =




1 1 1 2 4 1
2 1 4 1 3 2
1 2 3 3 2 3
2 2 2 4 1 4
3 3 3 2 1 2
4 3 1 4 3 3
3 4 2 1 2 1
4 4 4 3 4 4




3.3 Necessary Conditions

The problem of finding a lower bound onn(M,m, w), i.e, an upper bound on
M(n,m, w), has been studied by many authors.

We study here an upper bound onM(n,m, w). We will rewrite some of known
lower bounds onn(M, m, w) here as upper bounds onM(n,m, w).

Let C be a 2-separate(M, n, m) matrix. ThenC has all distinct rows. On
the other hand a matrix with all pairwise different rows is 2-separate. The total
number of all distinct vectors of lengthn with symbols from an alphabet of size
m is mn. Taking themn such distinct vectors as rows of a matrix we obtain a
2-separate(M,n, m) matrix, i.e, an(n,mn,m, 2)− PHF . Thus

M(n,m, 2) = mn.

So hereafter we study the upper bound onM(n,m, w) for w ≥ 3.
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For any integera andb, a ≥ b define

ab =
b−1∏
i=0

(a− i).

f(n) andg(n) are functions of positive integersn, which take positive (but
not necessary integer) values for alln. We say thatf(n) ¹ g(n) if f(n) ≤
(1 + 0(1))g(n), where 0(1) tends to zero whenn tends to infinity.

Fredman and Komlòs in [32] have obtained upper bounds onM(n,m, w)
which can be expressed in the following form in [35].

Theorem 3.3.1 [32]

1

n
log M(n,m, w) ¹ mw−1

mw−1
log (m− w + 2) (3.1)

Körner and Marton have established a bound which is stronger than Fredman-
Komlòs bound (3.1) for many parameter sets.

Theorem 3.3.2 [35]

1

n
log M(n,m, w) ¹ min

0≤j≤w−2

mj+1

mj+1
log (

m− j

w − j − 1
) (3.2)

for j = 0, 1, · · · , w − 2.

Bound (3.2) matches with bound (3.1) for j = w−2. Both bounds are asymp-
totic in nature. Bound (3.2) as given in [35], is in a different form. After correction
of a minor mistake the bound looks as follows in [37]:

Theorem 3.3.3 [37]

M(n,m,w)j+1

M(n,m,w)j+1
log

M(n,m, w)− j

w − j − 1
≤ n min

0≤j≤w−2

mj+1

mj+1
log

m− j

w − j − 1
(3.3)

for j = 0, 1, · · · , w − 2.

The extreme casej = 0 is interesting. In this case the bound looks as follows:

Lemma 3.3.4

M(n,m, w) ≤ (w − 1)(
m

w − 1
)n. (3.4)
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In [43] Blackburn and Wild give an upper bound onM(n,m, w) which is bet-
ter than the Fredman-Komlòs and the K̈orner-Marton bounds for many parameter
sets. The Blackburn-Wild bound is given in the following theorem (see Theorem
1 in [43]):

Theorem 3.3.5 [43]

M(n,m, w) ≤ (w − 1)(md n
w−1

e − 1). (3.5)

In particular, whenw > n we have:

Corollary 3.3.6 For w > n

M(n,m, w) ≤ (w − 1)(m− 1). (3.6)

Corollary 3.3.7 [43]
For all sufficiently large integersm and any real number d withd > d n

w−1
e we

have

M(n,m, w) ≤ dmde − 1. (3.7)

In Theorem2 in [43] the authors present another bound which is stronger than
bound (3.5) for some parameter sets.

Theorem 3.3.8 [43]

M(n,m, w) ≤ md n−1
w−1

e+1

w − 1
+ w(md n−1

w−1
e − 1) + m− 1. (3.8)

Theorems (3.3.5) and (3.3.8) give the following result forw = 3:

Corollary 3.3.9 [43]

M(n,m, 3) ≤ 2(mdn
2
e − 1) (3.9)

M(n,m, 3) ≤ mdn+1
2
e

2
+ 2mdn−1

2
e−1 + m− 4. (3.10)

It states in [43] that Fredman-Koml̀os bound (3.1) and Körner-Marton bound
(3.2) are better than Blackburn-Wild bound (3.5) whenw is close tom. But when
n → ∞ andm andw are fixed, bound (3.5) is stronger than bounds (3.1) and
(3.2) for many values ofw andm.
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3.4 New Upper Bound

Our main result of this section is given in view of Theorem3.4.11. To obtain the
upper bound, we first prove two lemmas, Lemma3.4.1and Lemma3.4.4. The
following lemmas are useful for the discussions in the sequel.[45]

Lemma 3.4.1 Let C be w-separate(n,M, m)-matrix with M = M(n,m, w).
Then for an arbitrarym, m ≥ 3 the following relation holds:

(i) if w ≥ 2n, then

M(n,m, w) = m

(ii) if w ≥ 2n− 1, then

M(n,m, w) ≤ bw+1
w−1

(m− 1)c if n− 1 does not divide m− 1

M(n,m, w) = w+1
w−1

(m− 1) if n− 1 divides m− 1

(iii) if w ≥ 2n− 2, then

M(n,m, w) ≤
{ bw−2

w−4
(m− 1)c if n > 3

≤ 3m− 6 if n = 3

Proof:

For convenience, we call an elementx of the symbol setB, |B| = m, a
special element, if x occurs more than once in a column of the matrixC.

(i): Let w ≥ 2n. Suppose thatM(n,m, w) > m. Then, evidently,
each column in the matrixC contains at least one special symbol. Choose
a pair of such special elements from each column and mark out those rows
in matrix C where the chosen elements stand. Clearly, the number of such
rows in the matrix is2n. Then anyw rowed submatrix ofC with marked
out rows will contain no column whose all elements are distinct. Thus we
obtain that the matrixC is not w-separate. This is a contradiction which
proves (i).

(ii ): Let w = 2n− 1. On one hand, the number of special elements in each
column of the matrix is not less thanM(n,m, w)−m + 1. (This number is
equal toM(n,m, w)−m+1, if in any column of the matrix there exists only
a single element of such kind). On the other hand, any row of the matrix
may contain at most one special element, otherwise there will be2n − 1
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rows of the matrixC which do not contain a column whose all elements are
distinct.

Hence, we may write

(M(n,m, w)−m + 1)n ≤ M(n,m,w)

or

M(n,m, w) ≤ bn(m− 1)

n− 1
c = bw + 1

w − 1
(m− 1)c.

Now we need to give a construction which achieves this bound to complete
the proof of (ii ).

Construction:Letw = 2n−1 and(n−1) divides(m−1). Then we will take
a vector of lengthn(m−1)

n−1
with a single special element in its(i− 1)m−1

n−1
+1

to im−1
n−1

position asi-th (i = 1, . . . , n) column of the matrix. Naturally, the
matrix isw-separate.

Example 3.4.2 An optimal(5, 15, 13, 9)−PHF , i.e.,9-separate(5, 15, 13)
matrix:

C =




1 2 2 2 2
1 3 3 3 3
1 4 4 4 4
2 1 5 5 5
3 1 6 6 6
4 1 7 7 7
5 5 1 8 8
6 6 1 9 9
7 7 1 10 10
8 8 8 1 11
9 9 9 1 12
10 10 10 1 13
11 11 11 11 1
12 12 12 12 1
13 13 13 13 1




.

( iii ):

Let w = 2n− 2, n > 3.

First, suppose that for any two columns of matrixC, there exists no row
in the matrix which incudes a special element chosen from both columns.
Then we have the following inequality:
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n(M(n,m, w)−m + 1) ≤ M(n,m, w)

or

M(n,m, w) ≤ bn(m− 1)

n− 1
c = bw + 2

w
(m− 1)c. (3.11)

Now suppose that in the matrixC there exist two columns such that they
both simultaneously have a special element at least in one row. Then any
other two columns among the remainingn − 2 columns in the matrix have
no special element on any row, otherwise the matrixC will not be (2n− 2)-
separating. Hence, we have

(n− 2)(M(n,m, w)−m + 1) ≤ M(n, m,w)

or

M(n, m,w) ≤ bn− 2

n− 3
(m− 1)c = bw − 2

w − 4
(m− 1)c. (3.12)

Comparing (3.11) and (3.12) we have the first case of (iii ).

Now consider the case forn = 3, w = 4.

First, suppose that there exist two columns in the matrixC for which there is
no row inC on which both columns have a special element simultaneously.
Then we have the inequality

2(M(3, m, 4)−m + 1) ≤ M(3,m, 4)

or

M(3,m, 4) ≤ 2(m− 1). (3.13)

Now let two columns in each of three pairs of columns simultaneously have
a special element on any row of the matrix. In this case the following two
conditions are necessary forC to be 4-separate:

1. Each column has at least two distinct special elements.

2. There are no more than two special elements on each row.
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From condition 1.) it follows that the number of special elements in each
column is no less thanM(3,m, 4) − m + 2. And from condition 2.) it
follows that there are at most2M(3,m, 4) special elements in the matrix.
Combining these facts gives

3(M(3,m, 4)−m + 2) ≤ 2M(3,m, 4)

or

M(3,m, 4) ≤ 3m− 6 (3.14)

From (3.13) and (3.14) the second case in (iii ) follows. This completes the
proof of the lemma.

We claim that, in the manner exactly analogous to the one given in Lemma3.4.1,
one may obtain similar bounds also for other values ofw.

In a recent paper Blackburn proves similar results to the ones in Lemma3.4.1
using the linear programming terminology (seePropositions 2,3 and 4in [49]).
We present here these results.

Proposition 2in [49] with Theorem 2in [49] covers the case (i) of Lemma
3.4.1.

Proposition 3in [49] with Theorem 2in [49] gives the following bound:

M(n,m, 2n− 1) ≤ w + 1

w − 1
m.

This is weaker than the bound of case (ii) in Lemma3.4.1.
Proposition 4in [49] with Theorem 2in [49] gives the following bound:

M(n,m, 2n− 2) ≤ w − 1

w − 3
m. (3.15)

This is stronger than case (iii) in Lemma3.4.1when2m ≥ w2 − 5w + 6, and is
weaker otherwise.

Proposition 5in [49] with Theorem 2in [49] gives the following bound:

M(n,m, w ≥ 2n− 3) ≤




4m if n = 4,
9/5m if n = 5,
w−3
w−5

m if n ≥ 6.
(3.16)

Proposition 6in [49] with Theorem 2in [49] gives the following bound:

M(6,m, 8) ≤ 2m. (3.17)

In the general case (seeproof of Theorem 1in [49]) it is shown that:
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Lemma 3.4.3 [49] For any w ≥ 2 and positive integerm

M(n,m, w) ≤ nm

if w > n.

This bound is weaker than the bounds from Lemma3.4.1, or bounds (3.15)
and (3.16) whenw ≥ 2n− 2. It is stronger than bound (3.6) if w − 1 > n.

Lemma 3.4.4 [45] For any integersn, m andw, (w ≤ m), the following bound
holds:

M(n,m, w) ≤ bM(n− 1,m, w)
m

w − 1
c.

Proof: Let C be thew-separate(M,n, m)-matrix, whereM = M(n,m, w).
Consider any column ofC. Without loss of generality consider the 1st col-
umn, and letxi, 1 ≤ i ≤ m, be the number of symboli in that column.
Then

m∑
i=1

xi = M(n,m, w).

Choosew − 1 greatest numbers ofx1, x2, . . . , xm. By rearranging the rows
we can assume that they are firstw − 1 numbers,x1, x2, . . . , xw−1. Let∑w−1

i=1 xi = A for someA. Then we have

A ≥ M(n,m, w)

m
· (w − 1), (3.18)

sinceM(n,m, w)/m is the average multiplicity of an element in that col-
umn.

Now consider aA × n matrix C ′ which is a submatrix ofC, such that its
rows are the rows ofC, for which the symbol on the first position belongs
to the set{1, 2, ..., w − 1}. C′ is w-separate asC is w-separate. LetC′′ be a
A × (n − 1) matrix obtained fromC ′ after deleting the first column. This
matrix C′′ is w-separate since there are now pairwise distinct symbols in
the first column ofC′. Hence

A ≤ M(n− 1,m, w). (3.19)

From (3.18) and (3.19) we obtain

M(n,m, w)

m
· (w − 1) ≤ M(n,m, w)

which proves the lemma.
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For some small cases the following facts are known.

Lemma 3.4.5 [37]
M(3, 4, 4) = M(4, 4, 4) = 5.

Example 3.4.6 [37] An (3, 5, 4, 4)− PHF

C =




1 1 1
1 2 2
2 3 3
3 3 4
4 4 1




.

Lemma 3.4.7 [37]
M(5, 4, 4) = 6

Example 3.4.8 [37] An (5, 6, 4, 4)− PHF

C =




1 1 1 1 1
1 2 1 1 2
1 3 2 2 3
2 4 2 3 3
3 3 3 4 4
4 4 4 4 4




.

Here we prove the following:

Lemma 3.4.9 M(6, 4, 4) = 8.

Proof: Applying the result in Lemma3.4.4to Lemma3.4.7we get

M(6, 4, 4) ≤ 8.

Thus, from Example3.2.5it follows thatM(6, 4, 4) = 8.

This proves our claim that the family in Example3.2.5is optimal.

Lemma 3.4.10 [37]
M(3, 5, 4) ≤ 9.
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From Lemmas3.4.1and3.4.4we obtain a new bound onM(n,m,w).

Theorem 3.4.11 [45]
The upper bound onM(n,m, w) is given by:

M(n,m, w) ≤ bbbA× m

w − 1
c m

w − 1
c × · · · × m

w − 1
c

︸ ︷︷ ︸
n−n1

(3.20)

where

A =




bw+1

w−1
(m− 1)c for w = 2n1−1

bw−2
w−4

(m− 1)c for w = 2n1−2 n1 > 3

3m− 6 for w = 4 n1 = 3

(3.21)

This bound together with Example3.2.4shows thatM(4, 3, 3) = 9 and proves
the claim that the perfect hash family given in Example3.2.4is optimal.

We remark that bound (3.20) can be improved for other choices ofn1 and
A ≥ M(n1,m, w). For example ifn1 andM(n1,m, w) are chosen from Lemma
3.4.3or from bound (3.16) then bound (3.20) will be stronger for some parameter
sets. In the examples presented in the next section bound (3.20) is the stronger
whenA is given by (3.21).

3.5 Comparison of Bounds

First we compare bounds (3.1) and (3.2). To do this we prove the following
lemma:

Lemma 3.5.1 [45] For any fixedw, there exists a numberm0(w) such that for all
m > m0(w), the minimum of the right side in the Körner-Marton bound (3.2)

1

n
log M(n,m, w) ¹ min

0≤j≤w−2

mj+1

mj+1
log

m− j

w − j − 1
(3.22)

achieves forj = 0.

Proof: Denote by

Aj(m,w) =
mj+1

mj+1
log

m− j

w − j − 1
.

We computeAj+1(m,w) − Aj(m,w), 0 ≤ j ≤ w − 3. Aj+1(m,w) −
Aj(m,w) = mj+2

mj+2 log m−j−1
w−j−2

− mj+1

mj+1 log m−j
w−j−1

=
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= mj+1

mj+2 [(m− j − 1) log m−j−1
w−j−2

−m log m−j
w−j−1

] =

= mj+1

mj+2 [log [ (m−j−1)(w−j−1)
(m−j)(w−j−2)

]m − log (m−j−1
w−j−2

)j+1].

Sincew ≥ k and(m−j−1)(w−j−1)
(m−j)(w−j−2)

> 1, the value[ (m−j−1)(w−j−1)
(m−j)(w−j−2)

]m increases

faster than(m−j−1
w−j−2

)j+1 whenm increases. Further, it is clear that there exists
a numberm0(w, j) such that form > m0(w, j) we haveAj+1(m,w) −
Aj(m,w) > 0.

Take
m0(w) = min m0(w, j).

Then for allm > m0(w) the valueAj(m,w) increases monotonely withj,
which proves the lemma.

Lemma 3.5.1 in particular shows that except for a finite values ofm the
Körner-Marton bound (3.2) is better than the Fredman-Komlòs bound (3.1). We
remark that Lemma3.5.1compares the K̈orner-Marton bound and the Fredman-
Komlòs bound in the general case. Some attempts to compare these bounds for a
few particular cases have been done in [39]. The results we present here in view
of Lemmas3.5.3and3.5.4.

Lemma 3.5.2 [39] For m ≥ 4 andw = m, the K̈orner-Marton bound (3.2) is the
strongest whenj = m− 2 for n ≥ n0.

Note that forj = w − 2 bound (3.2) is originally given by Fredman-Komlòs
(bound (3.1)).

Lemma 3.5.3 [39] For m ≥ 3 andw = 3 the Körner-Marton bound (3.2) is the
strongest whenj = 0 for n ≥ n0.

Lemma 3.5.4 [39] For m ≥ 5 andw = 4 the Körner-Marton bound (3.2) is the
strongest whenj = 0 for n ≥ n0.

Comparing bound (3.4) with bound (3.20) we come to the following conclu-
sion:

For a fixedw there exists am0(w) such thatm > m0(w) the Körner-Marton
bound is stronger than the Fredman-Komlòs bound. In the case when the Körner-
Marton bound is stronger than the Fredman-Komlòs bound, then our bound (3.20)
is better than both these bounds. Bounds (3.1) and (3.2) and (3.20) are better than
bound (3.5) whenw is close tom. If n →∞ with fixedm andw, the Blackburn-
Wild bound is stronger for many values ofw andm.

Our investigation shows that for some values ofw andm our bound is stronger
than other known bounds. We illustrate this by an example.
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Example 3.5.5 Letm = 9, w = 5, for n > 3

bound 3.3 case j = 3 M(n, 9, 5) ¹ (2.2837)n

bound 3.3 case j = 2 M(n, 9, 5) ¹ 2(2, 3776)n

bound 3.3 case j = 1 M(n, 9, 5) ¹ 3(2.3913)n

bound 3.3 case j = 0 M(n, 9, 5) ≤ 4.(2.25)n

bound 3.5 M(n, 9, 5) ≤ 4(9d
n
4
e − 1)

bound 3.20 M(n, 9, 5) ≤ bbb12 · 2.25c2.25c× · · · ×2.25c︸ ︷︷ ︸
n−3

Takingn = 9 we get

bound 3.3 case j = 3 M(9, 9, 5) ¹ 1689
bound 3.3 case j = 2 M(9, 9, 5) ¹ 4856
bound 3.3 case j = 1 M(9, 9, 5) ¹ 7671
bound 3.3 case j = 0 M(9, 9, 5) ≤ 5911
bound 3.5 M(n, 9, 5) ≤ 2912
bound 3.20 M(9, 9, 5) ≤ 1532

Takingn = 5 and calculating the possible exact value (in oppose to asymptotic
value) for bound (3.3) in casej = 3 we get

bound 3.3 case j = 3 M(5, 9, 5) ≤ 87
bound 3.3 case j = 2 M(5, 9, 5) ¹ 151
bound 3.3 case j = 1 M(5, 9, 5) ¹ 234
bound 3.3 case j = 0 M(5, 9, 5) ≤ 230
bound 3.5 M(5, 9, 5) ≤ 320
bound 3.20 M(5, 9, 5) ≤ 60
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3.6 Existence Results

The following theorem is obtained by a simple probabilistic argument.

