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Zusammenfassung

In letzter Zeit haben einige kombinatorische Strukturen und Codes eine Vielzahl
verschiedener Anwendungen in der Kommunikationstechnik, Kryptographie, Net-
zwerktechnik und der Informatik gefunden.

Der Zweck dieser Dissertation ist, offene Probleme im Zusammenhang mit
verschiedenen kombinatorischen Objektentaeh, welche durch praktische An-
wendungen im Bereich der Informatik und Kryptographie motiviert sind. Genauer
gesagt, untersuchen wir perfect hash families, identifiable parent property codes
und covering arrays.

Perfect hash families sind kombinatorische Strukturen, die verschiedene prak-
tische Anwendungen haben, so wie Compilerbau, Probleme der Kongpleait
Schaltkreisen, Datenbank-Verwaltung, Betriebssysteme, derandomization proba-
bilistischer Algorithmen und broadcast encryption.

Wir konzentrieren uns auf explizite Konstruktionsverfahrén gerfect hash
families. Erstens liefern wir eine explizite rekursive Konstruktion einer unendli-
chen Klasse von perfect hash families mit dem besten bekannten asymptotischen
Verhalten unter alle@hnlichen, bekannten Klassen. Zum zweiten stellen wir ein
neues rekursives Konstruktionsverfahren vor, mit dessen Hilfe man ‘gute’ perfect
hash familiesiir kleine Parameter erzeugen kann. Durch diese Methode erhalten
wir eine unendliche Klasse von perfect hash families, die eine sehr grol3e Menge
von Parameter-Werten abdeckt. Weiterhin leiten wir eine neue untere Schiianke f
die minimale Anzahl von Hash-Funktionen her. Ein Vergleich der existierenden
Schranken zeigt, dass unsere Schraiikeinige Parameter-Bereiche &cfer ist
als andere bekannte Schranken.

Identifiable parent property codes (IPP) wurden entwickeltife Anwendung
in Verfahren, die urheberrechtlich gesithte digitale Daten gegen unerlaubte
Kopien scliitzen, die gemeinsam von mehreren berechtigten Nutzern hergestellt
werden. TA codes sind eine gut erforschte Teilmenge der IPP-Codes. Wir stellen
zwei neue Konstruktionerilf IPP-Codes vor. Unsere erste Konstruktion bietet
eine unendlichen Klasse von IPP-Codes mit dem besten bekannten asymptotis-
chen Verhalten unter alleghnlichen Klassen in der Literatur. Weiterhin beweisen
wir, dass diese Codes ein Verfahren zum Finden vona#ernn mit im Allge-



meinen LaufzeitO(M) erlauben, wobeil/ die Code-Gdl3e ist. Man beachte,

dass vorher aul3er den TA-Codes keine IPP-Codes mit dieser Eigenschaft bekannt
waren. Fir einige unendliche Unterklassen dieser Codes kann man sogar noch
schnellere Verfahren zum Aufépen von Veratern finden, mit Laufzeioly (logM ).
AulRerdem wird eine neue unendliche Klasse von IPP-Codes konstruiert, die ‘gute’
IPP-Codesiir nicht zu gro3e Werte von liefert, wobein die Code-lange beze-
ichnet. Diese Klasse von IPP-Codes deckt einen grof3en Bereich von Parameter-
Werten ab. Weiterhin konstruieren wir eine grol3e Klasse wemA-Codes, die

eine positive Antwort auf ein offenes Existenzproblem geben.

Covering arrays sind von vielen Wissenschatftlern intensiv untersucht worden,
aufgrund ihrer zahlreichen Anwendungen in der Informatik, so wie Software-
oder Schaltkreis-Testen, switching networks, Datenkompressions-Probleme, und
etliche mathematische Anwendungen, so wie Differenz-Matrizen, Such-Theorie
und Wahrheits-Funktionen.

Wir untersuchen explizite Konstruktions-Methodéin f-covering arrays. Zu-
erst benutzen wir den Zusammenhang zwischen perfect hash families und cover-
ing arrays, um unendliche Familien vettovering arrays zu findeniif die wir
beweisen, dass sie besser sind als die augenblicklich bekannten probabilistischen
Schrankeniir covering arrays. Diese Familien haben ein sehr gutes asymptotis-
ches Verhalten. Zum zweiten liefern wir, angeregt durch ein Ergebnis von Roux
und auch von einemikzlich erzielten Ergebnis von Chateauneuf und Kreher f
3-covering arrays, verschiedene neue Konstruktioiiettéovering arrays; > 4,
die als eine Verallgemeinerung dieser Ergebnisse gesehen wendeark

Ich habe diese Arbeit selldstdlig verfasst und dabei keine anderen als die in
der Literatureliste aufg@hrten Hilfsmittel benutzt.

Sosina Martirosyan
Essen, July 2003
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Chapter 1

Introduction

Recently, several combinatorial structures and codes have found vast range of ap-
plications to communications, cryptography, networking and computer sciences.
Connections of error correcting codes and cryptography are surveygél ifhje

paper B] describes some applications of coding theory to communication com-
binatorial problems. Many practical problems where combinatorial designs have
played a substantial role are discussed in some survey papers such as applica-
tions of combinatorial designs in computer scieridedombinatorial designs and
cryptography 4], applications of combinatorial designs to communications, cryp-
tography, and networking].

The purpose of this dissertation is to solve open problems related to several
combinatorial objects motivated by practical applications in the area of computer
sciences and cryptography. Precisely, we study perfect hash families, identifiable
parent property codes and covering arrays.

Perfect hash families were introduced by Mehlhorn in compiler design to
prove lower bounds on the size of a computer program. In the last few years,
perfect hash families have been applied to circuit complexity problems, database
management, operating systems, derandomization of probabilistic algorithms and
broadcast encryption. More recently, they found applications in secret sharing,
key distribution patterns, non-adaptive group testing algorithms, in constructing
cryptographic codes, covering arrays and efficient multicast re-keying schemes.

An (n, M, m)-hash familyis a setH of functions{h : A — B}, where|A| =
M, |B| = m and|H| = n. An (n, M, m,w)-perfect hash familys an(n, M, m)-
hash family such that for any C A with | X| = w, there is at least one function
h € 'H such that is injective when restricted oN .

The main problem is to minimize the number of hash functions. Numerous
upper and lower bounds have been derived on the minimal numbsarwhich
an (n, M, m,w)-perfect hash family exists. It is proved thats ©(log M) for

1



2 CHAPTER 1. INTRODUCTION

any fixedm andw. Such existence results are of probabilistic nature and it turns
out to be a difficult problem to give explicit constructions, which are as good
asymptotically. Several explicit constructions of perfect hash families from error
correcting codes and incomplete block designs are derived which yield perfect
hash families withn = O(log M). However these constructions are restricted
since they do not provide perfect hash families for largerespect to the alphabet
sizem. The known explicit recursive constructions give perfect hash families
wheren is a polynomial function ofog M.