Theorem 3.6.1 [30] A (n,M, m,w)-perfect hash family exists where

n ≥ log
(

M
m

)

log mw − log (mw − w!
(

m
w

)
)
. (3.23)

A weaker result is derived in [31] by performing some simple approximations.

Theorem 3.6.2 [30] There exists an(n,M, m, w)-perfect hash family with

n ≥ we
w2

m log M. (3.24)

The result of Theorem3.6.1has been improved in [47] for some parameter sets.

Theorem 3.6.3 [47] There exits an(n,M, m, w)-perfect hash family with

n ≥ log 4(
(

M
m

)− (
M−w

w

)
)

log mw − log (mw − w!
(

m
w

)
)
. (3.25)

It is stated in [47] that bound (3.25) is better that the classical bound (3.23) when-
ever 3

4

(
M
w

)
<

(
M−w

w

)
; this inequality holds whenw is small compared withM . It

is also shown in [47] that bound (3.25) is tight for sufficiently largem. The upper
and lower bounds onM(n,m, w) are given in the following form in [35].

Theorem 3.6.4 [32, 35]

1

w − 1
log

1

1− mw

mw

¹ 1

n
log M(n,m, w) ¹ mw−1

mw−1
log (m− w + 2)

Thus, the theorem states that

n = Θ(log M).

However, the existence results discussed above are non-constructive.

Linear perfect hash families are considered in [43]. Let C be the matrix rep-
resenting a perfect hash family. A perfect hash family is called linear ifC cor-
responds to a linear code. In [43], a probabilistic argumentation shows that there
exists a linear(n, qi, q, w)−PHF , wheren = i(w−1) for sufficiently large prime
powerq. It is also shown that no linear(n, qi, q, w)−PHF exists ifn < i(w−1).
Thus the authors call the linear perfect hash familyoptimal if n = i(w − 1).
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Theorem 3.6.5 [43] Let i andw be integer such thati ≥ 2 andw ≥ 2 and letq be
a prime power,M = qi. If a linear (n,M, q, w)−PHF exits , thenn ≥ i(w − 1).
Furthermore, ifq ≥ (1

2
w(w − 1))i(w−1) then a linear(n,M, q, w) − PHF exists

with n = i(w − 1).

The proof of the theorem is probabilistic, and produces no explicit classes of
perfect hash families.

Hereafter, we consider explicit constructions for perfect hash families in op-
pose to existence results.

3.7 Direct Constructions

In [43] it is shown that the techniques of Theorem3.6.5suffice to construct explicit
classes of linear perfect hash families in certain cases. It is shown for instance, that
there exist explicit constructions for(n,M, q, w)−PHF wheren = (w−1) log M

log q
.

These constructions require the prime powerq to be very large compared tow and
n.

A direct connection between error-correcting codes and perfect hash families,
due to Alon is as follows:

Theorem 3.7.1 [34] Suppose there is an(n,M, m) codeC with minimum Ham-
ming distanced. Then there is an(n,M, m,w)− PHF , where

(n− d)

(
w

2

)
< n.

Proof: Let C be the matrix representingC. ThenC is anM × n matrix, whose
entries are from a set ofm symbols. The condition(n− d)

(
w
2

)
< n asserts

that for any givenw rows, sayi1, . . . , iw, of C there is at least one column
whosew entries in the rowsi1, . . . , iw are pairwise distinct. ThusC is an
(n,M, m,w)− PHF , as desired.

This theorem together with some known results on error-correcting codes (see
for example [13]) leads to several explicit constructions for perfect hash families.
The theorem shows that an error correcting code with large minimum Hamming
distance provides a perfect hash family.

We present some construction examples derived as corollaries of Theorem
3.7.1:

Corollary 3.7.2 LetC be aq-ary MDS code[n, k, d], k +d = n+1. If k = d n

(w
2)
e

for an integerw, thenC is an(n, qk, q, w)− PHF .
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From Reed-Solomon codes we have:

Corollary 3.7.3 Supposen andq are given, withq a prime power andn ≤ q + 1.

Then there exists an(n, q
d n

(w
2)
e
, q, w)− PHF .

This construction is explicit and gives perfect hash families with

n = O(log M).

However, this class of perfect hash families is quite restricted with condition
n ≤ q + 1. Also, we haveM > q for this class only ifn >

(
w
2

)
, i.e., only if

q ≥ (
w
2

)
.

In the case of the extended Reed-Solomon code overGF (pj) we may rewrite
the previous corollary as follows:

Corollary 3.7.4 Let q be a prime power withq ≥ (
w
2

)
, andj ≥ 2 be an integer.

Then there exists a(qj, qjqj−1

, qj, w)− PHF .

Several other constructions derived as corollaries of Theorem3.7.1are given
in [38] and in [46].

Lemma 3.7.5 [46] Suppose there aret MOLS of orderm. Then there exists a
(t + 2,m2,m, w)− PHF providedt >

(
w
2

)− 1.

Lemma 3.7.6 [38] Suppose there is an(M0,
(

w
2

)
+1; 1) -difference matrix and an

(n0; M0, m,w)− PHF . Then there exists a((
(

w
2

)
+ 1)n0,M0

2,m, w)− PHF .

Let C be a linearAG code defined on the Garcia-Stichtenoth (G-S) curves with
parameters given in Theorem (2.6.1).

Applying Theorem3.7.1to C we obtain the following result:

Theorem 3.7.7 For every prime powerq and any integerl ≥ 1, there exists an
(n; M, q2, w)− PHF , where

n = ql+1(q − 1),
M = q2buql+1c,
u is a real number with1 ≤ u ≤ q − 2, and

w = b1
2
(1 +

√
1 + 8

u+1
(q − 1))c.
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This construction gives infinite classes of perfect hash families wheren =
O(log M). However, this class is restricted sinceq has to be a prime power,
q >

(
w
2

)
, and also the construction algorithm complexity is polynomial inn.

All constructions as direct application of Theorem3.7.1are restrictive, in gen-
eral, in the sense that they can produce perfect hash families with largeM only if
q >

(
w
2

)
. In fact, the previous construction examples provide an evidence of this

fact, which follows from the Plotkin bound. The Plotkin bound given in Corollary
2.2.3together with Theorem3.7.1implies:

n(1− 1(
w
2

)) < d ≤ n

(
1− 1

q

)
M

M − 1
.

Thus

1− 1(
w
2

) <

(
1− 1

q

)
M

M − 1
.

So whenM →∞ for fixed q andw, we have
(

w

2

)
< q.

For smallM , however, we can construct perfect hash families withq ≤ (
w
2

)
when

(
w
2

)
< n

n−d
. Perfect hash families in Corollary3.7.3can haveq =

(
w
2

)
. Note

however thatq ≥ n− 1.
We present a class of perfect hash families, derived from codes constructed in

Section2.7 by applying Theorem3.7.1. This class provides examples of perfect
hash families withq <

(
w
2

)
andM > q.

Theorem 3.7.8 Let q0 and q1 be prime powers such thatq1 ≥ q0, and i ≥ 1 is
an integer. Then for any integern with n ≤ q0q

i
1 + qi

1 + qi−1
1 + · · ·+ q1 + 1 there

exists an(n,M, q, w)− PHF with

M = q2
0q

i
1

q = q0q
i
1

w = d
√

8n + 1− 1

2
e.

whereq1 ≥ q0 are prime powers andm ≥ 1 is an integer.

Proof: First, recall that the parameters(N,M, q; d) of a codeC∗ in Theorem
2.7.8(ii) areN = q0q

i
1 + qi

1 + qi−1
1 + · · ·+ q1 +1, M = q2

0q
i
1, q = q0q

i
1, and

d = N−1, wherem ≥ 1 is an integer. We remark that ifC∗ is shortened, the
resulting code with lengthn ≤ N always has minimum distanced = n− 1.
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Let (n,M, q; n− 1) be the parameters of a shortened codeC of C∗ (the case
C = C∗ is also included). So,n ≤ N . Let w = d

√
8n+1−1

2
e. By Theorem

3.7.1, C is aw-perfect hash family. The proof is complete.

Example 3.7.9 From Theorem3.7.8we obtain:

q0 = 3, q1 = 4, i = 1 (17, 36, 12, 6)− PHF,
(

w
2

)
= 15 > q = 12.

q0 = 4, q1 = 5, i = 1 (26, 80, 20, 7)− PHF,
(

w
2

)
= 21 > q = 20.

q0 = 3, q1 = 5, i = 3 (531, 1125, 375, 33)− PHF,
(

w
2

)
= 528 > q = 375.

Note that the condition in Theorem3.7.1is sufficient for a code to be a perfect
hash family but it is not necessary.

For example, whenn = 6 andw = 4 Theorem3.7.1 provides no perfect
hash families withM > 4. However, a(6, 8, 4, 4)-perfect hash family exists (see
Example3.2.5).

More generally, the explicit constructions as described in the rest of this sec-
tion provide classes of perfect hash families, for which the condition of Theorem
3.7.1does not hold.

Theorem 3.7.10 [37] For every integerf > 3 there exists an explicitly con-
structed(5, 2f , 2f−1, 4)− PHF .

Theorem 3.7.11 [47]
For every prime numberp, such thatp = 11 or p ≥ 17 there exists an explicitly

constructed(6, p2, p, 4)− PHF .

Theorem 3.7.12 [49]
For every integera ≥ 2 there exists an explicitly constructed(w, aw, aw−1, w)

−PHF .

This improves the result in Theorem3.7.10whenw = 4. Takinga = 2i from
Theorem3.7.12we have a(4, 24i, 23i, 4) − PHF , while takingf − 1 = 3i in
Theorem3.7.10we get(5, 23i+1, 23i, 4)− PHF .

An other interesting result is given in [49] as follows:

Theorem 3.7.13 [49]
M(n,m, w) = O(m) if and only ifw > n.
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In the case whenn > w andm → ∞ the problem of computing the exact
constantc in M(n,m,w) = cm by providing an explicit construction and a tight
bound is reduced to linear programming problems [49]. Some examples given
in [49] achieve the bounds in Lemma3.4.1, or bounds (3.15), (3.16) and (3.17),
whenm →∞.

An optimal class of perfect hash families forw = 2n− 1 and(n− 1)|(m− 1)
can be found in the proof of Lemma3.4.1.

3.8 Recursive Constructions

Some recursive constructions given by several authors produce perfect hash fam-
ilies with small fixedm andw andn →∞.

Two recursive constructions are given in [38]. Using an easily constructed
specific family of difference matrices and Lemma3.7.6 the following result is
obtained iteratively.

Theorem 3.8.1 [38] Suppose there exists an(n0,M0, m,w)−PHF and suppose
that gcd(n0,

(
w
2

)
!) = 1. Then there exists a((

(
w
2

)
+ 1)jn0,M0

2j

,m, w) − PHF
for any integerj ≥ 1.

Theorem3.8.1states that for fixedm andw we can construct an infinite class
of (n, M,m, w) perfect hash families, wheren is O((log M)log((w

2)+1)).
As immediate result of theorem we have:

Corollary 3.8.2 [38] There exists a(3 × 4j, 52j
, 3, 3) − PHF for any integer

j ≥ 1.

With the above parameters, we have

n ≈ 0.556(log M)2.

The second recursive construction in [38] is given in the following theorem:

Theorem 3.8.3 [38] Suppose the following exist:

• an (n1, M0M1,m, w)− PHF ,

• an (n2, M2,M1, w − 1)− PHF ,

• an (n3, M2,m, w)− PHF .

Then there exists an(n1n2 + n3,M0M2,m, w)− PHF .

The following corollary is an immediate consequence of Theorem3.8.3.
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Corollary 3.8.4 [38] For any integerj ≥ 2, there exists a(2j2 − 2j, 3j, 3, 3)
−PHF .

These parameters give

n ≈ 0.796(log M)2.

Further general results are given in the following theorems:

Theorem 3.8.5 [38] Suppose there exists an(a3, m
2, m, 3) − PHF . Then, for

anyj ≥ 2, there exists an(a3

(
j
2

)
,mj,m, 3)− PHF .

By using Theorem3.8.5for w = 4 we have:

Theorem 3.8.6 [38] Suppose there exists an(a3,m
2,m, 3)−PHF and an(a4,m

2,
m, 4) − PHF . Then, for anyj ≥ 2, there exists an(a4(a3

(
j
3

)
+ 1),mj,m, 4) −

PHF .

These constructions have been generalized and improved in [37], [45], [46]
and [48].

The next lemma shows a simple product type construction of perfect hash
families, also called composition or concatenation.

Lemma 3.8.7 Suppose there exist an(n0,M0,m0, w)−PHF and an(n1,M1,m1,
w)− PHF , wherem1 ≤ M0. Then there exists an(n0n1, M1,m0, w)− PHF .

From Lemma3.8.7and from a particular case of Corollary3.7.3whenn =(
w
2

)
+ 1 we obtain the following class of perfect hash families:

Lemma 3.8.8 [37] For any prime powerq and any integerw with
(

w
2

)
< q there

exists a((
(

w
2

)
+ 1)j,m2j

, q, w)− PHF wherej ≥ 1 is any integer.

In caseq = w = 3 this lemma gives a(4j, 32j
, 3, 3)−PHF for any integerj ≥ 1.

These perfect hash families have

n ≈ 0.398(log M)2.

From Lemmas3.8.7and3.7.5it follows:

Lemma 3.8.9 [46] Suppose there exist
(

w
2

)−1 MOLS of orderM0 and an(n0,M0,
m,w)− PHF . Then there exists a((

(
w
2

)
+ 1)n0, (M0)

2,m,w)− PHF .
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3.8.1 The First New Infinite Class

By combining Lemma3.8.7and Theorem3.7.7we can prove the following result:

Theorem 3.8.10For every given integersw,m, wherem ≥ w ≥ 2, and for any
integerl ≥ 1, there exists an(n, M,m, w)-perfect hash family with

n = n0.(q − 1)ql+1,
M = q2buql+1c,
wheren0 is a constant,q is a prime power such thatq ≥ w(w−1)(u+1)

2
+ 1,

andu is a real number with1 ≤ u ≤ q − 2.

Moreover, we haven = O(log M).

Proof: Let w,m, m ≥ w ≥ 2, be given integers. Letq be the smallest prime

power such thatw = b1
2
(1 +

√
1 + 8

u+1
(q − 1))c, with 1 ≤ u ≤ q −

2, as shown in Theorem3.7.7. A simple observation shows that we can
always construct an(n0, q

2, m,w)−PHF explicitly for a certain valuen0.
Applying Lemma3.8.7and Theorem3.7.7yields the perfect hash families
with parameters as claimed.

We remark that the idea of using Garcia-Stichtenoth (G-S) curves and the
simple product construction to derive infinite class of perfect hash families with
n = O(log M), for fixed m andw is first given in [48] with a slightly different
interpretation.

It should be noticed that the first low-complexity algorithm for constructing
“one-point”AG codes on G-S curves has a runtime upper-bounded by(n logq n)3,
wheren the length of the code and the complexity is measured in terms of mul-
tiplications and divisions over the finite fieldFq2 [28]. The complexity of con-
structingw-perfect hash families in Theorem3.8.10is, therefore, polynomial in
n.

3.8.2 The Second New Infinite Class

Next we will describe an explicit new construction of an infinite class of perfect
hash families with the best known asymptotic behavior among similar classes.
This result has been presented in the papers [42], [45]. We should remark that
this result is independently obtained also in [46]. Here we will present also the
interpretations and notation in [46] since it is useful for our discussions in the next
two chapters.
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From Lemma3.8.7together with Corollary3.7.4we obtain an infinite class
of perfect hash families for any integersm and w with very good asymptotic
behavior.

The construction algorithm can be described step by step as follows:
Construction algorithm:
Step 0:
Using some method to construct(n0, q

j,m, w) − PHF for any i ≥ 2 and
primeq ≥ (

w
2

)
.

Step 1:

We have: (n0, M0 = qj,m, w)− PHF.

Corollary3.7.4provides: (n1
′ = qj, qjqj−1

, qj, w)− PHF.

Applying Lemma3.8.7gives: (n1 = n0n1
′, M1 = qjqj−1

,m, w)− PHF.

Thus, in Step 1 we obtain a perfect hash family with

n1 =
n0

j log q
· q log M1.

...

Stepi:

From Stepi− 1 we have: (ni−1, Mi−1,m, w)− PHF.

Corollary3.7.4provides: (ni
′ = Mi−1,Mi−1

Mi−1
q ,Mi−1, w)− PHF.

Applying Lemma3.8.7gives: (ni = ni−1ni
′,Mi = Mi−1

Mi−1
q ,m,w)− PHF.

Thus, in Stepi we obtain a perfect hash family with

ni =
n0

j log q
qi log Mi.

In order to show that the last equation has the form

n = Θ(ϕ(log M))

we perform the following approximations:
From the recurrent relation
Mi = Mi−1

Mi−1
q andM0 = qj, we obtain

Mi = qαi−1qαi−2...α1qα0qj−1

(3.26)
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whereα0 = j, andαl = Ml−1

q
for 1 ≤ l ≤ i− 1.

Takingαl = 1 for all 1 ≤ l ≤ i− 1 in (3.26), we obtain:

Mi > qq...q
qj−1

. (3.27)

If 1 ≤ i ≤ j − 1, i.e.,qi < jqj−1, then (3.27) gives

ni = Θ


log qlog q · · · logq︸ ︷︷ ︸

i−1

Mi × log Mi




and if j − 1 < i ≤ jqj−1, then we get

ni = Θ


log qlog q · · · logq︸ ︷︷ ︸

i−2

Mi × log Mi


.

In general, we have

n = Θ


log qlog q · · · logq︸ ︷︷ ︸

r

M × log M




wherer →∞ whenn →∞.
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Example 3.8.11Casew = 3 andq = 3.

In this case the algorithm described above suggests taking the Reed-Solomon
code with the parameters(n = q − 1, k, d), whereq = 3j, k = 3j−1 and d =
2 · 3j−1 > 2

3
(3j−1 − 1) as anMDS code in corollary3.7.3. Thus we have:

Step 0:
Take: (4, 9, 3, 3)− PHF.

Step 1:

We have: (4, 32, 3, 3)− PHF.
Corollary 3.7.3provides: (8, 36, 9, 3)− PHF.
Applying Lemma3.8.7gives: (32, 36, 3, 3)− PHF.

Step 2:

From the Step 1 we have: (32, 36, 3, 3)− PHF.

Corollary 3.7.3provides: (36 − 1, 36·35
, 36, 3)− PHF.

Applying Lemma3.8.7gives: (23296, 31458, 3, 3)− PHF.

A similar construction is given with the following notation in [46].

Theorem 3.8.12Suppose there exists an(n0, q
s0 ,m, w) − PHF whereq is a

prime power andqs0 ≥ w(w−1)
2

+1. Then there exists an(n0Ri; q
si ,m, w)−PHF

for all i ≥ 0, whereR0 = 1, and

Ri = qsi−1Ri−1,

si = si−1dq
si−1

(
t
2

) e

for all i ≥ 1.

Proof: We proceed by induction oni. For i = 0, the assertion is correct. Now
assumei ≥ 1. Corollary3.7.3gives an(qsi−1 ; qsi , qsi−1 , w) − PHF when
n = q andq is replaced byqsi−1.

By induction, there exists an(n0Ri−1, q
si−1 ,m, w)− PHF . Now applying

Lemma3.8.7yields an(n0Ri, q
si ,m,w)−PHF . The proof is complete.

The asymptotic behavior of the parameters of the perfect hash families pro-
duced by Theorem3.8.12is calculated as follows in [46], pp.196-197.
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The functionlog ∗ : Z+ −→ Z+ is defined recursively by

log ∗(1) = 1

log ∗(a) = log ∗(dlog ae) + 1, if a > 1.

Note that the functionlog ∗ grows very slowly, e.g.,log ∗(a) ≤ 7 for a ≤ 2265536
.

Defineni = n0Ri andMi = qsi for all i ≥ 0.
First, we have that

si ≥ si−1q
si−1

w2
=

si−1Ri

w2Ri−1

.

Iterating this inequality, we see that

si ≥ s0Ri

w2i
.

Since

si =
log Mi

log q

and
Ri

ni

n0

,

we have that
log Mi

log q
≥ s0ni

n0w2i
.

From this, we get the following inequality:

ni ≤ n0

s0 log q
w2i(log Mi). (3.28)

For i sufficiently large, sayi ≥ i0, we have

qsi−1/w2

> 2.

Now, for i > i0, we have

Mi = qsi ≥ qsi−1qsi−1/w2

> 2qsi−1
= 2Mi−1 .

Hence, it follows that

log∗ (Mi) > i− i0 (3.29)

for all i > i0. Substituting (3.28) into (3.29), we get

ni ≤ n0w
2i0

s0 log q
(w2)log∗(Mi)(log Mi) (3.30)
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for all i > i0.
For any given values ofqs0, m andw we can always construct an(n0, q

s0 ,m, w
−PHF for somen0 (as a trivial and naive solution we may taken0 =

(
qs0

w

)
, so

that each subset of sizew is covered by one function). Therefore, from (3.30) we
have the following theorem:

Theorem 3.8.13For any positive integersm and w with w ≤ m, there is an
infinite family of(n,M, m,w)− PHF such thatn is O((w2)log∗(M)(log M).

3.8.3 The Third New Infinite Class

Now we give our next new explicit construction of an infinite class of perfect
hash families by means of a double recursive method. The main result is given in
Theorem3.8.15.

The construction appears to be rather complex, even though we have attempted
to give a clear concise explanation. The result in the general form is presented in
the paper [82]. The caseq = w = 3 is first proved in [45].

We first prove Lemma3.8.14below, which is essential for our purpose.
From now on letq be a prime power. We begin with a description of a collec-

tion of matrices derived from mutually orthogonal Latin squares (MOLS) whose
symbols are elements in the finite fieldFq = {0, 1, . . . , q − 1}.

Let M1, . . . ,Mq−1 be a set ofq − 1 MOLS, of which the first column is the
vector(0, 1, . . . , q−1)T . LetM0 be theq×q matrix whose allq columns are equal
to the vector(0, 1, . . . , q− 1)T (i.e. each row ofM0 consists of aq time repeating
of a symbol). The collection ofM0, . . . ,Mq−1 is equivalent to an orthogonal array
OA1(2, q, q) (see, for example [17, p. 130]) and hence to a Reed-Solomon code
RS with parameters(q, q2, q, d = q − 1).

For2 ≤ m ≤ q, set

A = {A0,m, . . . , Aq−1,m},

where each matrixAh,m is obtained fromMh by deleting itsq − m rightmost
columns.

Consider theq2 × (m + 1) arrayAE obtained fromA by extending each
matrix Ai,m with the (m + 1)th column(i, i, . . . , i)T . ThenAE is equivalent to
the Reed-Solomon code(m + 1, q2, q, d = m)−RS. By Theorem3.7.1AE is an
(m + 1, q2, q, w)− PHF with

(
w
2

)
< m + 1.

Conversely, ifw is given, we setm =
(

w
2

)
. Then the collectionA has the fol-

lowing crucial property: every subsetB of w′ distinct matricesAi1,m, . . . , Aiw′ ,m
of A, where1 ≤ w′ ≤ w − 1, forms an(m, qw′, q, w)− PHF .

This can be easily seen as follows:
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ConsiderB as part ofAE. Note thatAE has exactly one column more thanB,
the(m + 1)th column. For any given setW of w rows ofB, there is a columnc in
AE, such that the symbols ofc at the givenw rows are pairwise distinct, because
AE is an(m + 1, q2, q, w)−PHF . Further, sinceB is a collection ofw′ matrices
Ah,m, there are at least two rows ofW belonging to the same matrix inB. This
implies that the columnc is not the(m + 1)th column ofAE, hencec must be a
column ofB, as desired.

Thus, we have proved the following result:

Lemma 3.8.14 [82] Let A be the collection ofq matrices{A0,m, . . . , Aq−1,m}
just described above, where eachAh,m is a q × m matrix, whose entries are
elements ofFq. Let m =

(
w
2

)
. Then, any subsetB of w′ distinct matrices

Ai1,m, . . . , Aiw′ ,m ofA, where1 ≤ w′ ≤ w− 1, forms an(m, q.w′, q, w)−PHF .

We are now ready to prove the following theorem:

Theorem 3.8.15 [82] Let w ≥ 2 be any integer andq be any prime power such
that q ≥ (

w
2

)
. Then there exists an(O((i + 1)w−1), qi+1, q, w) − PHF for any

integeri ≥ 1.

Proof: The proof is by induction onw andi.

In the following we useni(w) as an abbreviation forO((i + 1)w−1) andCw
i

for (ni(w), qi+1, q, w)− PHF .

Note that the vector spaceF i+1
q is an (ni(2), qi+1, q, 2) − PHF , where

ni(2) = i + 1. ThusC2
i exists for alli ≥ 1. In other words the statement is

valid for w = 2.

Assume that the statement is valid forw − 1 > 2. That means that for
every2 ≤ u ≤ w − 1 there exists anCu

i = (ni(u), qi+1, q, u) − PHF
for all i. We prove that the statement is true forw, i.e., there is anCw

i =
(ni(w), qi+1, q, w)− PHF for everyi.

This is done by induction oni.

Fori = 1 there is aCw
1 = (n1(w), q2, q, w)−PHF , wheren1(w) =

(
w
2

)
+1

andq ≥ n1(w) − 1. In fact,Cw
1 is obtained from the Reed-Solomon code

(n1(w), q2, q)−RS by using Theorem3.7.1. Assume thatCw
j exists for all

j ≤ i− 1.

Let
C̃w

i = (Dw
i−1, E

w−1
i−1 )

denote the concatenation ofDw
i−1 andEw−1

i−1 , which are defined as follows:

Dw
i−1 is obtained fromCw

i−1 by repeating each of its rowsq times.
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Ew−1
i−1 is obtained fromCw−1

i−1 by replacing each symbolj by matrix Aj,w,
described in Lemma3.8.14.

We depictC̃w
i as anq.qi×(ni−1(w)+ni−1(w−1).

(
w
2

)
) array, where the first

ni−1(w) columns correspond toDw
i−1 and the remainingni−1(w − 1).

(
w
2

)

columns correspond toEw−1
i−1 . And we partition the rows of the arraỹCw

i

into qi consecutive blocks, sayB1, . . . , Bqi, each blockBi hasq rows.

Dw
i−1 Ew−1

i−1

B1 1st row of Cw
i−1

repeatedq times
A(1,1),w A(1,2),w . . . A(1,ni−1(w)),w

B2 2nd row of Cw
i−1

repeatedq times
A(2,1),w A(2,2),w . . . A(2,ni−1(w)),w

...
...

...
...

...
...

Bqi qith row of Cw
i−1

repeatedq times
A(qi,1),w A(qi,2),w . . . A(qi,ni−1(w)),w

Array C̃w
i

Remark that the matrixA(j,k),w in the table corresponds to the symbol at the
entry(j, k) of the arrayCw−1

i−1 .

Next, we prove thatC̃w
i is aw − PHF .

Let r1, . . . , rw be any givenw rows of C̃w
i . If r1, . . . , rw belong tow dif-

ferent blocks, sayBi1 , . . . , Biw , then from the definition ofDw
i−1 there is at

least one column inDw
i−1 containing pairwise distinct symbols in the rows

r1, . . . , rw. Assume thatr1, . . . , rw belong tow′ blocks, sayBi1 , . . . , Biw′ ,
wherew′ ≤ w − 1. As Cw−1

i−1 is an(w − 1)− PHF , there exists a column,
sayc, whose symbols, sayj1, . . . , jw′, in the rowsi1, . . . , iw′ are pairwise
distinct. From the definition ofEw−1

i−1 , the symbolsj1, . . . , jw′ are replaced
by matricesAj1,w, . . . , Ajw′ ,w (notice thatAj1,w, . . . , Ajw′ ,w together form a
set of

(
w
2

)
consecutive columns of the blocksBi1 , . . . , Biw′ in Ew−1

i−1 ). By
Lemma3.8.14Aj1,w, . . . , Ajw′ ,w is an(

(
w
2

)
, q.w′, q, w) − PHF , so there is
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a column inEw−1
i−1 having different symbols in the rowsr1, . . . , rw. Thus

C̃w
i is aw − PHF .

Now recall thatCw−1
i−1 is anqi×ni−1(w−1) array and thatEw−1

i−1 is obtained
from Cw−1

i−1 by replacing each entryj ∈ {0, . . . , q − 1} of Cw−1
i−1 by the

(q × (
w
2

)
)-matrixAj,w.

Since the first column of each matrixAj,w is always the vector(0, . . . , q −
1)T , there areni−1(w − 1) identical columns inC̃w

i .

Now letCw
i denote the array obtained from̃Cw

i by deletingni−1(w−1)−1
of these identical columns. ThenCw

i is anqi+1 × ni(w) array, where

ni(w) = ni−1(w) + ni−1(w − 1)×
(

w

2

)
− (ni−1(w − 1)− 1)

= ni−1(w) + ni−1(w − 1)(

(
w

2

)
− 1) + 1.

It is obvious thatCw
i is anw − PHF , just asC̃w

i .

As ni−1(w) = O(iw−1) andni−1(w − 1) = O(iw−2), we have

ni(w) = O(iw−1) + O(iw−2)[

(
w

2

)
− 1].

Consequently
ni(w) = O((i + 1)w−1).

HenceCw
i is an(O((i + 1)w−1, qi+1, q, w)− PHF , as desired.

In the casew = 3 andq = 3 Theorem3.8.15gives us(i2, 3i, 3, 3) − PHF ,
for every integeri ≥ 1.

Thus
n ≈ 0.398(log M)2.

To compare the construction in Theorem3.8.15with other known constructions
we recall that Corollary3.8.2gives perfect hash families with

n ≈ 0.556(log M)2

and Corollary3.8.4provides

n ≈ 0.796(log M)2.



50 CHAPTER 3. PERFECT HASH FAMILIES

Lemma3.8.8 yields an(i2, 3i, 3, 3) − PHF only if i = 2j, wherej ≥ 1,
whereas Theorem3.8.15gives an(i2, 3i, 3, 3)− PHF for any integeri ≥ 1.

Theorem3.8.10gives a better asymptotic performance, but in this case we are
restricted with construction algorithm whose complexity is polynomial inn and
we should also note that the smallestM we can get by this construction is larger
or equal to798.

It is worth noting that at each recursion step the size of the constructed perfect
hash family in Theorem3.8.15increases much slower than that in Theorem3.8.12.
For example in second step of the construction algorithm in Theorem3.8.12we
already obtainM = 31458 for q = 3 andw = 3.

Actually, Theorem3.8.15roughly states that a perfect hash family for a certain
n can be constructed for any givenw and any given code sizeqi, whereq is a prime
powerq ≥ (

w
2

)
andi ≥ 1 is any integer. Thus, Theorem3.8.15gives an explicit

construction of perfect hash families for a very large set of parameter values.

As an application of Theorem3.8.15for the casesw = 3 andw = 4 we have:

Corollary 3.8.16 For any prime powerq ≥ 3 there exists a((i + 1)2, qi+1, q, 3)−
PHF .

Corollary 3.8.17 For any prime powerq ≥ 7 there exists a(5
6
i3 + 5

2
i2 + 11

6
i +

1, qi+1, q, 4)− PHF .

3.9 Summary

In this chapter we have studied combinatorial properties of perfect hash fami-
lies. An existence result proved by a probabilistic methods states that for any
q ≥ w there exists an infinite class of(n,M, q, w) perfect hash families with
n = O(log M). However, it is a difficult problem to construct such an infinite
class explicitly. Theorem3.8.10presents an infinite class of perfect hash families
for anyw ≤ q with n = O(log M). The known low-complexity algorithm for con-
structing these perfect hash families has a runtime upper-bounded by(logqM)3.
This is considered still to be inefficient for practical purposes.

We present two new recursive explicit constructions for perfect hash families
which provide infinite classes of perfect hash families satisfying different require-
ments. Firstly, for anyw ≤ q we construct an infinite class of perfect hash families
which have a very good asymptotic behavior. Secondly, we present a new con-
struction technique which provides an infinite class of perfect hash families for
very large parameter sets. This family is not as good asymptotically as the fam-
ily obtained by our first construction. However, it provides ‘good’ perfect hash
families of small sizes. We also prove a necessary condition for the exitance of a
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perfect hash family in form of an upper bound onM . A comparison of bounds
shows that our bound is stronger than other known bounds for many parameter
sets. A survey of some significant known results, comparison of new results with
known ones and several open problems have been provided.
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Chapter 4

Identifiable Parent Property Codes

4.1 Introduction

This chapter deals with the problem of protection copyrighted digital data against
piracy. The traitor tracing problem was introduced by Chor, Fiat and Naor in
[51] for broadcast encryption systems, where the data should be accessible only to
authorized users. When an illegal copy produced by a group of authorized users of
the copyrighted material is detected, traitor tracing schemes allow to trace it back
to at least one producer (parent) of it. In particular, these schemes are suitable
for pay-per-view TV applications. We consider, as an example, a pay-per-view
movie type scenario introduced by Fiat and Tassa in [58]. In this scenario the
content is divided inton segments. Each of this segments is marked with one of
q different symbols. Each user receives a differently marked copy of the content.
The ordered set of the marks for each copy can be given as aq-ary vector of length
n. A coalition of colluding users can make an illegal copy by combining different
segments of their data and broadcast it. After an illegal copy is detected traitor
tracing schemes attempt to reveal at least one traitor. The goal of such schemes
is to handle as many colluders as possible. The practical applications require to
accommodate many users when there is a restriction on the number of symbols
which can be used for marking the data.

Several codes providing some forms of traceability are designed to be used in
these schemes. These codes have been extensively studied in the recent years. The
weak forms are frameproof codes introduced by Boneh and Shaw [53], and secure
frameproof codes [62]. We study strong forms of codes which allow the tracing
of at least one parent of any illegal copy when the size of the coalition of colluders
does not exceed some given numberw, called the traceability constant. The strong
form of codes studied in this chapter are identifiable parent property (IPP) codes
which have been introduced by Hollmann, van Lint, Linnartz and Tolhuizen [55].

53
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Other strong versions of such codes are TA schemes and TA codes introduced by
Chor, Fiat and Naor in [51, 58, 60]. In fact, TA codes turn out to be a subclass of
IPP codes [63].

Combinatorial properties of IPP codes and TA codes have been studied by sev-
eral authors. Relationships of IPP codes with several other combinatorial struc-
tures and codes have been studied by Hollmann et al. [55], Staddon, Stinson
and Wei [63], Barg, et al. [64] and Sarkar, Stinson [67]. Based on these con-
nections several sufficient conditions on the existence of IPP codes are derived
in [51, 55, 64, 68, 70, 76, 77]. Necessary conditions for the existence of IPP
codes given in the form of an upper bound on the size of codes are obtained in
[55, 63, 68, 75, 77]. Probabilistic techniques are used to prove the existence of
w-IPP codes withn = O(log M), wheren is the length of the codes andM is
the size, for any alphabet of sizeq > w. Using the connections between IPP
codes and other known combinatorial structures several explicit constructions are
derived in [51, 63, 66, 67, 76]. The question of complexity of traitor tracing al-
gorithms for IPP and TA codes are treated in [66, 73, 78]. Certain classes of TA
codes are shown to have a fast traitor tracing algorithm by using the list decoding
techniques.

In this dissertation we focus on explicit construction methods for IPP codes
using recursion techniques.

Our first construction provides an infinite class of IPP codes with the best
asymptotic behavior among explicitly constructed classes of IPP codes known in
the literature. In fact, for any fixedq > w we are able to construct an infinite class
of w-IPP codes in which the lengthn of the codewords isO((w2)log∗(M)(log(M)),
whereM is the number of codewords andlog∗ is a very slow growing function.
Moreover, we prove that these codes allow a traitor tracing algorithm with a run-
time ofO(M) in general. It should be noted that no IPP codes other than TA codes
with this property were known before [63]. For some infinite subclasses of these
codes even faster, in timepoly(log M) traitor tracing algorithms can be achieved.