We focus on explicit construction techniques for perfect hash families. Firstly,
we provide an explicit recursive construction of an infinite class of perfect hash
families with the best asymptotic behavior among similar known classes. Sec-
ondly, we present a new recursive construction technigque which allows to con-
struct ‘good’ perfect hash families for small sizesrof Applying this construc-
tion we obtain an infinite class of perfect hash families covering a very large set
of parameter values. Further, using a rather simple method we obtain a new lower
bound on the minimal number of hash functions. A comparison of the existing
bounds shows that our bound is stronger than other known bounds for some pa-
rameter sets. Itis better than Fredman-Kosdnd Kdrner-Marton bounds almost
everywhere.

Identifiable parent property (IPP) codes have been introduced by Hollmann,
van Lint, Linnartz and Tolhuizen in 1997. These codes are designed to be used
in the schemes that protect copyrighted digital data against illegal reproduction or
redistribution. A coalition of colluding users can make an illegal copy by com-
bining different segments of their data and broadcast it. After an illegal copy is
detected traitor tracing schemes attempt to reveal at least one traitor. The goal
of such schemes is to handle as many colluders as possible. The practical ap-
plications require to accommodate many users when there is a restriction on the
number of symbols which can be used for marking the data.

We say a code has the-identifiable parent property if no coalition of size at
mostw can produce an-tuple that cannot be traced back to at least one member
of the coalition. TA codes are well studied subsets of IPP codes. The TA property
ease the parent identification process allowing efficient traitor tracing algorithms.
Combinatorial properties of IPP codes and TA codes have been studied by several
authors. Relationships of IPP codes with other known combinatorial structures
and codes lead to several sufficient and necessary conditions on the existence of
IPP codes. Probabilistic techniques are used to prove the existened&f codes
with n = O(log M), wheren is the length of the codes arid is the size, for any
alphabet of sizg > w. During the last few years several explicit constructions
of IPP codes have been derived. Certain classes of TA codes are shown to have a
fast traitor tracing algorithm by using the list decoding techniques.



We present two new explicit construction methods for IPP codes using recur-
sion techniques. Our first construction provides an infinite class of IPP codes
with the best asymptotic behavior among explicitly constructed classes of IPP
codes known in the literature. In fact, for any fixed> w we are able to con-
struct an infinite class ab-IPP codes in which the length of the codewords is

O((wz)log*(M)(log(M)), whereM is the number of codewords ane* is a very

slow growing function. Moreover, we prove that these codes allow a traitor trac-
ing algorithm with a runtime o© (M) in general. It should be noted that no IPP
codes other than the TA codes with this property were known before. For some
infinite subclasses of these codes, even faster traitor tracing algorithms with run-
time poly(log M) can be obtained. Also, another new infinite class of IPP codes
is constructed which provides ‘good’ IPP codes for small values. dfhis class

of IPP codes covers a wide range of parameter values. The known construction
methods and probabilistic existence results do not prove the existenca Af
codes withg < w?, andb > ¢, whereb is the size of the code anglis the size

of the alphabet. Thus existence of suciTA codes is stated as an open problem
by Staddon, Stinson, and Wei. We provide a positive answer to the problem by
constructing a large class of TA codes withg < w? andb > q.

Covering arrays have undergone an intensive survey by many researchers due
to their numerous applications in computer science such as software or circuit
testing, switching networks, data compression problem, and also several mathe-
matical applications such as difference matrices, search theory and truth functions.

The application of covering arrays to software system testing is discussed in
many papers. One of the approaches to reduce costs for testing a software system
is to use combinatorial designs to generate an efficient test set. Software system
faults are often caused by interactions among components. The goal of a software
developer is to test all combinations of potential interactions with small number
of tests. For the system where most errors occur because of interactions of its
maximumt¢ components, a test plan can be designed ustayering arrays.

We present new explicit construction methods #aovering arrays. Firstly,
using the relationships between perfect hash families and covering arrays we can
construct infinite families of-covering arrays which are proved to be better than
currently known probabilistic bounds for covering arrays. These families have
very good asymptotic behavior. Secondly, inspired from a result of Roux and also
from a recent result of Chateauneuf and Kreher for 3-covering arrays, we show
several constructions fagrcovering arrays, which can be viewed as generaliza-
tions of their results fot-covering arrayst > 4. These constructions are more
efficient than the other known constructions when the size of array is not very
large.
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Thesis Overview

Chapter2 is a brief survey om-ary code and introduces some significant known
results which are needed in the subsequent chapters. In S&cliae present a

new construction for-ary codes with large Hamming distance which is used in
next chapters to give new classes of traceability codes and perfect hash families.
It is also shown that the construction produces a class of optiragy codes in

the sense that parameters of the codes achieve the Plotkin bound.

Chapter3 studies perfect hash families. A new necessary condition on the
existence of perfect hash families is derived in Sectighwhich is expressed in
form of an upper bound of/. A comparison of some known bounds is provided
which shows that our bound is stronger than other known bounds for some param-
eters sets. Two new explicit recursive constructions are described in Sédion
Firstly, we provide an explicit recursive construction of an infinite class of perfect
hash families with very good asymptotic behavior. Secondly, we present a new
construction technigue which provides an infinite class of perfect hash families
covering very large parameter ranges.

Chaptert introduces identifiable parent property codes (IPP). We describe two
new explicit construction techniques for IPP codes. Our first construction given
in Section4.5 shows an infinite class of IPP codes with very good asymptotic
behavior of parameters. We also prove that for an infinite subclass of these codes
a traitor tracing algorithm with a runtimeply(log M) exists. Using our second
construction, given in Sectiof.6, we obtain a new infinite class of IPP codes
covering a very large set of parameters. Further, in Seetignwe construct a
large class ofv-TA codes and thus give a positive answer to an open problem on
existence ofv-TA codes.

Chapter5 presents covering arrays. In Sectibr8 using the relationships
between perfect hash families and covering arrays we obtain infinite families of
t-covering arrays which are proved to be better than currently known probabilis-
tic bounds. These families have a very good asymptotic behavior. Séction
includes several new constructions fecovering arrayst > 4, which result in
“good” covering arrays of small sizes.



Chapter 2

g-ary Codes

This chapter is a survey apary codes. Codes over an alphabet of gizealled
g-ary codes, are well studied objects in the theory of error-correcting céges [
10, 13, 26]. We recall some known results and definitions of the theory of error-
correcting codes. Our goal is to present some conceptions and techniques which
are used in the other chapters. In Sectiohwe present preliminaries. Some
know necessary and sufficient conditions on existengeas§ codes are surveyed
in Sections2.2 and2.3. Several known codes and combinatorial structures are
presented in Sectioris4, 2.5and?2.6.