Also, another new class of IPP codes is derived. We use perfect hash families
and recursive techniques to derive an infinite class of IPP codes. This class of IPP
codes is not as good asymptotically as the class of IPP codes constructed by our
first construction method. However, the method provides ‘good’ IPP codes for
certain parameter ranges.

The known construction methods and probabilistic existence results do not
prove the existence ofw-TA codes withq < w2, thenb > q, whereb is the size
of the code andq is the size of the alphabet. Thus, as an open problem Staddon,
Stinson, and Wei [63] ask the following question: Can we constructw-TA codes
with q < w2 andb > q? We give an affirmative answer to the Staddon-Stinson-
Wei’s problem. Precisely, using the new general construction method forq-ary
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codes with large Hamming distance given in Section2.7, we are able to construct
a large class ofw-TA codes withq < w2 andb > q.

Our results in this chapter have been presented in the papers [71], [72], [82],
and [83].

In Section4.2 we present some preliminaries. Section4.3 summarizes the
known results. Some open problems are discussed.

In Section4.4we prove that the concatenation of two IPP codes gives an IPP
code. The parent identification process for the concatenated code is described.
Using the concatenation technique we present a good infinite class of IPP codes.

In Section4.5 we describe our first construction, in which the concatenation
technique and the recursive method are combined. The construction yields an
infinite class of IPP codes. We show the asymptotic behavior of the codes and
study the complexity of a traitor tracing algorithm.

In Section4.6 the new class of perfect hash families given in Theorem3.8.15
is used to construct a new infinite class of IPP codes in view of Theorem4.6.1

In Section4.7 a new class of TA codes is derived based on the codes con-
structed in Section2.7, which gives an answer to an open problem of the existence
of TA codes for certain parameter classes. Finally, Section4.8 summarizes new
results.

4.2 Definitions

In this section we give basic definitions and notation used in this chapter.

Let C be aq-ary codes of lengthn. For any subset of codewordsC0 ⊆ C, the
set ofdescendantsof C0, denoteddesc(C0), is defined by

desc(C0) = {x ∈ Qn : xi ∈ {ai : a ∈ C0}, 1 ≤ i ≤ n}.

Thusdesc(C0) consists of alln-tuples that could be produced by a coalition hold-
ing the codewords inC0. If x ∈ desc(C0), then we say thatC0 producesx.

Let w be an integer. Define thew-descendant code, denoteddescw(C), as
follows:

descw(C) =
⋃

C0⊆C,|C0|≤w

desc(C0).

Thusdescw(C) consists of alln-tuples that could be produced by some coali-
tion of size at mostw.

Definition 4.2.1 (Identifiable Parent Property code)
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Let C be an (n,M, q) code and letw ≥ 2 be an integer. C is called an
(n,M, q, w) − IPP (Identifiable Parent Property) code provided that, for all
x ∈ descw(C), it holds that

⋂

{i:x∈desc(Ci), |Ci|≤w}
Ci 6= ∅.

In other words, a code has thew-identifiable parent property if no coalition of
size at mostw can produce ann-tuple that cannot be traced back to at least one
member of the coalition.

Definition 4.2.2 (TA code) Let defineI(x, y) = {i : xi = yi} for anyx, y ∈ Qn.
SupposeC ⊆ Qn is an(n, b, q) code andw ≥ 2 is an integer.C is called aw-TA
code provided that, for alli and all x ∈ desc(Ci), there is at least one codeword
y ∈ Ci such that|I(x, y)| > |I(x, z)| for anyz ∈ C \ Ci.

The w-TA property eases the parent identification process allowing efficient
traitor tracing algorithms (linear in the code size in the general case).

Example 4.2.3 An (5, 16, 4; 2)-IPP code (2-TA).




1 1 1 1 1
1 2 2 2 2
1 3 3 3 3
1 4 4 4 4
2 1 2 3 4
2 2 1 4 3
2 3 4 1 2
2 4 3 2 1
3 1 3 4 2
3 2 4 3 1
3 3 1 2 4
3 4 2 1 3
4 1 4 2 3
4 2 3 1 4
4 3 2 4 1
4 4 1 3 2




.

Note that this is an(5, 16, 4; 4)-Reed-Solomon code. More generally, the relation-
ship between Reed-Solomon codes and TA codes is given in Section4.3.
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4.3 Known Results

This section is a brief summary of basic known results and developments of the
subject.

TA codes form a subclass ofIPP codes. This fact is pointed out in the fol-
lowing lemma.

Lemma 4.3.1 ([63], Lemma 1.3) An(n,M, q, w)-TA code is an(n,M, q, w)-IPP
code.

Proof: SupposeC is an(n,M, q, w)-TA code. Ifx ∈ descw(C), then there is a
subsetCi ⊆ C, where|Ci| = w, such thatx ∈ desc(Ci). Let y ∈ Ci such
that |I(x, y)| ≥ |I(x, z)| for anyz ∈ Ci. Thus|I(x, y)| ≥ |I(x, z)| for any
z ∈ C by the definition of aw-TA code. We will show that, for anyCj ⊆ C
with |Cj| ≤ w, x ∈ desc(Cj) impliesy ∈ Cj. In fact, if y /∈ Cj, then there
is l ∈ Cj such that|I(x, l)| > |I(x, y)| by the definition of aw-TA code.
This contradicts the fact that|I(x, y)| ≥ |I(x, z)| for anyz ∈ C.

The converse of Lemma4.3.1is not true, as it can be easily checked with a small
example.

Example 4.3.2 A (2,4,4;4)-IPP code which is not a (2,4,4;2)-TA code




1 1
2 1
3 2
4 1


 .

It is easy to check that this code is an 4-IPP but it is not a 2-TA. It is a 4-IPP
code, since the symbols in the first position of all the codewords are different.
Now, takex = 3 1, thenx is a descendant of{3 2, 4 1}. However,|I(x ∩ 3 2)| =
|I(x ∩ 4 1)| = |I(x ∩ 1 1)| = 1. Thus it is not 2-TA code.

More examples showing that a code having the IPP property do not necessarily
have the TA property can be found in [55], [63] and [66].

The next result shows thatw-IPP codes cannot exist for certain parameter
situations.

Lemma 4.3.3 [63] SupposeC is any(n,M, q) code, andM − 1 ≥ w ≥ q. Then
C is not aw-IPP code.



58 CHAPTER 4. IDENTIFIABLE PARENT PROPERTY CODES

To avoid the triviality, hereafter we study IPP code with assumption thatq > w
andM > q.

In addition to perfect hash families, which have been discussed in Chapter
3, we define here some other families of hash functions, namely separating hash
families [62], partially hashing families [64] and strong separating hash families
[67]. These structures are useful for our discussion in the sequel.

Definition 4.3.4 (Separating hash family (SHF)) An(n, M, q)-hash familyH is
called an(n,M, q, w1, w2) separating hash family denoted(n,M, q, w1, w2)-SHF
if for any two disjoint subsetsA, B of {1, · · · ,M} with |A| = w1 and |B| = w2,
there is a functionh in H such thath(A) andh(B) are disjoint.

Definition 4.3.5 (Partially hashing family (PAHF)) An(n,M, q)-hash familyH is
called an(n,M, q, t, u) partially hashing family denoted(n,M, q, t, u)−PAHF
if for any two subsetsT , U of {1, · · · ,M} such thatT ⊂ U , |T | = t, and|U | = u,
there is a functionh in H such that for anyx ∈ T and anyy ∈ U , with y 6= x we
haveh(x) 6= h(y).

Definition 4.3.6 (Strong separating hash family (SSHF)) An(n,M, q)-hash fam-
ily H is called an(n,M, q, w1, w2)-strong separating hash family denoted
(n,M, q, w1, w2)−SSHF if for any two disjoint subsetsA, B of {1, · · · ,M} such
that |A| = w1, and|B| = w2, there is a functionh in H such thath injective onA
andh(A) ∩ h(B) = ∅.

The connection of strong separating hash families and partially hashing fami-
lies is as follows:

Theorem 4.3.7 [67] A hash familyH is an(n,M, q, w1, w2)−SSHF if and only
if it is an (n,M, q, w1, w1 + w2)− PAHF .

Recently, hash families have found many applications in cryptography. These
applications are discussed for example in [31, 40, 39, 44, 62]. The relationships
with IPP codes are presented below.

4.3.1 Connections Between IPP Codes and Other Combinato-
rial Structures

Connections between hash families and identifiable parent property codes have
been studied in [55, 63, 64, 67]. We recall some of the results here.

Forw = 2 necessary and sufficient conditions for the existence of 2-IPP codes
using hash families are obtained in [55].
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Theorem 4.3.8 [55] Let C be the matrix representing an(n,M, q) codeC. Then
C is a 2-IPP code if and only ifC is simultaneously an(n,M, q, 3) − PHF and
an (n,M, q, 2, 2)− SHF .

A relationship between perfect and separating hash families andw-IPP codes
for anyw ≥ 2 is given in the following theorem:

Theorem 4.3.9 [63] Let C be the matrix representing an(n,M, q) codeC. Sup-
poseC is aw-IPP code. Then we have the following

1. C is an(n,M, q, w + 1)− PHF if M ≥ w + 1.

2. C is an(n,M, q, w, w)− SHF if M ≥ 2w.

It is an open problem [63] whether the converse of the theorem is true forw > 2.
A characterization of an(n,M, q, 3) − IPP code is given in [64]. The cases
w = 4, 5 have been studied in [81]. Results show that the converse of Theorem
4.3.9is not true in these cases.

However,w-IPP codes can be obtained from certain perfect hash families. The
following theorem, due to Staddon, Stinson and Wei [63], provides a sufficient
condition for existence of IPP codes.

Theorem 4.3.10 [63]( Theorem 2.8) LetC be an(n,M, q) code whose matrix
representation isC. If C is an (n,M, q, b(w + 2)2/4c) − PHF , thenC is an
(n,M, q, w)− IPP code.

This leaves the question of the existence of IPP codes forw < q < b(w +
2)2/4c open, since aw-PHF exists if and only ifq ≥ w.

The connection of partially hashing families and IPP codes is shown in the
next result.

Theorem 4.3.11 [64] Let C be an(n,M, q) code whose matrix representation is
C. If C is an(n,M, q, w, b(w+2)2/4c)−PAHF , thenC is an(n,M, q, w)−IPP
code.

Based on this result a probabilistic method is used to obtain a lower bound on
the size of the codes in [64], showing thatw-IPP codes exist for anyq ≥ w + 1.

A similar result in terms of strong separating hash families is given in [67]
which is used later for constructing an infinite class of IPP codes.

Theorem 4.3.12 [67] Let C be an(n,M, q) code whose matrix representation is
C. If C is an(n,M, q, w, b(w+2)2/4c−w)−SSHF , thenC is an(n,M, q, w)−
IPP code.
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The relationship of error correcting codes and IPP codes have been studied in
several papers.

The following result stated in [51], [60], [63] is useful. We present it here with
a simple proof.

Theorem 4.3.13Any(n, b, q; d) code withd > n(1 − 1/w2) is an(n, b, q) w-TA
code.

Proof: Let C be an(n, b, q; d) code withd > n(1 − 1/w2). Setα = n(1 −
1/w2). Any two codewordsc1, c2 ∈ C agree in at mostβ = n− (α + 1) =
n/w2 − 1 positions. LetC ′ = {c′1, . . . , c′v} ⊆ C be a subset of sizev. For
any u ∈ desc(C ′), defineM(u) = max{|I(u, c′i)| : i = 1, . . . , v} and
M = minu∈desc(C′) M(u). Thenn/v ≤ M . On the other hand, for any
c ∈ C \ C ′ we have

∑
c′i∈C′ |I(c, c′i)| ≤ vβ. Now C will be a v-TA code if

vβ < n/v. Thusβ < n/v2, equivalentlyn/w2 − 1 < n/v2. Hencev ≤ w,
as desired.

The relationships between TA and IPP codes and hash families described in
this section are depicted in the following diagram.

Figure 4.1: Connections among different types of codes and hash families

codes with
d > n(1− 1/w2)

⇓
b(w + 2)2/4c − PHF w − TA

⇓ ⇓
(w, b(w + 2)2/4c)− PAHF ⇒ w − IPP ⇒ (w, w)− SHF

m ⇓
(w, b(w + 2)2/4c − w)− SSHF (w + 1)− PHF

Further relationships between IPP codes and some other combinatorial struc-
tures not discussed here can be found in [63] (see Figure 1, [63]).

4.3.2 Necessary Conditions

Theorem4.3.9(case 1) asserts thatw-IPP codes are subsets of(w +1)-PHF. Thus
the necessary conditions for the existence of perfect hash families presented in
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Section3.3 also provide necessary conditions for the existence ofw-IPP codes,
which can be given in form of an upper bound on the size of the codes.

In particular, from bound (3.3.5) it follows:

Theorem 4.3.14LetC be an(n,M, q; w)− IPP code, then

M ≤ w(qd
n
w
e − 1).

A stronger upper bound for the size of IPP codes is given in the next theorem.
Using an upper bound for separating hash families [63] (Theorem 3.9) together
with Theorem4.3.9(case 2) we obtain:

Theorem 4.3.15 [63] Let C be an(n,M, q; w)− IPP code, then

M ≤ qd
n
w
e + 2w − 2.

A stronger bound is established [55] for w = 2.

Theorem 4.3.16 [55] Let C be an(n,M, q; 2)− IPP code. Then

M ≤ 3qd
n
3
e.

The bound in Theorem4.3.15has been improved in [75, 77].

Theorem 4.3.17 [75] Let C be an(n,M, q; w)− IPP code. Then

M ≤ 1

2
u(u− 1)qd

n
u−1

e

whereu = b(w
2

+ 1)2c.

A similar upper bound with a somewhat better constant derived in [77] will be we
presented in next section together with the lower bound.

4.3.3 Nonconstructive Existence Results

Probabilistic methods were used to prove existence results for IPP codes in [51,
55, 60, 64, 70, 76, 77]. The results are summarized below.

Theorem 4.3.18 [51, 60] There exists an(n, b, q, w)-TA code, whereq = 2w2

andn = 4w2 log b.

Note that this result does not prove the existence ofw-TA codes for smallq.
In the case of 2-IPP codes, the probabilistic method was used in [55] to prove

the following result:



62 CHAPTER 4. IDENTIFIABLE PARENT PROPERTY CODES

Theorem 4.3.19 [55] There exists an(n,M, q, 2)-IPP code withM ≥ c( q
4
)

n
3 ,

wherec = (27
32

)
1
3 .

The existence ofw-IPP codes for anyq > w > 2 was first proved in [64].
Theorem4.3.11together with an existence result for partially hashing families
obtained from the probabilistic method provides next theorem:

Theorem 4.3.20 [64]
For any fixedq andw, q > w there exists an infinite class of(n,M, q, w)-IPP

code with

lim
n→∞

logqM

n
≥ 1

u− 1
logq

(q − w)!qu

(q − w)!qu − q!(q − w)u−w

whereu = b(w
2

+ 1)2c.
This result has been improved for allw exceptw = 2, 3.

Theorem 4.3.21 [70]
For any fixedq = w + 1, there exists an infinite class of(n,M, w + 1, w)-IPP

code with

lim
n→∞

logw+1M

n
≥ w!(u− w)u−w

uu(u− 1) ln(w + 1)

whereu = b(w
2

+ 1)2c.
Performing simple asymptotic manipulations this result can be given as fol-

lows:

Theorem 4.3.22 [76]
There exists an absolute constantc > 0 such that for any fixedq = w + 1,

there exists an infinite class of(n,M, w + 1, w)-IPP code with

lim
n→∞

logw+1M

n
≥ cw!22w

w2(ew2)w
= w−w(1+o(1)).

For fixedn, q, w; q > w denote byM(n, q, w) the maximum value ofM for
which an(n,M, q, w)-IPP code exists. It is proved in [77] that

Theorem 4.3.23 [77] For every n, q, w; q > w there exist two functionsc1(w)
andc2(w), such that

(c1(w)q)
n

s(w) ≤ M(n, q, w) ≤ c2(w)qd
n

s(w)
e

where

s(w) =

{
w2

4
+ w whenw is even

w2

4
+ w − 1

4
whenw is odd



4.3. KNOWN RESULTS 63

These existence results together with the upper bounds on the size of the code
theoretically state that for any fixedq andw such thatq > w

n = O(log M).

However, the existence results surveyed in this section are not constructive.
Several explicit constructions of IPP codes will be presented in next sections.

4.3.4 Direct Constructions

Using the relationships between IPP codes and other combinatorial structures dis-
cussed in Section4.3several explicit classes of IPP codes can be derived.

Applying Theorem4.3.13to Reed-Solomon codes we obtain the following
theorem:

Theorem 4.3.24 [63] Supposen, q andw are given, withq a prime power and
n ≤ q + 1. Then there exists an(n, b, q) w-TA code withb = qdn/w2e.

This construction is explicit and givesw-TA codes with

n = O(log b).

It gives better parameters than the probabilistic method in Theorem4.3.18.
However, this class is quite restricted because of conditionn ≤ q + 1. The codes
in this construction only haveb > q only if n > w2, i.e., if q ≥ w2.

By combining Corollary2.5.6and Theorem4.3.13we obtain the following
more general theorem:

Theorem 4.3.25 [82] Let w ≥ 2 be any given integer. For any integern > w2

and s havings = pe1
1 . . . pek

k as its prime factorization withn ≤ pei
i for all i =

1, . . . , k there exists an(n,M, s, w)− IPP code, whereM = sdn/w2e.

Here we describe another nice class of w-TA codes which can be derived as
an application of Theorem4.3.13.

LetC be a linearAG code defined on the Garcia-Stichtenoth (G-S) curves with
parameters given in Theorem2.6.1.

Applying Theorem4.3.13to C we obtain the following result:

Theorem 4.3.26For every prime powerq and any integerl ≥ 1, there exists an
(n; b, q2, w)-IPP code, where
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n = ql+1(q − 1),
b = q2buql+1c,
u is a real number with1 ≤ u ≤ q − 2, and

w = b
√

q−1
u+1

c.

This construction gives an infinite class ofw-TA codes, wheren = O(log b).
However, this class is restricted to the condition thatq is a prime power and is
very large compared tow. Also the known construction algorithm complexity of
these codes is polynomial inn as discussed in Section2.6.

The constructions which are direct applications of Theorem4.3.13are restric-
tive, in general, in the sense that they can producew-TA codes only ifq > w2

whenb is large. This fact follows from the Plotkin bound. The Plotkin bound
given in Corollary2.2.3together with Theorem4.3.13implies:

n(1− 1

w2
) < d ≤ n

(
1− 1

q

)
b

b− 1
.

Thus

1− 1

w2
<

(
1− 1

q

)
b

b− 1
.

So whenb →∞ for fixed q andw, we have

w2 < q.

For smallb, however, we can constructw-TA codes withq ≤ w2 andw2 <
n

n−d
.
In Section4.7 a new class ofw-TA codes is obtained by applying Theorem

4.3.13to theq-ary codes constructed in Section2.7. This provides examples of
w-TA codes withq < w2 andb > q.

4.3.5 Efficient Traitor Tracing

In this section we discuss briefly the problems concerning the complexity of the
traitor tracing algorithms(TTA) of IPP codes.

It is clear that for any given IPP code the traitor tracing can be carried out in
time O(

(
M
w

)
), whereM is the number of users (code size). This is to say if we

have no other better idea than to check all coalitions of sizew to find at least one
of the dishonest users (the parent).

To find the parent in case ofw-TA codes it is enough to check the distance of
the descendent vector (recognized illegal copy) to each codeword of the code and
find the “nearest” codeword to it.
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Thus, in the general case, the runtime of a TTA for a TA code isO(b), where
b is the number of the users. This is still inefficient for large populations.

Efficient traitor tracing algorithms can be applied to TA codes, when error
correcting codes are used to construct these codes. This problem is discussed
first by Silverberg, Staddon and Walker in [66]. They show that powerful new
techniques for the list decoding of error correcting codes discussed in Section2.8
enable to construct a very fast TTA for some TA codes. When algebraic geometry
codes, Reed Solomon codes or some concatenated codes are used as TA codes,
then traitor tracing can be done in time polynomial in(w(log M)). These traitor
tracing algorithms produce a list of all coalitions capable of creating a given pirate.
The results are summarized in following theorem:

Theorem 4.3.27 [66]

(i) LetC be a Reed-Solomon code of lengthn and dimensionk over a finite field
Fq of size at most2n. If w is an integer,w ≥ 2, andn > w2(k − 1), then
C is a w-TA code and there is a traitor tracing algorithm that runs in time
O(n15). If n = (1 + δ)w2(k− 1) then the algorithm runs in timeO(n3

δ6 ). For
n = θ(w2k), the runtime isO(w30logq

15M).

(ii) LetX be a nonsingular plane curve of genusg defined over a finite fieldFq,
P a set ofn distinctFq-rational point onX, P0 an Fq-rational point onX
which is not inP, andk an integer such thatk > g − 1. Letw be an integer
such thatw ≥ 2 andn > w2(k + g − 1), assume thatq ≤ 2n, and assume
the pre-processing described in [24] has occurred. Then the one-pointAG
codeCX(P , (k + g − 1)P0) is aw-TA code with a traitor tracing algorithm
that runs in time polynomial inn.

(iii) If k and w are positive integers,q is a prime power,q > w2 ≥ 4, and δ

is a real number such that0 < δ ≤ q/w2−1
q−1

, then there exists an explicit

linear w-TA code over the fieldFq of lengthn = O( k2

δ3 log(1/δ)
) (or length

n = O( k
δ2 log2(1/δ)

)) and dimensionk with a polynomial (inn) traitor tracing
algorithm.

It should be noticed that the IPP codes given by this theorem are derived from
direct applications of Theorem4.3.13. Thus Theorem4.3.27does not provide
IPP codes for fixed smallq, whenM → ∞. Roughly speaking, the alphabet size

of these codes isO(M
w2

n ). In [66], the authors discus potential applications of
other decoding methods to the problem of tracing traitors and suggest alternative
approaches when additional information is known about the way the traitors are
operating. Further developments in this direction can be found in [78, 79, 80].
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4.4 Concatenation Construction of IPP Codes

In this section , in view of Theorem4.4.1, we prove that the concatenation of
two IPP codes gives an IPP code. The proof of Theorem4.4.1describes, at the
same time, a traitor tracing algorithm for the resulting codes by using the traitor
tracing algorithm initial codes. Finally, an infinite class of IPP codes is presented
in Theorem4.4.3for any fixedq andw, q > w ≥ 2.

Let A be an(n2,M2, q2) code over an alphabetQ2 with |Q2| = q2 and letB be
an(n1, q2, q1) code over an alphabetQ1 with |Q1| = q1. Let Q2 = {a1, . . . , aq2}
and letB = {b1, . . . ,bq2}. Let θ : Q2 −→ B be the one-to-one mapping
defined byθ(ai) = bi for 1 ≤ i ≤ q2. For any codeworda = (a1, . . . , an2) ∈ A
we denote bỹa = (θ(a1), . . . , θ(an2)) = (b1, . . .bn2) the q1-ary sequence of
lengthn1n2 obtained froma by usingθ. The setC = {ã = (b1, . . . ,bn2)/ a =
(a1, . . . , an2) ∈ A} is an(n1n2,M2, q1) code, called the concatenated code ofA
andB.

Our next important theorem shows that the concatenation technique works for
IPP codes.

Theorem 4.4.1 [82] Let A be an(n2,M2, q2, w) − IPP code and letB be an
(n1, q2, q1, w) − IPP code. Then the concatenated codeC of A and B is an
(n1n2,M2, q1, w)− IPP code.

Proof: Let x = (x1, . . . , xn1n2) ∈ Qn1n2
1 . We partitionx into n2 blocks

x1, . . . ,xn2 with xi = (x(i−1)n1+1, . . . , xin1) ∈ Qn1
1 , 1 ≤ i ≤ n2. We

will write x = (x1, . . . ,xn2). Specially, ifx = c = (b1, . . . ,bn2) ∈ C, then
bi’s are themselves blocks of the partition ofc.

Supposex ∈ desc(Ci), 1 ≤ i ≤ r, whereCi ⊆ C with |Ci| = αi ≤ w. We
prove that

⋂
1≤i≤r(Ci) 6= ∅, i.e.,C is aw − IPP code.

Let Ci = {c(i)
1 , . . . , c

(i)
αi } ⊆ C, wherec

(i)
j = (b

(i)
j1 , . . . ,b

(i)
jn2

). For any1 ≤
i ≤ r and any1 ≤ ` ≤ n2 defineD

(i)
` = {b(i)

1` , . . . ,b
(i)
αi`
}, i.e., D(i)

` is the

collection of all`th blocks of the codewords ofCi. In other wordsD(i)
` ⊆ B

is a subset ofαi codewords. Asx ∈ desc(Ci) by the assumption, we have
x` ∈ desc(D

(i)
` ) for 1 ≤ i ≤ r and1 ≤ ` ≤ n2. SinceB is aw − IPP

code, we have ⋂
1≤i≤r

D
(i)
` 6= ∅.

Let b` ∈
⋂

1≤i≤r D
(i)
` be an arbitrary but fixed codeword, i.e.,b` is a parent

of x` in codeB. Sety = (b1, . . . ,bn2). Let ȳ = (a1, . . . , an2) ∈ Qn2 be
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the corresponding sequence obtained fromy usingθ, i.e.,ai = θ−1(bi). In
the same way let̄Ci = {c̄(i)

1 , . . . , c̄
(i)
αi } ⊆ A denote the corresponding subset

of Ci.

Sincey ∈ desc(Ci) by the construction, we havēy ∈ desc(C̄i) for 1 ≤ i ≤
r. Hence

ȳ ∈
⋂

1≤i≤r

desc(C̄i).

SinceA is aw − IPP code, we have
⋂

1≤i≤r

C̄i 6= ∅.

Let z̄′ = (a′1, . . . , a
′
n2

) ∈ ⋂
1≤i≤r(C̄i) be a parent of̄y in A. Thenz′ =

(b′1, . . . ,b
′
n2

) ∈ Ci for 1 ≤ i ≤ r, wherez′ the codeword ofC correspond-
ing to z̄′. Therefore ⋂

1≤i≤r

Ci 6= ∅.

ThusC is anw − IPP code.

Remark: Note that the proof of Theorem4.4.1describes how to identify a
traitor. This fact is used for the proof of Theorem4.5.4.
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We demonstrate an IPP code obtained from concatenating two IPP codes in
the following example.

Example 4.4.2 LetA be the following code

A =




0 0 0 0 1
1 1 1 2 2
2 2 2 2 1
0 1 2 1 0


 .

It is easy to check thatA is a 2-TA code. And letB be the following 2-TA code.

B =




0 0 0 0 0
1 1 1 1 0
2 2 2 2 0
3 3 3 3 0
3 2 1 0 1
2 3 0 1 1
1 0 3 2 1
0 1 2 3 1
1 3 2 0 2
0 2 3 1 2
3 1 0 2 2
2 0 1 3 2
2 1 3 0 3
3 0 2 1 3
0 3 1 2 3
1 2 0 3 3




.

Now we define the following mapping of alphabet symbols ofB to the rows of
A.

θ :





0 7→ (0 0 0 0 1)
1 7→ (1 1 1 2 2)
2 7→ (2 2 2 2 1)
3 7→ (0 1 2 1 0)
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Applying this mapping toB we obtain a codeC with parametersn = 25,
b = 16, q = 3:




0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 0 0 0 0 1
2 2 2 2 1 2 2 2 2 1 2 2 2 2 1 2 2 2 2 1 0 0 0 0 1
0 1 2 1 0 0 1 2 1 0 0 1 2 1 0 0 1 2 1 0 0 0 0 0 1
0 1 2 1 0 2 2 2 2 1 1 1 1 2 2 0 0 0 0 1 1 1 1 2 2
2 2 2 2 1 0 1 2 1 0 0 0 0 0 1 1 1 1 2 2 1 1 1 2 2
1 1 1 2 2 0 0 0 0 1 0 1 2 1 0 2 2 2 2 1 1 1 1 2 2
0 0 0 0 1 1 1 1 2 2 2 2 2 2 1 0 1 2 1 0 1 1 1 2 2
1 1 1 2 2 0 1 2 1 0 2 2 2 2 1 0 0 0 0 1 2 2 2 2 1
0 0 0 0 1 2 2 2 2 1 0 1 2 1 0 1 1 1 2 2 2 2 2 2 1
0 1 2 1 0 1 1 1 2 2 0 0 0 0 1 2 2 2 2 1 2 2 2 2 1
2 2 2 2 1 0 0 0 0 1 1 1 1 2 2 0 1 2 1 0 2 2 2 2 1
2 2 2 2 1 1 1 1 2 2 0 1 2 1 0 0 0 0 0 1 0 1 2 1 0
0 1 2 1 0 0 0 0 0 1 2 2 2 2 1 1 1 1 2 2 0 1 2 1 0
0 0 0 0 1 0 1 2 1 0 1 1 1 2 2 2 2 2 2 1 0 1 2 1 0
1 1 1 2 2 2 2 2 2 1 0 0 0 0 1 0 1 2 1 0 0 1 2 1 0




From Theorem4.4.1it follows thatC is a 2-IPP code.

We remark that the concatenation of twow-TA codes does not necessarily give
aw-TA code. In particular the codeC from Example4.4.2is not a 2-TA code.

We show that the codeC is not a2-TA code as follows:
Let the vector

x = {1112111122010010000100001}

be a descendent vector of the setC0 = {a, b}, where

a = {0000100001000010000100001}
and

b = {1112211122111221112200001}
are the first two rows ofC.

On one hand it can be computed thatI(x, a) = I(x, b) = 15. On the other
hand we haveI(x, c) = 15 for

c = {2222111122012100000101210}.
ThusC is not a 2-TA code.
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Now we demonstrate how the traitor tracing algorithm given in the proof of
Theorem4.4.1works.

First we partitionx into 5 blocks as follows:

x = {11121|11122|01001|00001|00001}

For each block we find a parent in the codeA. SinceA is a 2-TA code we have

(1 1 1 2 1) 7→ (1 1 1 2 2)
(1 1 1 2 2) 7→ (1 1 1 2 2)
(0 1 0 0 1) 7→ (0 0 0 0 1)
(0 0 0 0 1) 7→ (0 0 0 0 1)
(0 0 0 0 1) 7→ (0 0 0 0 1)

Thus we obtain

y = {11122|11122|00001|00001|00001}.

Now applying the mappingθ−1 to each block we get

ȳ = {1|1|0|0|0}.

Next we need to find a parent of̄y in the codeB. It is easy to check that
I(ȳ, ā) = I(ȳ, b̄) = 3 andI(ȳ, c̄) < 3, for any c̄ ∈ B\{ā; b̄}. This shows that̄a
andb̄ are parents of̄y in B. Thusa andb are parents ofx in the codeC.

As a first application of Theorem4.4.1we obtain the following:

Theorem 4.4.3 For every given integersw andm; wherem > w ≥ 2, and for
any integerl ≥ 1, there exists an(n,M, m, w)-IPP code, with

n = n0.(q − 1)ql+1,
M = q2buql+1c,
wheren0 is a constant,q is a prime power such thatq ≥ w2(u + 1) + 1,
andu is a real number with1 ≤ u ≤ q − 2.

Moreover, we haven = O(log M).

Proof: Let w andm be given integers withm ≥ w ≥ 2. Let q be the smallest

prime power such thatw = b
√

q−1
u+1

c, with 1 ≤ u ≤ q − 2, as shown in

Theorem4.3.26. The existence of an(n0, q
2,m,w)-IPP code for a certain

value n0 is shown for in Theorem4.3.20. Applying Theorem4.4.1 and
Theorem4.3.26yields the IPP codes with parameters as claimed.
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From the proof of Theorem4.4.1it follows that the runtime of the traitor trac-
ing algorithm of a code in Theorem4.4.3differs from the traitor tracing algorithm
runtime of a corresponding code from Theorem4.3.26by a constant factor. This
together with Theorem4.3.27(case(ii)) implies that the codes in Theorem4.4.3
have a traitor tracing algorithm that runs in time polynomial inlog M . So, the
complexity of the construction algorithm and the traitor tracing algorithm runtime
of the codes in Theorem4.4.3grow polynomially withlog M .

It can be easily checked that the minimum distance ofC in Theorem4.4.1does
not satisfy the condition of Theorem4.3.13whereas the minimum distance of the
codesA andB do. This proves that the converse of Theorem4.3.13is not true.
It can be observed that with the traitor tracing algorithm described in the proof of
Theorem4.4.1a descendent of codeC is not necessarily traced back to its nearest
vector even whenA andB arew-TA codes. Thus codeC does not necessarily
have aw-TA property. In the next section, using the concatenation construction
together with some recursive techniques we show the existence of a very good
class of IPP codes allowing an efficient traitor tracing algorithm for the range of
parameters, for which the existence of TA codes is not known. This emphasizes
the advantage of considering codes withw-IPP property than only codes with
w-TA property.

We remark that Barg and Kabatiansky in a recent paper [73] also prove a
similar result by concatenating IPP codes with error correcting codes.

In the next section we present an explicit construction of IPP codes which
provides an infinite class of IPP codes for any fixedq > w with an efficient traitor
tracing algorithm and with a best known asymptotic behavior among explicitly
constructed codes.

4.5 Infinite Class of w-IPP Codes with Efficient TTA

We are now in a position to describe our first construction. First, we describe the
construction by making use of Theorem4.3.25and4.4.1. The result is presented
in Theorem4.5.1. The asymptotic behavior of these codes is shown in Theorem
4.5.2. Using the same method a more general result is obtained, which is formu-
lated in Theorem4.5.3. Theorem4.5.4shows that the codes of Theorem4.5.1
have a traitor tracing algorithm with a runtime ofO(M). Theorem4.5.5summa-
rizes our main results. Finally, an infinite subclass of these codes having a traitor
tracing algorithm with a runtimepoly(log M) is given in Theorem4.5.6.
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4.5.1 Recursive Construction

The construction is carried out by induction on the number of iterations.
Let w ≥ 2 be any integer. Letn0 > w2 be an integer and lets0 be an integer

with the prime factorizations0 = pe1
1 . . . pek

k such thatn0 ≤ pei
i for all i = 1, . . . , k.

For the1st iteration we choose two codesC0 andC∗1 using Theorem4.3.25:

C0 is an(n0, M0, s0, w)− IPP code withM0 = s
d n0

w2 e
0 ;

C∗
1 is an(n∗0,M1,M0, w)− IPP code withn∗0 = n

d n0
w2 e

0 andM1 = M
dn∗0/w2e
0 .

Applying Theorem4.4.1with A replaced byC∗
1 andB by C0 we obtain an

(n1,M1, s0, w)− IPP codeC1 with n1 = n0 ∗ n∗0 = n0 ∗ n
d n0

w2 e
0 .

Now an(ni−1, Mi−1, s0, w)− IPP codeCi−1 exists by induction for the(i−
1)th iteration. Choose an(n∗i−1,Mi,Mi−1, w) − IPP codeC∗

i from Theorem
4.3.25with

n∗i−1 = n∗i−2
dn∗i−2

w2 e and Mi = M
dn∗i−1

w2 e
i−1 .

Applying Theorem4.4.1with A = C∗
i andB = Ci−1, we get an(ni,Mi, s0, w)−

IPP codeCi with

ni = ni−1 ∗ n∗i−2
dn∗i−2

w2 e.

Thus we obtain the following result:

Theorem 4.5.1 [82] Let w ≥ 2 be any integer. Letn0 > w2 be integer and lets0

be an integer with the prime factorizations0 = pe1
1 . . . pek

k such thatn0 ≤ pei
i for

all i = 1, . . . , k. Then, for allh ≥ 0 there exists an(nh,Mh, s0, w)− IPP code,
where

nh = nh−1 ∗ n∗h−1, Mh = M
dn∗h−1

w2 e
h−1 , n∗h−1 = n∗h−2

dn∗h−2
w2 e,

M0 = s
d n0

w2 e
0 , and n∗0 = n

d n0
w2 e

0 .

4.5.2 Asymptotic Behavior

The asymptotic behavior of the parameters of the codes produced by Theorem
4.5.1can be examined by a similar argument, which is demonstrated in Section
3.8(see also [46], pp. 196-197.) In fact, we can show that

nh ≤ α.(w2)log ∗(Mh)(log Mh),
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for all sufficiently largeh, whereα is some constant and the functionlog ∗ :
Z+ −→ Z+ is defined recursively by

log ∗(1) = 1

log ∗(n) = log ∗(dlog ne) + 1, if n > 1.