We present a new construction fgary codes with large Hamming distance
in Section2.7 (see alsoT1]). These codes are used later to obtain new classes
of perfect hash families and A codes in Chapter8 and4. We show that the
construction produces a class of optimadry codes in the sense that parameters
of the codes achieve the Plotkin bound. Finally, the decoding problem is discussed
in Section2.8.

2.1 Definitions

In this section we present some basic definitions on error correcting codes.

Let @ be an alphabet of sizeand letC C Q™. ThenC is called ag-ary code
of lengthn. If |C| = M, then we calC an(n, M, q) code.M is called the size of
the code and the elements®are calleccodewordsand each codeword will have
the formz = (x4,...,2,), wherez; € Q, 1 < i <n.

A (n, M, q) codeC can be depicted as a x n matrix C ong symbols, where
each row of the matrix corresponds to one of the codewords.

When( is a field,C is called dinear codeif it is a vector subspace @p”.

The dimensiork of a linear code’ is defined to be the dimension 6fas a
vector space ovep. Notice that ifQ is a finite field withq elements, then for an

5



6 CHAPTER 2. Q-ARY CODES

(n, M, q) linear codek = log, M. For alinear(n, M, q) code of dimensior we
will use the notationn, k, q|.

Let C be a linear code of length and dimensiork over ). Denote byG the
k x n matrix whose rows aré basis vectors of. Thend is called agenerator
matrix for C andC = {uG|u € Q*}.

Example 2.1.1 A generator matrix of a [13, 7, 3] code.

100000012122 2]
010000O0O1O0O0ODO0OT1S1
001 0O0O0O0Z2%2211 2
0001 00O0OT1T1O0T1TTQO0TPO0
O 0O0OO0O1O0O0OO0O1TT1TO0T1T0
0O 0O 0OOO1O0O0OO0OT1TT1TQO0T1
(0000001212221,
Letx = (z1,29,...,2,) @andy = (y1, 99, ..., y,) be anyg-ary vectors of the

lengthn. TheHamming distanceetween: andy is

d(z,y) = {ilz; # vi}|-

Definition 2.1.2 The minimum distance ¢fis

d = dpin(C) = min{d(z,y) |z,y € Candx # y}

The code given in Exampl2.1.1has minimum distanceé = 8.
We use the notatiotm, M, g; d) for an(n, M, q) code with minimum distance
d and for a linear code of dimensidnwe use the notatiofn, &, ¢; d|.

2.2 Bounds

A codeC is "good” if both M andd are large with respect to.
The question is that for fixed, ¢ andd how large the size of the codd can
be. We present here necessary conditions for the existenceof &h ¢; d) code.

Theorem 2.2.1(Singleton bound) Lef be an(n, M, q;d) code. ThenM <
n—d+1
q .
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In particular, the bound for linear codes is givenfby n — d + 1. Any code
having parameters which meet the Singleton bound is call@seeamum distance
separable (MDSgode. The main conjecture &DS codes asserts that MDS
codes are short in respect to the alphabet size. In practice we are interested in
codes which are long in respect to the alphabet size. The Singleton bound is not
sharp for long codes.

An other bound called the Plotkin bound is given in this forma48][

Theorem 2.2.2 (Plotkin bound) If there exists am, M, ¢; d) code, then

q—2 g¢-1

M(M-1)d<2ny Yy MM,

i=0 j=i+1
wherelM; = | (M +1i)/q].

A weaker form of this bound (see for examplg], p. 58) performed as an
upper bound on the minimum distanées useful for our discussion in the next
chapters.

Corollary 2.2.3 If there exists a rin, M, ¢; d) code, then

d < 1 L M
n - = .
- q) M —1
In Section2.7we present a new construction technique(farM, g; d) codes,
which produces examples of codes parameters of which meet the Plotkin bound.

2.3 Existence Result

Now we state a lower bound on the code size presenting an existence result.

Theorem 2.3.1 (Gilbert-Varshamov bound)

There exists ain, M, ¢; d) code, where

n

= Hq—
2 (g -1y

The existence result in the last theorem is nonconstructive. It is difficult to
give explicit constructions which produce codes having as good parameters as in
the Gilbert-Varshamov bound.

In next sections we introduce some important classes of g-ary error correcting
codes.
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2.4 Reed-Solomon Codes

The Reed-Solomon codes are very important and well-studied family of linear
codes. These codes employ finite algebra concepts and are suitable for a practical
implementation. A spacial case = ¢ — 1 had been introduced by Reed and
Solomon in 1960.

Here we give a definition of the Reed-Solomon codes.

Definition 2.4.1 ( Reed-Solomon code(RS))

Leta = {1, g, .. ., o, } Where they,; are distinct elements df,, and letv =
{v1,v9,...,v,} Where they; are nonzero (but not necessarily distinct) elements of
F,. Then the Reed-Solomon code, denote®By (o, v), consists of all vectors

(v1f(on), vaf(ag), ..., vpf(an))

wheref(z) ranges over all polynomials of degree less titanith coefficients
from Fi,.

Theorem 2.4.2 LetC be a Reed-Solomon code defined above, thsma linear
code overF; with lengthn < ¢ andd = n — k + 1 providedk # 0 denoted
[n, k,q,d] — RS. In particular, RS codes arel/ DS codes.

Choose the following particular polynomial basis, - - -, 2, - - -, "1, In this
basis the generator matrix &fS,, x(«, v) is the following:

’l]l U2 PR /l]] PR /l]n
V10 Voo s v s UnOp
v vah - w0l vpal,

[ v st e vl ekt

The length of a Reed-Solomon code unfortunately cannot exgeeld is
known that these codes can be naturally extended to codes on the projective line
withk+d=n+1,n<q+ 1.

Now consider the codé whose generator matrix results in adding a new col-
umn to the generator matrix f@tS,, x(«, v) given above:
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/l)l /1-}2 IR /l)] IR /l)n 0
V1001 Uorg o Vi e Upay, 0
(e (e A 1o vpat, 0 . (2.1)
va™? vk vjaz_g ce w20
vl vkt vjaj_l coe vyl

Definition 2.4.3 (Extended Reed-Solomon Code (ERS)). The €adigh gener-
ator matrix 2.1) is called extended Reed-Solomon code.

Theorem 2.4.4LetC be an Extended Reed-Solomon code defined above( then
is a [n, k, g; d] linear code over, with lengthn < ¢+ 1andd =n —k + 1
providedk # 0. In particular, ERS codes areM/ DS codes.