Note that the functionlog ∗(n) grows very slowly, e.g.,log ∗(n) ≤ 7 for n ≤
2265536

.

We have the following result:

Theorem 4.5.2 [82] For any integerw ≥ 2 and any integers having the prime
factorizations = pe1

1 . . . pek
k with w2 < pei

i for all i = 1, . . . , k, there exists an

infinite class of(n,M, s, w)−IPP codes for whichn is O((w2)log∗(M)(log(M)).

As we want to show that the constructed codes in Theorem4.5.1having an
efficient tracing algorithm, we have chosen the starter code as anMDS code. In
fact, the construction works for any starter code. For instance, for givenM, q, w ≥
2, the probabilistic method in [64] shows the existence of(n′,M, q, w) − IPP
codes withq > w and somen′. Thus, if we take this(n′,M, q, w)− IPP code as
a starter code and carry out the same recursive construction, then we get a more
general result as follows:

Theorem 4.5.3 [82] For any integerw ≥ 2 and any integerq ≥ w, there exists an
infinite class of(n,M, q, w)−IPP codes for whichn is O((w2)log∗(M)(log(M)).

To our knowledge Theorem4.5.2and4.5.3yield a class of explicit constructed
codes with the best known asymptotic behavior among similar known classes.
In fact, from Theorem4.3.10it follows that an(n,M, q, w) − IPP code is an
(n,M, q, w+1)−PHF , and therefore an(n,M, q, w)−PHF . But the converse is
not true: an(n,M, q, w+1)−PHF is not an(n,M, q, w)−IPP code in general.
This is to say that an(n,M, q, w) − IPP code is a much stronger structure than
an(n,M, q, w)−PHF . Even though, our constructedIPP codes have the same
asymptotic size as that of the best known explicitly constructed classes ofPHF
(see Section3.8).

Remark: It is worth noting that in a recent paper [67], Sarkar and Stinson
construct an infinite class of(n,M, q, w)-IPP codes for whichn is

O((w3)log∗(M)(log(M)), for integersq > w ≥ 2 in terms of strong
separating hash families.
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4.5.3 An Efficient Traitor Tracing Algorithm

The discussions in Section4.3 show that forw-IPP codes, a traitor tracing algo-
rithm (TTA) will have a runtime complexity of sizeO(

(
M
w

)
), in general. Forw-TA

codes, however, the runtime of a TTA will beO(M). Therefore, the question of
the existence ofw-IPP codes in general with an improved runtime for a TTA was
raised in [63].

Here, we show that our constructedw-IPP codes have a TTA with a runtime
O(M), thereby answering the above question affirmatively.

The recursive process of concatenation used to constructw − IPP codes in
Theorem4.5.1provides a way to build a TTA for codeCi based on the TTA’s of
codesCi−1 andC∗

i . In fact, the proof of Theorem4.4.1describes precisely how a
traitor can be traced back for the codeCi. In doing so we assume that the TTA’s for
codesCi−1 andC∗

i are known. LetLi−1 andL∗i be the runtime complexity of such
a TTA for Ci−1 andC∗

i , respectively. Let assumex ∈ desc(Kj), for j = 1, . . . , r,
andKj ⊆ Ci with |Kj| ≤ w, i.e.,x is a pirate word of lengthni = ni−1 ∗ n∗i−1

created byr possible coalitionsKj. From the proof of Theorem4.4.1we see that
the runtimeLi of a TTA for codeCi is given by

Li = Li−1 ∗ n∗i−1 + L∗i . (4.1)

If we start withC0 andC∗
1 asw-TA codes, for which the runtime of their TTAs

areO(M0) andO(M1), then we haveL1 = O(M1), as|M0| << |M1|. Therefore,
if C∗

i is aw-TA code for each step of the recursion, then we haveLi = O(Mi).
Now the codesC0 andC∗

i in Theorem4.5.1are in factw-TA codes, so we have
the following result:

Theorem 4.5.4 [82] For any integerw ≥ 2 and any integers having the prime
factorizations = pe1

1 . . . pek
k with w2 < pei

i for all i = 1, . . . , k, there exists

an infinite class of(n,M, s, w) − IPP codes withn is O((w2)log∗(M)(log(M)),
which have a traitor tracing algorithm of linear runtimeO(M).

Proof: Let Ci be the code obtained in thei-th recursion step of the Theorem
4.5.1. ThenLi, the runtime of a TTA for it , is given by (4.1).

Sincen0 ≤ s0 we haven∗0 ≤ M0. Thus, fromn∗i−1 = n∗i−2
dn∗i−2

w2 e and

Mi−1 = Mi−2
dn∗i−2

w2 e we obtain thatn∗i−1 ≤ Mi−1 for anyi ≥ 0.

Now, asCi−1 is a w-IPP code of sizeMi−1 we getLi−1 ≤ O(
(

Mi−1

w

)
) =

O(Mi−1
w). HenceLi−1 ∗ n∗i−1 ≤ O(Mi−1

w+1).

This together with the fact thatMi = M
dn∗i−1

w2 e
i−1 implies that
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Li−1 ∗ n∗i−1 ≤ O(Mi) (4.2)

whenn∗i−1 ≥ (w + 1)w2.

Note thatC∗
i is a w-TA code for each step of the recursion, thusL∗i ≤

O(Mi). This together with (4.2) and (4.1) givesLi ≤ O(Mi).

So we have proved thatLi ≤ O(Mi) without assuming thatLi−1 ≤ O(Mi−1).
Thus for the codes from Theorem4.5.3there exists a TTA with a linear in
the size of the code runtime. This completes the proof of the theorem.

More generally, taking any starter code we obtain the following result:

Theorem 4.5.5 For any integerw ≥ 2 and any integerq > w there exists an infi-
nite class of(n,M, q, w)− IPP codes withn is O((w2)log∗(M)(log(M)), which
have a traitor tracing algorithm of linear runtimeO(M).

It turns out that the method of list decoding discussed in Section2.8 can be
applied to traitor tracing algorithms, when the mentioned codes are used asTA-
codes. This fact is discussed in Section4.3. For instance, from Theorem4.3.27
( case (i)) we see thatTA codes based on Reed-Solomon codes will have traitor
tracing algorithms of runtimepoly(log M), whereM is the size of the codes. This,
in turn, implies that the method can be applied to our constructedIPP codes.
Consequently, ifs = q is a prime power and the ingredients of the recursion
are Reed-Solomon codes, then theIPP codes of Theorem4.5.4allow a traitor
tracing algorithm which can run inpoly(log M) time. We present this class in the
following theorem:

Theorem 4.5.6 For any integerw ≥ 2 and any integerq > w there exists an infi-
nite class of(n,M, q, w)− IPP codes withn is O((w2)log∗(M)(log(M)), which
have a traitor tracing algorithm of runtimepoly(log M).

4.6 Construction of a New Class ofw-IPP Codes Us-
ing PHF

In this section we use the new class of perfect hash families given by Theorem
3.8.15to derive IPP codes in view of Theorem4.6.1.

Using Theorem4.3.10and Theorem3.8.15we immediately obtain the follow-
ing new class of IPP codes:
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Theorem 4.6.1 [82] Let w ≥ 2 be any integer andq be any prime power such that
q ≥ (b(w+2)2/4c

2

)
. Then there exists an(O((i + 1)b(w+2)2/4c−1), qi+1, q, w)− IPP

code for any integeri ≥ 1.

Proof: By Theorem3.8.15there exists an(O((i+1)b(w+2)2/4c−1), qi+1, q, b(w + 2)2/4c)−
PHF . The theorem then follows from Theorem4.3.10.

It is worth noting that at each recursion step the size of the constructed code
in Theorem4.6.1 increases much slower than that in Theorem4.5.1. Actually,
Theorem4.6.1roughly states thatw− IPP codes of certain codeword length can
be constructed for any givenw and any given code sizeqi. Thus, Theorem4.6.1
gives an explicit construction of IPP codes for a very large set of parameter values.

4.7 On a Class of TA Codes

Staddon, Stinson, and Wei [63], ask the following question: Can we construct
w-TA codes withq < w2 andb > q?

Our aim is to give an answer to the Staddon-Stinson-Wei’s problem. In Section
2.7 we have presented a new general construction method forq-ary codes with
large Hamming distance. Using this method we are able to construct a large class
of w-TA codes withq < w2 andb > q, and thus obtain a positive answer to the
problem.

4.7.1 Construction ofw-TA Codes with q < w2 and b > q

The following theorem shows that codes constructed in Theorem2.7.8, in fact,
provide a large class ofw-TA codes withq < w2 andb > q.

Theorem 4.7.1 [71]
Let q0 andq1 be prime powers such thatq1 ≥ q0.

(i) Suppose
√

q0q1 + 1 < d√q0q1 + q1 + 1e. Then for any integern with

√
q0q1 + 1 < d√ne ≤ d

√
q0q1 + q1 + 1e

there exists an(n, b, q) w-TA code withq < w2 andb > q, where

b = q2
0q1

q = q0q1

w = d√ne − 1.
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(ii) For any integerm ≥ 2 and for any integern with
√

q0qm
1 + 1 < d√ne ≤ d

√
q0qm

1 + qm
1 + · · ·+ q1 + 1e

there exists an(n, b, q) w-TA code withq < w2 andb > q, where

b = q2
0q

m
1

q = q0q
m
1

w = d√ne − 1.

Proof: First, recall that the parameters(N, b, q; d) of a codeC∗ in Theorem2.7.8
(ii) areN = q0q

m
1 + qm

1 + qm−1
1 + · · · + q1 + 1, b = q2

0q
m
1 , q = q0q

m
1 , and

d = N−1, wherem ≥ 1 is an integer. We remark that ifC∗ is shortened, the
resulting code with lengthn ≤ N always have minimum distanced = n−1.

Let (n, b, q; n − 1) be the parameters of a shortened codeC of C∗ (the case
C = C∗ is also included). So,n ≤ N . Let w = d√ne − 1. By Theorem
4.3.13, C is a w-TA code. The conditionq < w2, i.e.,

√
q < w, thus

becomes
√

q < d√ne − 1, equivalently
√

q + 1 < d√ne. As n ≤ N , we
have

√
q + 1 < d√ne ≤ d√Ne. Now q = q0q

m
1 , so if m = 1, we have

the condition
√

q0q1 + 1 < d√ne ≤ d√q0q1 + q1 + 1e. Thus(i) follows.
If m ≥ 2, we see that the condition

√
q + 1 < d√Ne is always satisfied.

In fact, we only need to verify that
√

q + 1 <
√

N , i.e., (
√

q0qm
1 + 1)2 <

q0q
m
1 + qm

1 + qm−1
1 + · · · + q1 + 1. Simplifying the last inequality yields

4q0q
m−2
1 < (qm−1

1 + · · · + q1 + 1)2, which is satisfied for all integersq1 ≥
q0 ≥ 2 andm ≥ 2. Thus we have(ii). The proof is complete.

Remark: In the proof of Theorem4.7.1above, we do not use the
approximation

√
q + 1 <

√
N to show

√
q + 1 < d√Ne for the case

m = 1. If we used it, we would get an inequality4q0 < q1. And therefore,
we would miss a large number ofw-TA codes. In fact, the condition√

q0q1 + 1 < d√q0q1 + q1 + 1e, as stated in the theorem, is much stronger.

Example 4.7.2 Some smallw-TA codes of Theorem4.7.1(i) are as follows: A
(10, 12, 6) 3-TA code corresponds toq0 = 2 andq1 = 3. This code is also dis-
played in Example2.7.3. For q0 = 3 andq1 = 4 we have a (17, 36, 12) 4-TA
code, and forq0 = 4 andq1 = 5 we have a (26, 80, 20) 5-TA code.

The discussions in Section4.3 show that we cannot constructw-TA codes as
application of Theorem4.3.13for fixes q < w2 whenM → ∞. The known
existence results onw-TA codes studied above requireq ≥ w2. We have seen that
w-IPP codes in general exist for any fixedq > w with n = Θ(log M). However,
the existence ofw-TA codes withq < w2 whenM →∞ remains open.
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4.8 Summary

In this chapter we have investigated identifiable parent property codes. These
codes are designed to be used in the schemes that protect copyrights of digital
data against a colluding coalition of authorized users of the data. From the known
sufficient conditions for the existence of IPP codes we have that for any fixed
q > w there exists an infinite class of IPP codes withn = O(log M).

We focus our attention on explicit constructions of IPP codes. We prove that
the concatenation of two IPP codes gives an IPP code. This result together with
some recursive techniques allows us to construct an infinite class of explicit IPP
codes for any alphabet size which is larger than the coalition size that the code is
able to handle. We observe that our constructed class has the best known asymp-
totic behavior of the parameters among explicit classes. We also study the com-
plexity of the traitor tracing algorithms of these codes. We show the existence of
a traitor tracing algorithm with a linear runtime in the size of the code.

It is shown in [66] that powerful list decoding techniques from coding theory
can be applied to some classes of TA codes to give a traitor tracing algorithm with
runtime polynomial in the length of the code. The classes of codes discussed in
[66] are restricted with the large sizes of alphabet compared with the coalition size
that the code can handle. We show that list decoding techniques can be applied
also to some infinite subclasses of the IPP codes derived by our construction. Thus
for any fixedq > w we obtain an infinite class of explicitw-IPP codes with very
good asymptotic behavior of parameters which has a traitor tracing algorithm with
runtime growing polynomially with the code length.

The connections between IPP codes and other combinatorial structures such as
hash families and error correcting codes have been established by several authors.
These results yield several explicit construction for IPP codes. We also present
two new classes of IPP codes based on these relationships.

First, using a new class of perfect hash families constructed in the Subsec-
tion 3.8.3we derive an infinite class of IPP codes which covers a wide range of
parameters.

Secondly, we give an affirmative answer to an open problem of Staddon, Stin-
son, and Wei about existence of TA codes withq < w2 andb > q. In fact, using
a new class ofq-ary codes with large Hamming distance, constructed in Section
2.7, and using the connections between TA codes and error correcting codes, we
obtain a new class ofw- TA codes with desired parameters. The existence ofw-
TA codes remains open in the case whenb andn→∞ for fixedq andw such that
w < q ≤ w2.



Chapter 5

Covering Arrays

This chapter concernst-covering arrays which are known also as a qualitatively
t-independent family of vectors ort-surjective arrays. Covering arrays have un-
dergone an intensive survey by many researchers due to their numerous applica-
tions in computer science such as software or circuit testing, switching networks,
data compression problem, and also several mathematical applications such as
difference matrices, search theory and truth functions.

The application of covering arrays to software system testing is discussed in
many papers e.g., see [101]. One of the approaches to reduce costs for testing a
software system is to use combinatorial designs to generate an efficient test set.
Software system faults are often caused by interactions among components. The
goal of a software developer is to test all combinations of potential interactions
with not very large number of tests. For the system where most errors occur be-
cause of interactions of its maximumt components, a test plan can be designed
usingt-covering arrays. As example in [101] covering arrays have been used to
design efficient test plans for a telephone switch system and a network perfor-
mance monitoring system.

Other applications related to covering arrays are authentication, block ciphers,
intersecting codes, obvious transfer, pseudorandomness, span programs, universal
hashing, resilient functions and zero-knowledge. [108]

We focus on explicit construction methods fort-covering arrays. Firstly, using
the relationships between perfect hash families and covering arrays one can con-
struct infinite families oft-covering arrays with very good asymptotic behavior.
We obtain an upper bound on the covering array number, which is shown to be
better than the known probabilistic upper bound.

Secondly, inspired from a result of Roux and also from a recent result of
Chateauneuf and Kreher for 3-covering arrays, several direct constructions for
t-covering arrays are presented, which can be viewed as generalizations of their
results fort-covering arrays,t ≥ 4. These constructions yield good upper bounds

79
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on the covering array number when the size of arrays is small. Our main results
in this chapter are contained in Theorem5.3.2, Theorem5.3.7, Theorem5.3.8,
Theorem5.4.1, Theorem5.4.8and Theorem5.4.9(see also [109]).

An introduction to covering arrays is given in Section5.1. Some known results
are presented in Section5.2. New infinite families of covering arrays are derived
in Section5.3 using recursive techniques. A comparison of parameters of the
constructed arrays with a known probabilistic bound is provided. Section5.4
includes several new constructions fort-covering arrays witht ≥ 4. Finally, in
Section5.5we give a summary of new results.

5.1 Introduction

Definition 5.1.1 A t-covering array, denotedCA(N ; t, k, v), is a k × N -array
with entries from a set ofv ≥ 2 symbols such that eacht×N -subarray contains
each orderedt-tuple of symbols at least once as a column.

Example 5.1.2 Example of aCA(33; 3, 6, 3)

012211200220110102200211221001012
122102002101102022012112010012012
221010021211020220101120200121012
210120212010201201021202101210012
101222120002011010222021112100012
000001111122222111110000022222012

Let CAN(t, k, v) denote the minimum numberN such that aCA(N ; t, k, v) exists,
i.e.,

CAN(t, k, v) = min{N : ∃ CA(N ; t, k, v)}.
ThenCAN(t, k, v) is called thecovering array number.

A CA(N ; t, k, v) is minimal if N = CAN(t, k, v). It is shown in [105] that the
covering array given in the Example5.1.2is minimal,CAN(3, 6, 3) = 33.

Covering arrays can be viewed as a generalization of orthogonal arrays. In
fact, if we require that eacht×N -subarray contains each orderedt-tuple of sym-
bols in exactlyλ times as a column, then we have ant-orthogonal array, denoted
OAλ(t, k, v) (see Section2.5 for details). In this case we haveN = λvt. Thus,
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anOAλ(t, k, v) is aCA(λvt; t, k, v). In particular, if there is anOA1(t, k, v), then
CAN(t, k, v) = vt. For instance, anOA1(t, t + 1, v) exists for allt andv, see
e.g., [23] ; also, for any prime powerq and anyt < q, OA1(t, q + 1, q) exists [6].
Therefore,CAN(t, t + 1, v) = vt andCAN(t, q + 1, q) = qt.

A main problem of covering arrays is to minimizeN for given valuest, k, v,
or equivalently to maximizek for given valuest, v, N . The caset = 2 has been
studied by several authors, see for instance [87], [88], [89], [99], [102]. For the
casev = 2 andt = 2 the problem has been completely solved by Katona [88],
Réni [87], and Kleiman and Spencer [89] using the Sperner lemma and Erdös-Ko-
Rado theorem [85].