The Reed-Solomon codes have found a wide range of applications in digital
communications and storage. These codes are used to correct errors in many
systems including storage devices (tape, Compact Disk, DVD, barcodes, etc.),
wireless or mobile communications (cellular telephones, microwave links, etc.),
satellite communications digital television, high-speed modems#it. |

2.5 Connections of MDS Codes and Orthogonal Ar-
rays

Orthogonal arrays are well studied combinatorial structures which are in fact gen-
eralization of MDS codes1[7, 23

Definition 2.5.1 (t-orthogonal array) LeC be an x M matrix onv symbols such
that eacht x M-subarray contains each ordereetuple of symbols in exactly
times as a column. Thehis called a t-orthogonal array, denotedA, (¢, n, v).
In this case we havé/ = \v'.
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Example 2.5.2 The arrayC ' is an0A,(2,7,3)

0000000
1111110
2222220
0012120
1120200
2201010
0102211
1210021

c_l2021101
0220111
1001221
2112001
0121022
120210 2
201021 2
021120 2
1022012

21001 2 2]

(C is obtained by Addelman-Kempthorne construction).

Note that ifA\ = 1 thenOA, (¢, n,v) is an(n, v', v; d) code wherel = n—t+1
(consider the transpose of the orthogonal array and the fact that any two rows of
the transposition matrix agree in at most 1 positions). Thus it is a MDS code.

Now let C be the corresponding matrix of an MOS8, v*, v;d) code. Then
transpose matrix of denoteC' is anOA, (t,n,v) as each rows of the matrix
contain each orderedtuple of symbols in exactly one time as a column (other-
wised < n —t + 1 which would give a contradiction to the definition of a MDS
code). ThuA,(t,n,v) and MDS codes defined above are identical.

The alphabet size of MDS codes given in Theorem4.4is a prime power.
The following result is proved for orthogonal arrays with= 1 (see also17]
p.181).

Theorem 2.5.3[16] For any t andn with 2 < ¢ < n, there is a numbeg, =
eo(t,m) such that for any positive numberand any prime powey there is an
orthogonal arrayOA (¢, n,v.q%) for all e > ¢y.

We describe an explicit family of MDS codes with an alphabet size not neces-
sarily a prime power.
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We first describe a simple construction fpary codes which has been pre-
sented by Bush (1952)] for orthogonal arrays. Letl C Q7 be an(n, M, q)
code with minimum distancé, and|Q,| = ¢;, and letB C Q7 be an(n, M, ¢2)
code with minimum distanceé, and|Q:| = ¢2. Let@Q = Q1 x @Q),. We define a
codeC over alphabef) as follows: For any pair of codewords= (a4, ...,a,) €
Aandb = (by,...,b,) € B we construct a vector

c(a,b) = ((ag,b1), ..., (an, b)) € Q"

Then it is easy to verify tha€' = {c(a,b) : a € A/b € B} C Q" is an
(n, M1 M,, g1q2) code with minimum distancé = min {d;, d}.
Thus we have the following result:

Theorem 2.5.4 Suppose there exist, M;, ¢;) code and(n, M, ¢2) code with
minimum distance; andd., respectively. Then there exists @n M; M,, g1q2)
code with minimum distaneé= min {d;, d>}.

Theorem2.5.4can be used to construtf DS codes for whicly is not a prime
power. In fact, in the language of orthogonal array$anV/, ¢) M D.S code with
minimum distancel is anOA;(n — d + 1,n, q); here we havé/ = ¢"~4+1. We
record this special case of the Bush construction in the following theorem:

Theorem 2.5.5 The existence @f:, ¢}, ¢;) and(n, ¢4, ¢2) M DS codes having the
same minimum distanek= n —t+ 1 implies the existence of dn, (¢1¢2)*, ¢1¢2)
M DS code with minimum distancé

As a consequence of Theorénhd.5 we have the following corollary.

Corollary 2.5.6 For any integern > 2 and s with a prime factorizations =
pit...pesuchthatn < pf 4+ 1,7 =1,...,r, there is an(n, s’, s) M DS code,
forall 2 <t <n.

Proof: The corollary follows from the existence of, (p{*)*, (p;*)) M DS (Reed
-Solomon) codes for=1,...,r (see Theoren.4.4). [ ]

2.6 Algebraic Geometry Codes

In 1977, using algebraic curves over finite fields, V. D. Goppa defined a large class
of codes, calledGoppa codes or Algebraic geometry codes (A e asymptotic
performance of these codes exceeds the Gilbert-Varshamov bougd>fo9.
Definitions and basic properties of these codes can be fourd®ji{, 22].
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Laterin 1982 Tsfasman, Vladut, and Zink, using sequences of modular curves,
construct algebraic geometry codes with asymptotic performance giving improve-
ment upon the Gilbert-Varshamov bound for the case a perfect square and
bigger than 25. In1] an algorithm for constructing these codes is given, which
has complexityO(n?°). The complexity is of course too high for the practical
purpose.

In [15, 19] Garcia and Stichtenoth give an explicit description for sequences
of algebraic curves. Thd(G codes constructed on these curves have better per-
formance than Gilbert-Varshamov bound.

The known low-complexity algorithm for constructing “one-pointz codes
on G-S curves has a runtime upper-boundedrblyg, n)3, wheren the length of
the code and the complexity is measured in terms of multiplications and divisions
over the finite fieldrF 2 [28].

We describe a class of lineatG codes defined on the Garcia-Stichtenoth
(G-S) curves 15, 19] below. Thelth curveX; overF .. in the sequence of Garcia-
Stichtenoth curves is defined by the equations

q
P = =12,
r,_q +1

The number of rational points of; is more thany'(¢?> — ¢) and the genus,
of & is less thany'*!. The “one-point”’AG codes constructed on the G-S curve
is as follows: LetP = {P, ..., P,, P} ben + 1 distinctF -rational points and
let L(mP) be theF .-vector space consisting of all functions defined on the curve
such that the only pole of any € L(mP) is P and the pole order is at most.
Define an evaluation map

0 L(mP) — Fp

Then, the imag€ = I'md is referred to as a “one-poin?AG code. Now, take

n=q(—q),
201 —2 < m <n.

ThenC is a linear code with parametefs, ¢**, ¢*; d), wherek = m — g, + 1
andd > ¢'(¢> — q) — m. Thus, ¢t < k < ¢"*2 — 24" + 1. We will write
k = [uq¢™'], whereu is a real number satisfying < v < ¢ — 2. So,d >

¢'(¢> —q) = [(u+1)g""] + 2.
The parameters af are then

u )
(¢ (¢ — q), ¢ g% d).
We rewrite it in the next theorem.
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Theorem 2.6.1[27] For any prime powey there exists a linear code'(¢> — q),
¢ 4% d] wherew is a real number satisfying < v < ¢ — 2 andd >

¢ (¢*—q)—[(u+1)¢g" 1 1+2. Furthermore, the runtime of a construction algorithm
of a generator matrix for such a coded¥n?).

2.7 New Construction of(n, M, ¢q; d) Codes

We depict ann, M, ¢; d) codeC as anM x n array.A(C) on ¢ symbols, where
each row of the array corresponds to one of the codewords Bbr anya € @,

define
mj(a) = [{i: A(C)(i,J) = a}|,
i.e.,m;(a) is the frequency of on the;™ column of A(C). Define

m(C) = _max_ (m;(a)).