For v > 2 and t = 2 the problem is much harder. Gargano, Körner and
Vaccaro [97, 99] have studied the asymptotic behavior for this case, showing that

lim
k→∞

CAN(2, k, v)

log2 k
=

v

2
. (5.1)

However, this result is non constructive and is of theoretical nature. Forv > 2
there are no explicit constructions known which achieve bound (5.1), and not
much is known about the covering array number for smallk. Sloane in [100]
gives a survey on known bounds for the caseq = 3 andt = 2. Improved tables
of upper bounds on covering array number forq ≤ 7 andk ≤ 50 have been
generated in [104] and [107]. Several lower bounds are derived in [102]. Some
construction techniques are given in [96, 97, 103, 104, 107].

The caset = 3 can be found in [92, 94, 100, 105, 106, 108]. Probabilistic
upper bounds on the number of columnsN for t-covering arrays are given in [86].
George Sherwood has a database for covering arrays constructed using various
computer search techniques [110]. However, very little are known fort-covering
arrays witht ≥ 4.

This chapter is concerned witht-covering arrays for an arbitrary valuet. Our
interest is in constructingt-covering arrays using combinatorial techniques and in
establishing bounds on the covering array numbersCAN(t, k, v). In particular, we
present constructions of good classes oft-covering arrays using recursive meth-
ods and perfect hash families. We then show combinatorial methods of how to
construct new covering arrays from other covering arrays and thus obtain several
bounds fort-covering arrays in the spirit of [94], [108].

5.2 Preliminaries

The following basic facts onCAN(t, k, v) can be found in [108]. Let A be a
CA(N ; t, k, v) with entriesaij ∈ V = {0, . . . , v − 1}.
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Symbol-fusing. If a symbolx is replaced with any symbol inV \ {x}, wherever
x occurs in the arrayA, then the resulting array is aCA(N ; t, k, v − 1). Thus

CAN(t, k, v − 1) ≤ CAN(t, k, v).

Row-deleting. If any row of A is deleted, then the remaining rows form a
CA(N ; t, k − 1, v). Hence

CAN(t, k − 1, v) ≤ CAN(t, k, v).

Derived array. Note that ifx ∈ V appearsM times in rowi of A, thenM ≥ vt−1.
Removing all columns ofA not havingx on rowi and then deleting rowi form a
CA(M ; t− 1, k − 1, v). Therefore

CAN(t, k, v) ≥ v.CAN(t− 1, k − 1, v).

Product. Let B be aCA(M ; t, k, w) with entriesbij ∈ W = {0, . . . , w − 1}.
From thek ×N arrayCl with entries(aij, bil) ∈ V ×W for all i = 1, . . . , k and
j = 1, . . . , N . Then[C1, . . . , CM ] is aCA(NM ; t, k, vw) on symbol setV ×W .
Therefore,

CAN(t, k, vw) ≤ CAN(t, k, v)CAN(t, k, w).

Squaring k[105]
If (

(
t
2

)
!, k) = 1, and there is aCA(N ; t, k, v), then forj ≥ 0

CAN(t, k2j

, v) ≤ N(

(
t

2

)
+ 1)j. (5.2)

We prove a simple lemma which shows rough lower and upper bounds for
CAN(t, k, v) for certain values ofk.

Lemma 5.2.1 For anyv ≥ 2, t ≥ 2 we have

vt ≤ CAN(t, k, v) ≤ 2t.vt − 1,

wherek ≤ 2n andn is the smallest integer such thatv ≤ 2n.
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Proof: An obvious lower bound is

vt ≤ CAN(t, k, v),

and this bound is reached ifv = q is a prime power andk ≤ q + 1 because
an orthogonal arrayOA1(t, q + 1, q) exists [6]. If v is not a prime power,
then2n−1 < v < 2n for a certain integern. Now takeCA(N ; t, 2n, 2n) =
OA1(t, 2

n, 2n). ThenN = 22nt. Using the symbol-fusing method one gets
aCA(N ; t, 2n, v). SinceN = 2t.2(n−1)t < 2t.vt, we haveN ≤ (2tvt− 1).

Non trivial lower bounds can be derived using the derived array technique. We
discus nontrivial lower bounds useful for large values ofk in the next section.

In [94], a Ph.D. dissertation, Roux shows the following theorem, see also
[100].

Theorem 5.2.2 (Roux [94])

CAN(3, 2k, 2) ≤ CAN(3, k, 2) + CAN(2, k, 2).

Thus, Roux’s theorem gives an upper bound for 3-covering array forv = 2.
Recently, Chateauneuf and Kreher [108] generalized Roux’s theorem for any

v ≥ 2.

Theorem 5.2.3 (Chateauneuf and Kreher [108])

CAN(3, 2k, v) ≤ CAN(3, k, v) + (v − 1)CAN(2, k, v).

5.3 Recursive Construction of CA Using PHF

Perfect hash families discussed in the Chapter3 can be used to derive bounds
on the covering array number. We describe a relationship between covering ar-
rays and perfect hash families. LetA = (ai,j) denote thek × N -matrix of a
CA(N ; t, k, v). For any two columnj1 andj2 of A, define

I(j1, j2) = |{i : ai,j1 = ai,j2}|

and
I(A) = max{I(j1, j2) : j1 6= j2}.

Theorem 5.3.1 Suppose there exists aCA(N ; t, k, v).
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(i) Then there exists a(N ′, k, v, t) − PHF whent ≤ v, N ′ = N − v × (v −
1)× (v − 2)× · · · × (v − t + 1) + 1

(ii) If k/I(A) >
(

w
2

)
, then there is a(k,N, v, w)− PHF.

Proof: Let A denote thek ×N -array presenting theCA(N ; t, k, v).

(i) It is obvious that anyt rows ofA contain at least v!
(v−t)!

columns with all

different symbols ift ≤ v. Thus if we delete any v!
(v−t)!

−1 columns ofA we
obtain an arrayA′ with N ′ = N−v×(v−1)×(v−2)×· · ·×(v−t+1)+1
columns. Anyt rows of the arrayA′ include at least one column with all
different elements. ThusA′ is a(N ′, k, v, t)− PHF if t ≤ v.

(ii) Taking the columns ofA as codewords, we have a(k,N, v; d = k −
I(A)) code. Then apply Theorem3.7.1.

A construction of covering arrays using perfect hash families is as follows:

Theorem 5.3.2 Suppose there exists a(s, k,m, t)− PHF and aCA(N ; t,m, v).
Then there is aCA(sN ; t, k, v).

Let n(k, v, t) = min{n : ∃ (n, k, v, t) − PHF}. Some characterizations of
covering array number we give in next lemmas.

Lemma 5.3.3 For anyv ≥ t we have

n(k, v, t) +
v!

(v − t)!
− 1 ≤ CAN(t, k, v) ≤ (2tvt − 1)n(k, v, t).

Proof: The left hand side of this inequality follows from Theorem5.3.1(case
(i)), and the right hand side follows from Theorem5.3.2and Lemma5.2.1.

Lemma 5.3.4 For anyv ≥ t, v is a prime power we have

n(k, v, t) +
v!

(v − t)!
− 1 ≤ CAN(t, k, v) ≤ vtn(k, v, t).

Proof: The left hand side of this inequality follows from Theorem5.3.1(case
(i)), and the right hand side follows from Theorem5.3.2and the fact that
CAN(t, v, v) = vt whenv is a prime power.

Lemma 5.3.5 For anyv < t, we have

n(k, v, v) + v!− 1 ≤ CAN(t, k, v) ≤ vtn(k, t, t).
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Proof: The left hand side of this inequality follows from Theorem5.3.1(case
(i)) and the fact thatCAN(v, k, v) ≤ CAN(t, k, v) whenv < t, and the right
hand side follows from Theorem5.3.2and the fact thatCAN(t, t, v) = vt.

In particular these lemmas show that nontrivial lower bounds on the covering
array numbers can be obtained from the lower bounds of minimal number of hash
functions of a perfect hash family having corresponding parameters. It would be
interesting to derive tighter nontrivial lower bounds on covering array number us-
ing similar techniques as for perfect hash families. A survey on the lower bound
for n(k, v, t) is provided in Sections3.4, 3.3, 3.5. From the lemmas given above
it can be also observed that an asymptotic bound of covering array number when
k →∞ with fixedv andt will differ at most by a constant factor from an asymp-
totic bound of minimal number of hash functions of perfect hash family having
corresponding parameters.

We now use Corollary3.7.3and Theorem5.3.2to construct an infinite class
of t-covering arrays with good asymptotic behavior.

Theorem 5.3.6 [109] Suppose there exists aCA(N0; t, q
s0 , v), whereq is a prime

power andqs0 > t(t−1)
2

. Then there exists aCA(N0Ri; t, q
si , v) for all i ≥ 0,

whereR0 = 1, and

Ri = qsi−1Ri−1,

si = si−1dq
si−1

(
t
2

) e

for all i ≥ 1.

Proof: We proceed by induction oni. For i = 0, the assertion is correct. Now
assumei ≥ 1. From Corollary3.7.3we have a(qsi−1 , qsi , qsi−1 , t)− PHF.

By induction, there exists aCA(N0Ri−1; t, q
si−1 , v). Now applying Theorem

5.3.2yields aCA(N0Ri; t, q
si , v). The proof is complete.

Let Ni = N0Ri andki = qsi. Then, by a similar argumentation as in Section
3.8( [46] pp.196-197) it can be proved that

Ni ≤ N0t
2i0

s0 log q
(t2)log∗(ki)(log ki)

for all i > i0.
For any given values ofk0, v andt we can always construct aCA(N0; t, k0, v)

for someN0. Therefore, we have the following theorem.
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Theorem 5.3.7 [109] For any positive integersv andt, there is an infinite explicit
constructive family of covering arrayCA(N ; t, k, v) such that

N = O((t2)log∗(k)(log k).

Theorem5.3.2becomes powerful when algebraic-geometric (AG) codes are
used. The idea is to derive good classes of perfect hash families fromAG codes
by Theorem3.7.1, and then apply Theorem5.3.2.

Now, combining Theorem5.3.2and Theorem3.7.7we can prove the follow-
ing result:

Theorem 5.3.8 [109] For every given integerst, v ≥ 2, and for any integern ≥
1, there exists a covering arrayCA(N ; t, k, v), where

N = N0.(q − 1)qn+1, N0 is a constant,
k = q2buqn+1c, q is a prime power such thatq ≥ t(t−1)(u+1)

2
+ 1,

andu is a real number with1 ≤ u ≤ q − 2.

Moreover, we haveN = O(log k).

Proof: Let t, v ≥ 2 be given integers. Letq be the smallest prime power such

that t = b1
2
(1 +

√
1 + 8

u+1
(q − 1))c, with 1 ≤ u ≤ q − 2, as shown in

Theorem3.7.7. A simple observation shows that we can always construct a
CA(N0; t, q

2, v) explicitly for a certain valueN0. Applying Theorem5.3.2
and Theorem3.7.7yields the covering arrays with parameters as claimed.

It should be noted (see also Section2.6) that the first low-complexity algo-
rithm for constructing “one-point”AG codes on G-S curves has a runtime upper-
bounded by(N logq N)3, whereN the length of the code and the complexity is
measured in terms of multiplications and divisions over the finite fieldFq2 [28].
The complexity of constructingt-covering arrays in Theorem5.3.8is, therefore,
polynomial inN . The covering arrays in Theorem3.8.13, however, can be viewed
as an explicitly constructed family.

The following probabilistic upper bound forCAN(t, k, v) is due to Godboleet
al [86].

Theorem 5.3.9 (Godbole, Skipper, Sunley [86])

CAN(t, k, v) ≤ (t− 1) log k

log ( vt

vt−1
)
{1 + o(1)},

ask →∞.
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It turns out that the covering arrays in Theorem5.3.8yield much better results
compared to Godbole-Skipper-Sunley bound.

To see it we consider e.g., the case with a square prime powerv = q2. For
any givent ≥ 2 and any prime powerq satisfying the condition of Theorem
5.3.8choose a real number1 ≤ u ≤ q − 2 such that(q−1)

(u+1)
=

(
t
2

)
. By taking

a CA(N0; t, q
2, q2) with N0 = q2t, Theorem5.3.8 gives aCA(N ; t, k, q2) with

N = q2t(q − 1)qn+1 andk = q2buqn+1c. ThusN ≈ q2t(q−1)
2u ln q

ln k. For theset andk,

the Godbole-Skipper-Sunley bound givesCAN(t, k, v) ≤ (t−1)

ln q2t

q2t−1

ln k{1 + o(1)}.

Let α = q2t(q−1)
2u ln q

andβ = (t−1)

ln q2t

q2t−1

. Then

α

β
=

(q − 1)q2t ln q2t

q2t−1

2u(t− 1) ln q

≈ (u + 1)t

4u ln q
, or

≤ t

4 ln q

by taking into accountq2t ln q2t

q2t−1
≈ 1. Thus α

β
< 1 for q ≥ 3. This shows that

sizes of arrays from Theorem5.3.8with v = q2 are better than Godbole-Skipper-
Sunley bounds.

As examples we consider several values ofv.
Forv = 32, t = 2 u = 1 we haveα = 73.729 andβ = 80.498
Forv = 72, t = 3 andu = 1 we haveα = 181378.878 andβ = 235296.999.
For v = 132 andt = 4 andu = 1 we haveα = 1908179711.915 andβ =

2447192161.523.
Sinceα

β
→ 0 asq → ∞, the Godbole-Skipper-Sunley bound becomes weak.

For instance, ifv = 232, t = 2, u = 216 − 2 we haveα ≈ 8, 3 ∗ 1017 whereas
β = 25 ∗ 1018. Thus,α is about 30 times smaller thanβ.

5.4 Constructions of Roux’s Type fort-CA

The constructions from the last section provide asymptotically good classes of
covering arrays, whenk → ∞ with fixed v, t. In this section we focus on con-
struction techniques which can be used to improve the results for small values of
k.

With Theorem5.2.2Roux shows an interesting bound for binary 3-covering
array, i.e.,v = 2. This bound is recently generalized by Chateauneuf and Kre-
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her to anyv ≥ 2, as presented in Theorem5.2.3. The idea is to construct a
CA(3, 2k, v) using aCA(3, k, v) and aCA(2, k, v).

Remark: We want to make a remark that Theorem 4.6. of Chateauneuf and
Kreher [108] p.231 is incorrect. Theorem 4.6. [108] states that one obtains

lim
k→∞

CAN(3, k, v)

log k
=

(
v

2

)

from

CAN(3, 2k, v) ≤ CAN(3, k, v) + (v − 1)CAN(2, k, v), (∗)

and

lim
k→∞

CAN(2, k, v)

log2 k
=

v

2
(∗∗)

In fact, it can be shown from(∗) and(∗∗) that

lim
k→∞

CAN(3, k, v)

log k
= ∞.

In this section, in the spirit of Roux, Chateauneuf and Kreher, we discuss
several constructions ofCA(t, 2k, v) usingCA(s, k, v) for s ≤ t.

5.4.1 4-Covering Arrays

The structure of covering array becomes more involved when its strength grows.
This might be one of the reasons that very little is known aboutt-covering arrays
for t ≥ 4 in comparison with 2-, 3- covering arrays. In this section, we present a
recursive construction of 4-covering arrays based on 2-, 3- covering arrays.

Let D be aCA(N1; 2, v, v) with entriesdj,i ∈ V = {1, . . . , v}. Let FD =
{f1, . . . , fN1} be a set of mappings derived fromD as follows: For eachi =
1, . . . , N1 define

fi : V −→ V

by
fi(j) = dj,i.

Thusfi maps the vector(1, . . . , v)T to thei−th column ofD, i.e.,fi(j) = dj,i.
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Remark: The familyFD has the following property. For any given two pairs
(x, y) and(z, w) with x, y, z, w ∈ V andx 6= y, there is at least an
fi ∈ FD such thatfi(x) = z andfi(y) = w. This is becauseD is a
CA(N0; 2, v, v).

In the following theorem we give a bound for 4-covering arrays by means of a
direct construction.

Theorem 5.4.1 [109] For any v ≥ 2 we have

CAN(4, 2k, v) ≤ CAN(4, k, v)+(v−1)CAN(3, k, v)+2CAN(2, v, v)CAN(2, k, v).

Proof: LetA be aCA(N4; 4, k, v), B be aCA(N3; 3, k, v), C be aCA(N2; 2, k, v),
andD be aCA(N1; 2, v, v), all on the symbol setV = {1, 2, . . . , v}. Let
FD = {f1, f2, . . . , fN1} be the set of mappings derived fromD as defined
above. Finally, letπ = (1, 2, . . . , v) be a cyclic permutation on the symbol
setV . Define

E1 =
A
A

E2 =
B B . . . B

Bπ1
Bπ2

. . . Bπv−1

E3 =
C C . . . C

Cf1 Cf2 . . . C
fN1

E4 = Cf1 Cf2 . . . C
fN1

C C . . . C

whereBπi

and Cfj are the arrays obtained by applyingπi and fj to the
symbols ofB andC, respectively.

Construct an arrayE as follows:
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E = E1 E2 E3 E4

E is therefore an2k ×N -array, whereN = N4 + (v − 1)N3 + 2N2N1.

Consider 4 rowsr1, r2, r3, r4 of E.

1. If r1, r2, r3, r4 include 4 distinct rows ofA, then all quadruples occur
on these rows among the columns ofE1.

2. If r1 < r2 < r3 ≤ k < r4 = r1+k or r1 ≤ k < r2 = r1+k < r3 < r4,
then all quadruples of the form(x, y, w, x)T for anyx, y, w occur on
these rows among the columns ofE1 and quadruples(x, y, w, z)T with
x 6= z occur inE2.

3. If r1 < r2 ≤ k < r3 = r1 + k < r4, then we have two subcases.

3.1. r4 6= r2 + k. Quadruples of the form(x, y, x, z)T for anyx, y, z
occur among the columns ofE1. Letr′4 = r4−k. Thenr1, r2, r

′
4 ≤

k < r3 = r1 +k. For any quadruple of the form(x, y, x′, z)T with
x′ 6= x, thenx′ = xπi

for somei. Hence there is a column inE2

containingx in row r1, y in row r2, z(πi)−1
in row r′4, andx′ = xπi

in row r3. Therefore,(x, y, x′, z)T appears in that column on the
rowsr1, r2, r3, r4.

3.2. r4 = r2 + k. Quadruples of the form(x, y, w, z)T with x 6= y
for any w, z occur on the rowsr1, r2, r3, r4 among the columns
of E3, because there exists anfi such thatxfi = w andyfi = z;
similarly quadruples(x, y, w, z)T with w 6= z is covered byE4;
quadruples of the form(x, x, y, y)T for everyx andy occur among
the columns ofE3 andE4.

Therefore,E is a covering arrayCA(N ; 4, 2k, v) with N = N4+(v−1)N3+
2N2N1, as required.

From the proof of the theorem it can be observed that shorter covering arrays
can be constructed in several cases by choosing the arraysA, C, D more carefully.
These cases are listed in the following lemma.

Lemma 5.4.2 The construction in Theorem5.4.1still works if any of arraysA, C
andD is chosen as follows:
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1. C is a k × N2-array with entries from a set ofv symbols such that each
2×N -subarray contains each ordered2-tuple of not equal symbols at least
once as a column.

2. In the binary alphabet case,D is a 2 × 2 array where both rows are equal
to {0, 1}.

3. In the casek < 4, A is the same as the arrayB.

From Lemma5.4.2(case 2) and Theorem5.4.1we obtain the following corol-
lary.

Corollary 5.4.3

CAN(4, 2k, 2) ≤ CAN(4, k, 2) + CAN(3, k, 2) + 4CAN(2, k, 2).

Theorem5.4.1together with Lemma5.4.2gives the following example.

Example 5.4.4 CA(28; 4, 6, 2)

0001110100011101000100111100
0010101100101011000010111010
0100011101000111000001111001
0001110111100010100000100111
0010101111010100010000010111
0100011110111000001000001111

It should be noted that the parameters of the covering array in this example
matches with the parameter of the corresponding array generated by the Con-
strained Array Text System [98] when an ”expand” computer search program has
been used, see [110].

Example 5.4.5 CA(40; 4, 8, 2)
We take the arraysA, B, C andD as follows:

A =

0001110100011101
0010101100101011
0100011101000111
0001110111100010
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A is a 4-covering array.

B =

00011101
00101011
01000111
01110001

B is a 3-covering array.

C =

1000
0100
0010
0001

C is an array defined in Lemma5.4.2(case 1).

D =
01
01

D is the array from Lemma5.4.2(case 2).

Now applying Theorem5.4.1to A, B, C andD we obtain the arrayE as fol-
lows:

0001110100011101 00011101 1000 1000 0000 1111
0010101100101011 00101011 0100 0100 0000 1111
0100011101000111 01000111 0010 0010 0000 1111
0001110111100010 01110001 0001 0001 0000 1111
0001110100011101 11100010 0000 1111 1000 1000
0010101100101011 11010100 0000 1111 0100 0100
0100011101000111 10111000 0000 1111 0010 0010
0001110111100010 10001110 0000 1111 0001 0001

A covering array with this parameters is also constructed in [110]. However,
there are no construction methods given in general case. For the binary case, the
idea in [110] is to use a computer search program to check all combinations of
rows of a specified2j × 2j+1 array, wherej > 2 is an integer. The goal of this
search is to find covering arrays for some3 < k < 2j. In the last step, a computer
program is used to remove redundant rows. This technique yields aCA(30; 4, 6, 2)
covering array while we obtain aCA(28; 4, 6, 2) as shown in Example5.4.4. It
should be noted that aCA(31; 4, 8, 2) has been found by a computer search. [110]
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If v = q is a prime power, then aCA(q2; 2, q, q) exists. Hence, the bound in
Theorem5.4.1can be strengthened and we obtain:

Corollary 5.4.6 For any prime powerq ≥ 2 we have

CAN(4, 2k, q) ≤ CAN(4, k, q) + (q − 1)CAN(3, k, q) + 2q2CAN(2, k, q).

5.4.2 5-Covering Arrays

We present a construction for 5-covering arrays similar to the contraction for 4-
covering arrays described above. We prove the following theorem:

Theorem 5.4.7 [109] For any v ≥ 3 we have

CAN(5, 2k, v) ≤ CAN(5, k, v) + (v − 1)CAN(4, k, v)

+[6v(v − 1) + 2CAN(2, v, v)]CAN(3, k, v).

Proof: LetA be aCA(N5; 5, k, v), B be aCA(N4; 4, k, v), C be aCA(N3; 3, k, v),
andD be aCA(N1; 2, v, v), all on the symbol setV = {1, 2, . . . , v}.
Again letFD = {f1, f2, . . . , fN1} be the set of mappings defined from a
CA(N1; 2, v, v) as in Section 4. Also, letπ = (1, 2, . . . , v) be a cyclic per-
mutation on the symbol setV .

We define three families of mappings fromV into V as follows:

(i). Let G = {ga,b : V −→ V : a, b ∈ V, a 6= b}, where

ga,b(x) =

{
a if x = a
b if x 6= a

(ii). Let Ḡ = {ḡa,b : V −→ V : a, b ∈ V, a 6= b}, where

ḡa,b(x) =

{
a if x = b
b if x 6= b

(iii). LetH = {ha,b : V −→ V : a, b ∈ V, a 6= b}, where

ha,b(x) =

{
a if x 6= a or x 6= b
b if x = a or x = b

Define
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E1 =
A
A

E2 =
B B . . . B

Bπ1
Bπ2

. . . Bπv−1

E3 =
C C . . . C Cf1 Cf2 . . . C

fN1

Cf1 Cf2 . . . C
fN1 C C . . . C

E4 =
C C . . . C C

g1,2 C
g1,3 . . . C

gv,v−1

C
g1,2 C

g1,3 . . . C
gv,v−1 C C . . . C

E5 =
C C . . . C C

ḡ1,2 C
ḡ1,3 . . . C

ḡv,v−1

C
ḡ1,2 C

ḡ1,3 . . . C
ḡv,v−1 C C . . . C

E6 =
C C . . . C C

h1,2 C
h1,3 . . . C

hv,v−1

C
h1,2 C

h1,3 . . . C
hv,v−1 C C . . . C

Construct an arrayE as follows:

E = E1 E2 E3 E4 E5 E6

Let r1, r2, r3, r4, r5 be 5 rows ofE. Because of the symmetry ofE we need
to consider the following cases.

1. If r1, r2, r3, r4, r5 satisfyri 6= rj + k, i 6= j andi, j = 1, 2, 3, 4, 5,
then all 5-tuples occur on these rows among the columns ofE1.

2. If r1 < r2 < r3 < r4 ≤ k < r5 = r1 + k, then 5-tuples of the form
(a, b, c, d, a)T occur on these rows among the columns ofE1, and all
5-tuples(a, b, c, d, a′)T with a′ 6= a appear in the columns ofE2.
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3. Assumer1 < r2 < r3 ≤ k < r4 < r5, r4 = r1 + k andr5 6= ri + k for
all i = 1, 2, 3. Consider a 5-tupleX = (a, b, c, a′, e)T . If a = a′, then
X is covered byE1. Now assumea 6= a′. As B is a 4-covering array,
all (v − 1) quadruples(a, b, c, e1)

T , . . . , (a, b, c, ev−1)
T with e 6= ei,

appear on the rowsr1, r2, r3, r5 − k among the columns. Thus, for
eachπi, there is aej such thatπi(ej) = e. Further,πi(a) = ai with
a 6= ai. It follows that all 5-tuples(a, b, c, a1, c), (a, b, c, a2, c), . . . ,
(a, b, c, av−1, c), where andai 6= aj for i 6= j, appear in the columns
corresponding to rowsr1, r2, r3, r4, r5 in E2.

4. Assumer1 < r2 < r3 ≤ k < r4 < r5, r4 = r1 + k andr5 = r2 + k.
We need to consider different types of 5-tuples.

(i) A 5-tuple of the form(a, b, x, a, b)T for anya, b, x is covered by
E1.

(ii) A 5-tuple of the form(a, a, x, b, b)T for anya, b, x is covered by
E2.

(iii) A 5-tuple of the form(a, b, x, c, d)T for anya, b, x, c, d anda 6= b
is covered byE3. This is becauseC is a 3-covering array, there is
at least one column ofC containing the triple(a, b, x)T in the rows
r1, r2, r3 and there is andfi such thatfi(a) = c andfi(b) = d.

From now on we can assumec 6= d.

(iv) Consider a 5-tuple of the form(a, a, x, c, d)T for anya, x, c, d and
c 6= d. We have the following subcases:

(α) x 6= a, c, d. There is a columnj of C containing the triple
(x, c, d)T in the rowsr3 + k, r1 + k, r2 + k of E4. Therefore
the columnj of the block

Cgx,a

C

contains the 5-tuple(a, a, x, c, d)T with x 6= a, c, d in the rows
r1, r2, r3, r1 + k, r2 + k, becausegx,a(x) = x, gx,a(c) = a,
andgx,a(d) = a.

(β) x = a. As C is a 3-covering array, there is columnj contain-
ing the triple(c, d, c)T in the rowr1 +k, r2 +k, r3 +k. Also
there is a mappingfi, 1 ≤ i ≤ N1, such thatfi(c) = a and
fi(d) = a, by Remark5.4.1. Therefore the columnj of the
block

Cfi

C
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in E3 contains the 5-tuple(a, a, a, c, d)T in the rowsr1, r2, r3,
r1 + k, r2 + k.

(γ) x 6= a andx = c. Again there is a columnj of C containing
the triple(c, d, a)T in the rowr1+k, r2+k, r3+k. Therefore
the columnj of the block

Cḡc,a

C

in E5 contains the 5-tuple(a, a, c, c, d)T in the rowsr1, r2, r3,
r1 + k, r2 + k.

(δ) x = a = c (i.e. a 6= d). The 5-tuple(a, a, a, a, d)T is covered
by a column of the block

Cfi

C

with fi(a) = a andfi(d) = a in partE3.

(θ) x = c and a = d. Consider a columnj of C containing
the triple (c, a, b)T with b 6= c, a in the rowsr1 + k, r2 +
k, r3 +k. The 5-tuple(a, a, c, c, a)T is contained in a column
j corresponding to the rowsr1, r2, r3, r1 + k, r2 + k of the
block

Chc,a

C

of E6. This is becausehc,a(b) = c, hc,a(c) = a andhc,a(a) =
a.

HenceE is a 5-covering array. The proof is complete by using|G| = |Ḡ| =
|H| = v(v − 1).

If v = q is a prime power, thenN1 = v2 by Lemma5.2.1. Therefore we have

Corollary 5.4.8 For any prime powerq ≥ 3 we have

CAN(5, 2k, q) ≤ CAN(5, k, q) + (q − 1)CAN(4, k, q) + (8q2 − 6q)CAN(3, k, q).
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5.4.3 t-Covering Arrays for t ≥ 4

Theorem 5.4.9 [109] For any integerst ≥ 4 andv ≥ 2 we have

CAN(t, 2k, v) ≤ CAN(t, k, v) + (v − 1)CAN(t− 1, k, v)

+
t−2∑
i=2

2CAN(i, k, v)CAN(t− i, k, v).

Proof: Let At, At−1, . . . , A2 be

CA(nt; t, k, v), CA(nt−1; t− 1, k, v), . . . , CA(n2; 2, k, v),

respectively.

Let B
nj

i be thek × ni.nj array obtained fromAi by repeating each column
nj times, wherei, j = t− 2, . . . , 2 andi + j = t.

Let Cni
j be thek × ni.nj array obtained by concatenatingni copies ofAj,

wherei, j = t− 2, . . . , 2 andi + j = t.

Define

Et =
At

At

Et−1 =
At−1 At−1 . . . At−1

Aπ
t−1 Aπ2

t−1 . . . Aπv−1

t−1

For i = t− 2, . . . , 2, define

Ei =
B

nt−i

i Bni
t−i

Cni
t−i C

nt−i

i

Construct an arrayE as follows

E = Et Et−1 Et−2 . . . E2

Let r1, . . . , rt be t rows of E. Because of the symmetry ofE we need to
consider the following cases.
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1. If r1, . . . , rt include t distinct rows ofAt, then all t-tuples occur on
these rows among the columns ofE1.

2. If r1 < . . . < rt−1 ≤ k < rt = r1 + k, then t-tuples of the form
(a1, . . . , at−1, a1)

T is covered byE1, and all t-tuples(a1, . . . , at−1, a
′)T

with a′ 6= a1 appear in the columns ofE2.

3. For the remaining cases we can assumer1 < . . . < ri ≤ k andk <
ri+1 < . . . < rt, wherei = t − 2, t − 3, . . . , d t

2
e. Then for each

i = t−2, t−3, . . . , d t
2
e and for anyt-tuple(a1, a2, . . . , at)

T of symbols
there is a column inEi containing thist-tuple in the rowsr1 < . . . <
ri ≤ k < ri+1 < . . . < rt.

The proof is complete.

For t = 4, 5 and largek the construction in Theorem5.4.9yields a weaker
upper bound on covering array number than the previous constructions for 4-, 5-
covering arrays discussed in this section. But the generalization of the idea of
previous constructions seems to become more involved and difficult to describe
with growing t. For 5-covering arrays with not very largek, however, the con-
struction given in Theorem5.4.9provides a tighter upper bound. We demonstrate
an application of the Theorem5.4.9by an example.

Example 5.4.10LetA5 be aCA(45; 5, 5, 4). A4 be aCA(44; 4, 5, 4), A3 be a
CA(43; 3, 4, 4) and aA2 beCA(16; 2, 4, 4). Then applying Theorem5.4.9we ob-
tain aCA(5888; 5, 10, 4).

Note that from the Corollary5.4.8we have aCA(8448; 5, 10, 4) and from the
Equation5.2we obtain aCA(11264; 5, 10, 4).

The probabilistic bound (Theorem5.3.9) gives aCAN(5, 10, 4) ≤ 9426.

5.5 Summary

In this chapter we have studied covering arrays, which are generalizations of or-
thogonal arrays. These combinatorial structures have undergone an intensive sur-
vey during last few years due to their numerous practical applications. One of
main problems is to construct covering arrays with a small number of columns.
We have developed a number of explicit constructions for covering arrays. Firstly,
we show some asymptotically good classes of covering arrays based on perfect
hash families. The techniques are recursive and make use Reed-Solomon or “one-
point” AG codes to construct infinite families oft-covering arrays. We obtain
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an upper bound on covering array number, which is shown to be better than the
known probabilistic upper bound.

Secondly, we give some constructions oft-covering arrays witht ≥ 4. The
structure of covering arrays becomes more involved when its strength grows. This
might be one of the reasons that very little is known aboutt-covering arrays fort ≥
4 in comparison with 2-, 3- covering arrays. Inspired from a result of Roux and
also from a recent result of Chateauneuf and Kreher for 3-covering arrays, several
constructions were provided for the arrays of strengtht ≥ 4 which make use
covering arrays with lower strength and recursive techniques. These constructions
provide better covering arrays than the other known in the literature constructions
for certain parameter ranges.
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Appendix A

Notation

ab
∏b−1

i=0 (a− i).
(A, B) join of arraysA andB [page16]
A(C) M × n array on q symbols corresponding to an

(n,M, q; d) codeC [page13].
C a q-ary code. [page5].
C> transpose matrix ofC.
|C| size ofC.
C matrix representation of the codeC [page5].
CA(N ; t, k, v) covering arraywith k constrains (or of degreek, or

with k rows), of v levels (or of degreev, alphabet
size), strengtht andN columns [page80].

CAN(t, k, v) for fixed t, k andv the minimum numberN such that
aCA(N ; t, k, v) exists.

desc(C0) the set of descendants ofC0 [page55].
descw(C) w-descendant code ofC [page55].
d(x, y) Hamming distance between the codewordsx andy

[page6].
Fq finite field of q elements [page8].
RSn,k(α, v) Reed-Solomon code of lengthn and dimensionk on

α andv.
H hash family [page21].
I(x, y) {i : xi = yi}, wherex = {x1, x2, · · · xn}, y =

{y1, y2, · · · yn} andi = 1, 2, · · · , n.
I(A) maximal intersection of any two columns of arrayA

[page83].
log∗ see definition [page45].
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L(mP ) Fq2-vector space consisting of all functions defined
on the curve such that the only pole of anyf ∈
L(mP ) is P and the pole order is at mostm [page
12].

mj(a) frequency ofa on thejth column ofA(C) [page13].
M(n,m, w) for fixed n, m andw the maximal value ofM for

which an(n,M, m, w)− PHF exists.
n(M, m,w) for fixed n, m andw the minimal number of hash

functionsn for which an(n,M, m,w)−PHF exists.
(n,M, q, w1, w2)− SSHF strong separating(n,M, q) hash family of strengths

w1 andw2 [page58].
(n,M, m)−HF family of n hash functionsh : A −→ B, where|A| =

M ≥ |B| = m.
(n,M, m,w)− PHF perfect (n,M,m) hash family of strengthw [page

21].
(n, b, q, w)-TA traceability(n, b, q) code of strengthw [page56]
[n, k, q] linear (n,M, q) code of dimensionk, k = log M

[page6].
[n, k, q; d] [n,M, q] linear code with minimum distanced [page

6].
(n,M, q) code code of lengthn, sizeM over an alphabet of sizeq

[page5].
(n,M, q)−RS Reed Solomon(n,M, q) code.
(n,M, q, t, u)− PAHF partially (n,M, q) hashing family of strengtht, and

u [page58].
(n,M, q, w1, w2)− SHF separating(n,M, q) hash family of strengthsw1 and

w2 [page58].
(n,M, q, w)− IPP identifiable parent property(n,M, q) code of

strengthw [page55].
(n,M, q; d) (n, M, q) code with minimum distanced.
OAλ(t, n, v) orthogonal arraywith n constrains (or of degreen,

or with n rows), ofv levels (or of degreev, alphabet
size), strengtht and indexλ [page9].

OA(t, n, v) OAλ(t, n, v) whereλ = 1.
P = {P1, . . . , Pn, P} n + 1 distinctFq2-rational points [page12].
¹ for any functionsf(x) andg(x), f(x) ¹ g(x) de-

notes thatf(x) ≤ (1 + 0(1))g(x), where 0(1) tends
to zero whenx tends to infinite.
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Acronyms

AG algebraic geometry code
CA covering array
CAN covering array number
ERS extended Reed-Solomon code
G-S Garcia-Stichtenoth
RS Reed-Solomon code
HF hash family
IPP identifiable parent property code
MDS maximum distance separable
MOLS mutually orthogonal Latin squares
OA orthogonal arrays
PAHF partially hashing family
PHF perfect hash function
R-S Reed-Solomon code
SHF separating hash family
SSHF strong separating hashing family
TA traceability code
TTA traitor tracing algorithm
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