Definition 2.7.1 LetC be an(n, M, ¢; d) code. We say that has ano-resolution

if the codewords af can be partitioned inte subsetsd,, . . ., A;, where|A;| = o,
for: =1,...,s,insuch away that eacH, is a code of minimum distance equal
ton, i.e., any two codewords of; agree in no position.

2.7.1 Construction

LetC, be an(n,, M, q1;dy) code over an alphabél,. LetC, be an(ny, Ma, gs;
dy) code with as-resolutionAy, ..., A;. Supposes > m(Cy). For eachn € @,
denote byC,(a) a copy ofC, defined over an alphabél(a) such that))(a;) N
Q(az) = 0 if a1 # ap. Denote byA; (a), . .., As(a) ac-resolution ofCy(a).
Letcol; = (ayj,as;,--.,ar, ;)T be thej” column of A(Cy), 1 < j < ny.
Leta(1),...,a(t), say, bet positions ofcol; at which symbok € @; appears.
Note thatt < m(C;). Now replace: at positiona(1) by A;(a), a at positiona(2)
by As(a), etc., anda at positiona(t) by A;(a). Perform this process for every
symbol of@; and for every column ofA(C;). The resulting cod€ obtained by
this replacement has parametgtsns, 0 M1, ¢1q2; ning — (ng — dy)(ny — ds)).
Obviously, the length and the number of codeword€’ o n,n, andoM;
respectively. Further, any two codewordsc, € C agree in at mostn; — d;)
positions. After replacememnt andc, correspond to two subsef$, and R, of
o codewords each. Any two codewords iy (resp. R,) agree in no position,
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whereas a codeword froil; and a codeword fronk, agree in at mostn; —
dy)(ny —ds) positions. Hence the minimum distance’as nyny — (ny; —d; ) (ny —
dy), as stated.

Further, ifq1q2 > M; thenC can be extended to a codé having parameters
(ning + 1,0 My, q1g2; d), whered = min{ning, nins + 1 — (ny — dy)(ngy — da) }.
Let@ = {ai, as, ..., aq4 ) be the alphabet af and letC; = {c1,co, ..., can }-

By construction, any codeworq € C; corresponds to a subsii of o code-
words. For anyi = 1,..., M;, we add symbok; to the (nyn, + 1) column
of each codeword oRz;. This forms a seR;. The collection of allR; forms an
(ning + 1,0 My, 1g2; d) codeC* with d = min{niny, nyns + 1 — (ny — dy)(ny —
dy)}. This can be seen as follows: Any two codewosdsandyx of C* belong
either to somédz; or to two different?; and ;. In the first case their distance is
nin, because their components agree only athe., + 1) column, and in the
second case their distance is at least; + 1 — (n; — d;)(n2 — dy) because their
components at thez;n, + 1) column are distinct.

We record the result of the construction in the following theorem:

Theorem 2.7.2 Suppose there is dmy, M, q1; d1) codeC, and there is ariny, Mo,
q2; do) codeCsy with ac-resolutionAy, . .., A, such thats > m(C; ). Then the fol-
lowing hold.

(l) There is ar(nlng, O'Ml, q1q2; NNy — (n1 — d1)<n2 — dg)) codeC.

(i) Further, if ¢qo > M, thenC can be extended to a codé having param-
eters(ning + 1,0 My, ¢1g2; d), whered = min{niny, niny + 1 — (nq —
dl)(ng — dg)}

2.7.2 Example
We illustrate the construction in Theorehv.2by the following example.

Example 2.7.3 Let C; be a(3, 4,2;2) code over the alphabél; = {0, 1} given
by

O

Ci =

== o O
= o = O
o

Let C2(0) be a(3,6,3;2) code on the alphabédtl, 2,3} having a 3-resolution
A;(0) and A, (0):



2.7. NEW CONSTRUCTION OFN, M, Q; D) CODES 15

1 2 3 1 3 2
A1(0)= 2 3 1 A(0)= 2 1 3
3 1 2 3 21
LetC,(1) be a copy o,(0) on the alphabef4, 5,6} with the corresponding
3-resolution
4 5 6 4 6 5
Af(1)=5 6 4  A(1)=5 4 6
6 4 5 6 5 4
Replacing entries afi(C;) by A;(j) gives
A1(0) Ai(0) Aq(0)
A2(0) Ai(1) Aqi(1)
Ai(1) A3(0) Ax(1)
Asx(1) Ax(1) A(0)

Thus, we obtain @9, 12, 6; 8) codeC. Now, since the condition, ¢, > M is
satisfiedC can be extended to(@0, 12, 6;9) codeC*.

123 12 31 2 3 12312 312 31
231 2 31 3 1 2312312311
3 1 31 2 3 1 2 31 2 31 2 31 1
1 3 2 45 6 4 5 6 1 3 2 45 6 4 5 6 2
21 3 5 6 45 6 4 21 3 56 45 6 4 2
3216 45 6 4 5 3216 45 6 4 5 2
C= C* =
4 56 1 3 2 4 6 5 456 1 3 2 46 5 3
5 6 4 1 3 5 46 5 6 4 1 3 5 4 6 3
6 4 53 2 1 6 5 4 6 4 53 2 16 5 4 3
4 6 5 46 5 1 3 2 4 6 5 4 6 5 1 2 4
5 4 6 5 46 2 1 3 5 4 6 5 4 6 2 1 3 4
6 5 4 6 5 4 3 2 1 6 5 4 6 5 4 3 1 4

2.7.3 A New Class ofn, M, q; d) Codes

In this section we discuss a concrete application of the construction above. We
see that the method is suitable for construcijrgry codes with large distance,
and therefore, by Theorem3.13 for constructingo-TA codes with largew.

We need following definitions:



16 CHAPTER 2. Q-ARY CODES

Definition 2.7.4 (Latin Square ) A Latin square opsymbols is ary x ¢ array
such that each of the symbols occurs once in each row and in each column. The
numberyq is called the order of the square.

If A= (a;;) andB = (b;;) are any tway x ¢ arrays, thgoin (A, B) of A and
B is then x n array whos€i, j)th entry is the paifa;, b;;).

Definition 2.7.5 Two Latin squareg\, B of order ¢ are said to be orthogonal if
all the entries in the join oA andB are distinct.

Definition 2.7.6 A setof Latin squared,, ..., A, are called mutually orthogonal
or a set of MOLS, ifA; andA; are orthogonal for alll <i < j <.

Theorem 2.7.7 For any prime powey there exists a set ¢ — 1) MOLS of order
q.

For other basic facts on MOLS, we refer to/].
Now we are ready to prove the following theorem:

Theorem 2.7.8 (i) Letg, be a prime power. If there is a set of at leégf — 1)
mutually orthogonal Latin squares (MOLS) of order then there is an
(n, M, q; d) code with

n = (g+1)o™
M = ¢o™
q = oo
d = (g+1)o™ -1,

for any positive integem.

(i) Thereis an(n, M, q; d) code with

n = (((@+Ha+Da+1)..q+1)

g
m

@q
Q97"
= n-—1,

NS
|

whereq; > g, are prime powers aneh > 1 is an integer.
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Proof: TakeC(, to be anOA;(2, ¢y + 1, qo) orthogonal array4, see e.g.,17],
i.e.,Cois al(q + 1,42, q; q) extended Reed-Solomon code. The arrhy
has the property that any symbol appears exagtlymes in each column.

A remark upon MOLS, which are used here, needs to be made. It is known
that any given set af MOLS My, ..., M, can be transformed in such a way
that any two rows from different/; and M/; agree in at most one column.
Here, we assume that our MOLS have this property.

(¢) Now suppose we have a set@fMOLS My, ..., M, of ordero. In the
case that we only havg, — 1) MOLS M, ..., M,,_1, we will take M, to

be thes x ¢ matrix with entries from ther symbols of the latin squares
such that each symbol appearsimes in exactly one row. In either cases,
My, My, ..., M, together form a resolution of &, gyo, 0; 0 — 1) code

C. Applying Theorem2.7.2 gives a((qo + 1)0, 430, qoo; (qo + 1)o — 1)
codeC;. As each symbol of the alphabet appears in each colurot(6f)

qo times, Theoren?.7.2can be applied t¢; andC again. This recursive
procedure gives rise to codes . (

(i) If o = ¢ (> qo) is a prime power, then there agg — 1 MOLS

M, ..., M, _, of orderq,. M,..., M, _, and M, together form a code

C with a ¢; resolution. Extend’; in (i) to a codeC; by adding one more
column, as shown in Theoref7.2 Observe that it€; a symbol appears

¢1 Or o times in each column. Thus, we can apply Theofem?2to C; and

C. Therefore, if at each step the obtained code is extended before applying
Theorem2.7.2 the resulting code aften steps will have parameters given

in (i7). |

It is worth noting that the construction method in Theorgm.2can produce
goodg-ary codes.

Consider, for example, the codes in Theor2m.8 (i7). It is easy to check
that if ¢o = ¢1, the parameters of these codes meet the Plotkin bound presented in
Theorem2.2.2with equality.

In the case when, # ¢; we study the following example.

Example 2.7.9 From Theoren®.7.8(ii) we obtain:

Go=2 =3, i=1 (10,12,6;9)
Go=3 q=4 i= (17, 36,12; 16)
=4, =5 1=1 (26,80,20;25)

The (10,12,6;9) code in the example is optimal. The codes (17,36,12;16) and
(26,80,20;25) are ‘quasi’ optimal because the maximum valugffolerived from
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the Plotkin bound given in Theoreth2.2is 37 in the first case and 81 in the
second case.

2.8 The Decoding Problem

The decoding problem for afm, M, ¢; d) code is as follows: For a given vector

x € Q", find a codeword ir€ which has a fixed given Hamming distanceito

The problem of finding efficient decoding algorithm for certain classes of codes
is one of main important problems studied in algebraic coding theory. Several
efficient decoding algorithms have been derived for certain classearyfcodes.

The list decoding problem was introduced independently by Eliasahd
Wozencraft §] in the late 50’s. The notation of list decoding is used for the
decoding algorithm for which the goal is to output the list of all codewords within
a specified distance from the given arbitrary vector.

The list decoding problem can be described as follows:

Given an(n, M, ¢; d) codeC and an arbitrary vector € Q™. Find all code-
words inC within a specified Hamming distance fram

In [20, 21], Sudan develops a first efficient list decoding algorithm for Reed-
Solomon codes, which has polynomial runtime in the length of the gedg(n).

The method has been improved since then.

In[24, 27] Guruswami and Sudan present efficient list decoding algorithms for
Reed-Solomon codes, algebraic-geometric and certain concatenated codes. Their
algorithms discover all codewords that lie within some multiple of half the mini-
mum distance from the given vector.

List decoding techniques have found applications for the traceability codes for
digital fingerprinting presented in Chaptéer



Chapter 3

Perfect Hash Families

3.1 Introduction

Perfect hash families (PHF), due to their significant applications in information
retrieval, have undergone considerable investigation, see, €0yarid [44] for
extensive surveys.

Recently, perfect hash families have found numerous interesting applications
to computer sciences and cryptography. Perfect hash families were introduced by
Mehlhorn in compiler design to prove lower bounds on the size of a computer
program. In the last few years, perfect hash families have been applied to circuit
complexity problems, database management, operating systems, derandomization
of probabilistic algorithms and broadcast encryption. More recently, they found
applications in secret sharing, key distribution patterns, non-adaptive group test-
ing algorithms, in constructing cryptographic codes, covering arrays and efficient
multicast re-keying schemes.

Two application examples of perfect hash families, namely codes with trace-
ability property and covering arrays, are studied in the next chapters.

One of the fundamental and most studied problems in computer science is
the dictionary problem For a given setX of w keys belonging to a universe
A=1{1,2,.., M}, X C Aitis required to store the key € X in some data
structure so that the membership queries of the fasm in X?’ can be answered
quickly.

Perfect hashing is one of the best methods to solve this problem in the static
case, when no deletion or insertion of element<Ximccurs. An overview of the
perfect hashing is given ini{).

A hash functionis a functionh : A — B, where|A| = M > |B| = m, that
map the keys from into set of integer8. Given a keyr € A, the hash function
computes an address, i.e., an integer frByfor the storage ok. The storage

19
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area used to store keys is known dsagh table.

The functionh is called a perfect hash function far C A if it is injective on
X. Thus a perfect hash function transforms each ke¥ afito an unique address
in the hash table.

The family of hash functions is calledperfect hash familjor the universed
if for any subsetX C A such that X'| < w, there exists at least one hash function
which is perfect onX.

Perfect hash families are used in constructing hash tables see, for example,
[33]. When perfect hash families are used, there is no need to know the subset
beforehand as the existence of a perfect hash function for each subset is guaranteed
from the definition.

Combinatorial structures of perfect hash families have been studied by several
researchers.

Necessary conditions for the existence of a perfect hash family can be found
in [32, 35, 37, 43]. We provide a new necessary condition for the existence of a
perfect hash family as upper bound on the siZeof universeA. This result has
been presented in the pape#d]| [42] and [45]. A comparison of the existing
bounds shows that our bound is stronger than other known bounds for some pa-
rameter sets. Itis better than Fredman-Kosmeind Krner-Marton bounds almost
everywhere.

Probabilistic methods are used to obtain sufficient conditions on existence of
perfect hash families irB, 32, 35, 43, 47]. These results together with necessary
conditions theoretically state that for any fixedandw, m > w there exists
an infinite class of perfect hash families with= ©(log M), wheren is the
number of hash functions. However, these existence results are not constructive
and it is believed to be a difficult problem to give explicit constructions, which
are as good asymptotically. Several explicit constructions have been presented in
[34, 37, 38,43, 46, 48, 49.

We focus on explicit construction techniques for perfect hash families. Firstly,
we provide an explicit recursive construction of an infinite class of perfect hash
families with the best known asymptotic behavior among similar known classes.
Secondly, we present a new construction technique for perfect hash families using
mutually orthogonal Latin squares, orthogonal arrays and recursive techniques.
As result we obtain an infinite class of perfect hash families covering very large
parameter ranges. The first construction has been presented also in thefgpers [
and j5] and the second construction in th&Z], [82] and [83].

In Section3.2we define perfect hash families and present notation and exam-
ples. Sectior8.3is a survey on known necessary conditions, upper bounds on the
size of universél. A new upper bound is presented in Sectibid Section3.5
includes comparison of bounds. Several known existence results are given in Sec-
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tions 3.6 and3.7. Some open research problems are discussed. Two new classes
of perfect hash families are emphasized in Theor8mis/ and3.7.8 Our new
recursive constructions are described in Seciéh As result infinite classes of
perfect hash families are obtained. Finally, Secidhsummarizes the chapter.

3.2 Definitions

A finite set” of n functionsh : A — B, where|A| = M > |B| = m, is called
an(n, M, m)-hash family denoted by(n, M, m) — HF.

Definition 3.2.1 Let M, m, w be integers such that/ > m > w > 2. An
(n, M, m)-hash familyH is called an(n, M, m, w)-perfect hash family , denoted
(n, M,m,w) — PHF, if for any subsefX C A with |X| = w, there is at least
one functiom. € H such thath is injective onX.

Instead ofn we will also use the notatiopto emphasize the fact thais a power
of a prime number.

An (n, M, q) codeC can be depicted as alW x n matrix C on ¢ symbols,
where each row of the matrix corresponds to one of the codewords. Similarly, an
(n, M,m) — HF,H, can be presented as &h x n matrix onm symbols, where
each column of the matrix corresponds to one of the functioftg.in

Definition 3.2.2 Let C be anM x n matrix onm symbols corresponding to an
(n, M, m,w)-perfect hash family. Then for any fixed rows ofC, v’ < w, there
is at least one column df with all distinct symbols on that fixed rows. Matkix
satisfying this property is called @-separate( M, n, m) matrix.

It is clear that if there exists a-separatd M, n, m) matrix then there exists
also an(n, M, m, w)-perfect hash family.

Definition 3.2.3 For any fixedn, m and w denote the maximal value @f for
which an(n, M, m,w) — PH F exists byM (n, m,w). For any fixedM, m andw
denote the minimal number of hash functiarfer which an(n, M, m,w)— PHF
exists byn(M,m,w). An (n, M, m,w) perfect hash family is called optimal if
M = M(n,m,w).

For any fixedw andm we are interested in studying the behavio\éfn, m, w)
as a function om.

We present two examples of optimal perfect hash families. In the first example
we have an optimal, 9, 3,3) — PHF'. Itis not difficult to check that the matrix
given in the example is a 3-separafe4, 3) matrix, i.e., an(4,9,3,3) — PHF.

The optimality will be proved in Sectio®.4.
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Example 3.2.4 An optimal(4,9,3,3) — PHF, i.e., 3-separatg9, 4, 3) matrix.

Q

I
O W WD =
WM WK — W
N — W= W WwNo -
— W NN~ WWND

The second example presented here was found by computer (Tran van Trung).
The optimality of this family also will be proved in SectiG.

Example 3.2.5An optimal(6,8,4,4) — PHF, i.e., 4-separat¢s, 6,4) matrix.

(1112 4 1]
2 1 4132
123323
22241 4
“=1333212
431433
342121
| 4 4 4 3 4 4|

3.3 Necessary Conditions

The problem of finding a lower bound on( M, m,w), i.e, an upper bound on
M (n, m,w), has been studied by many authors.

We study here an upper bound dAn, m, w). We will rewrite some of known
lower bounds om (M, m,w) here as upper bounds at(n, m, w).

Let C be a 2-separateM,n, m) matrix. ThenC has all distinct rows. On
the other hand a matrix with all pairwise different rows is 2-separate. The total
number of all distinct vectors of length with symbols from an alphabet of size
m is m™. Taking them™ such distinct vectors as rows of a matrix we obtain a
2-separat¢ M, n, m) matrix, i.e, an(n,m", m,2) — PHF'. Thus

M(n,m,2) =m".

So hereafter we study the upper boundidin, m, w) for w > 3.
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For any integer, andb, a > b define

f(n) andg(n) are functions of positive integers which take positive (but
not necessary integer) values for all We say thatf(n) < g(n) if f(n) <
(14+0(1))g(n), where O(1) tends to zero whertends to infinity.

Fredman and Kondks in [32] have obtained upper bounds a(n, m,w)
which can be expressed in the following form Bo.

Theorem 3.3.1[32]

w—1

1
—log M (n,m,w) < log (m —w +2) (3.1)
n

mw—l
Korner and Marton have established a bound which is stronger than Fredman-
Komlos bound 8.1) for many parameter sets.

Theorem 3.3.2[ 39

1 mitl m— j
- < mi
- log M (n,m,w) < oD log (

) (3.2)

w—7j—1
forj=0,1,---,w—2.

Bound @.2) matches with bound3(1) for ; = w — 2. Both bounds are asymp-
totic in nature. Bound3.2) as given in B9, is in a different form. After correction
of a minor mistake the bound looks as follows #7]:

Theorem 3.3.3[37]

M LM — J+L —
(n,m,w) lOg (nam7w) J <n min m log m J

M (n,m,w)i+t w—j—1 7 o<i<w—2mitt

e )

foryj=0,1,--- w—2.
The extreme casg= 0 is interesting. In this case the bound looks as follows:

Lemma 3.3.4

M (n,m,w) < (w— 1)(%)% (3.4)
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In [43] Blackburn and Wild give an upper bound &#(n, m, w) which is bet-
ter than the Fredman-Koig and the Krner-Marton bounds for many parameter
sets. The Blackburn-Wild bound is given in the following theorem (see Theorem
1in[43)):

Theorem 3.3.5[43]
M(n,m,w) < (w—1)(ml#=1 —1). (3.5)
In particular, whenv > n we have:
Corollary 3.3.6 Forw > n
M(n,m,w) < (w—1)(m — 1). (3.6)

Corollary 3.3.7 [43]
For all sufficiently large integers: and any real number d withh > [ -] we
have

M(n,m,w) < [m%] — 1. (3.7)

In Theorenm2 in [43] the authors present another bound which is stronger than
bound (.5 for some parameter sets.

Theorem 3.3.8[473

mle=T1+!

M(n,m,w) < + w(wﬂ%H —1)+m-—1. (3.8)

w—1
Theorems§.3.95 and @3.3.9 give the following result forw = 3:
Corollary 3.3.9 [43]

M(n,m,3) < 2(m!31 1) (3.9)
m""TH] n—1
M(n,m,3) < +oml T 17 o m — 4 (3.10)

It states in {13] that Fredman-Konds bound 8.1) and Korner-Marton bound
(3.2) are better than Blackburn-Wild bound.§) whenw is close ton. But when
n — oo andm andw are fixed, bound3d.5) is stronger than bound$.(l) and
(3.2 for many values ofv andm.
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3.4 New Upper Bound

Our main result of this section is given in view of Theor@m.11 To obtain the
upper bound, we first prove two lemmas, Lemfd.1and Lemma3.4.4 The
following lemmas are useful for the discussions in the seqtigl.|

Lemma 3.4.1 Let C be w-separate(n, M, m)-matrix with M = M (n,m,w).
Then for an arbitrarym, m > 3 the following relation holds:

() if w > 2n, then

M(n,m,w) =m

(i) if w>2n—1,then

1
L(m—1) if n—1 divides m—1

wrl
w—1

M(n,m,w) < [“H(m—1)] if n—1 does notdividem — 1

(i) if w > 2n — 2, then

Lg—j(m—l)J if n>3
M(n’m’w>§{§3m—6 if n=23

Proof:

For convenience, we call an elemenbf the symbol sei3, |B| = m, a
special elemenif = occurs more than once in a column of the ma€rix

(): Letw > 2n. Suppose thaf/(n,m,w) > m. Then, evidently,
each column in the matri€ contains at least one special symbol. Choose
a pair of such special elements from each column and mark out those rows
in matrix C where the chosen elements stand. Clearly, the number of such
rows in the matrix i22n. Then anyw rowed submatrix ofC with marked
out rows will contain no column whose all elements are distinct. Thus we
obtain that the matriXC is not w-separate. This is a contradiction which
proves ().

(ii): Letw = 2n — 1. On one hand, the number of special elements in each
column of the matrix is not less thaw (n, m,w) — m + 1. (This number is
equal toM (n, m, w)—m+1, ifin any column of the matrix there exists only

a single element of such kind). On the other hand, any row of the matrix
may contain at most one special element, otherwise there witinbe 1
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rows of the matrixC which do not contain a column whose all elements are
distinct.

Hence, we may write
(M(n,m,w) —m+ 1)n < M(n,m,w)

or ) )
mm =)y wrle ),

Now we need to give a construction which achieves this bound to complete
the proof of i).

M(n,m,w) < |

n—1 w—1

Construction:Letw = 2n—1and(n—1) divides(m—1). Then we will take
a vector of Iength% with a single special element in its— 1)2’37‘11 +1

to i™=! position as-th (i = 1,...,n) column of the matrix. Naturally, the
matrix isw-separate.

Example 3.4.2 An optimal(5, 15,13,9)— PHF', i.e.,9-separatg5, 15, 13)
matrix:

1 2 2 2 2
1 3 3 3 3
1 4 4 4 4
2 1 5 5 5
3 1 6 6 6
4 1 7 7T 7
5 5 1 8 8
cC=|6 6 1 9 9
7 7 1 10 10
8 8 8 1 11
9 9 9 1 12
10 10 10 1 13
111 11 11 1
12 12 12 12 1
13 13 13 13 1 |

(iii):
Letw =2n —2,n > 3.

First, suppose that for any two columns of mat€ixthere exists no row
in the matrix which incudes a special element chosen from both columns.
Then we have the following inequality:
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n(M(n,m,w) —m+1) < M(n,m,w)

or

I=1 (m —1)]. (3.11)

Now suppose that in the matriX there exist two columns such that they
both simultaneously have a special element at least in one row. Then any
other two columns among the remaining- 2 columns in the matrix have

no special element on any row, otherwise the matnixill not be (2n — 2)-
separating. Hence, we have

(n—=2)(M(n,m,w) —m+1) < M(n,m,w)

or

n— 2 w — 2

—am =1 = [ ——(m—1)]. (3.12)

M(n,m,w) < | 1
w_

Comparing 8.11) and 3.12 we have the first case aofi().
Now consider the case far= 3, w = 4.

First, suppose that there exist two columns in the mé&tfior which there is
no row inC on which both columns have a special element simultaneously.
Then we have the inequality

2(M(3,m,4) —m+1) < M(3,m,4)
or

M(3,m,4) <2(m —1). (3.13)

Now let two columns in each of three pairs of columns simultaneously have
a special element on any row of the matrix. In this case the following two
conditions are necessary f@rto be 4-separate:

1. Each column has at least two distinct special elements.

2. There are no more than two special elements on each row.
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From condition 1.) it follows that the number of special elements in each

column is no less than/(3,m,4) — m + 2. And from condition 2.) it
follows that there are at mos8tV/ (3, m,4) special elements in the matrix.
Combining these facts gives

3(M(3,m,4) —m+2) < 2M(3,m,4)
or

M(3,m,4) < 3m — 6 (3.14)

From (3.13 and (3.14) the second case ini() follows. This completes the
proof of the lemma. [ ]

We claim that, in the manner exactly analogous to the one given in Lesrna
one may obtain similar bounds also for other values of
In a recent paper Blackburn proves similar results to the ones in Letria
using the linear programming terminology (depositions 2,3 and 4n [49)).
We present here these results.
Proposition 2in [49] with Theorem 2n [49] covers the case (i) of Lemma
3.4.1
Proposition 3in [49] with Theorem 2n [49] gives the following bound:
1
M(n,m,2n — 1) < &m.
w—1
This is weaker than the bound of case (ii) in Lem&a 1
Proposition 4in [49] with Theorem 2n [49] gives the following bound:
—1
M(n,m,2n — 2) < Y7o (3.15)
w—3
This is stronger than case (iii) in Lemma4.1when2m > w? — 5w + 6, and is
weaker otherwise.
Proposition 5in [49] with Theorem 2n [49] gives the following bound:

4m if n=4,
M(n,m,w>2n—-3) << 9/5m if n=35, (3.16)
g—:gm if n>6.

Proposition 6in [49] with Theorem 2n [49)] gives the following bound:

M(6,m,8) < 2m. (3.17)

In the general case (speoof of Theorem 1n [49)) it is shown that:
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Lemma 3.4.3 [49] For any w > 2 and positive integem
M(n,m,w) < nm
if w > n.

This bound is weaker than the bounds from Lentné@l, or bounds .15
and B.16 whenw > 2n — 2. Itis stronger than boun®(©) if w — 1 > n.

Lemma 3.4.4[45] For any integersn, m andw, (w < m), the following bound
holds:
w — 1J‘

Proof: Let C be thew-separat€ M, n, m)-matrix, whereM = M (n,m,w).
Consider any column of. Without loss of generality consider the 1st col-
umn, and letz;, 1 < ¢ < m, be the number of symbalin that column.

M(n,m,w) < |M(n—1,m,w)

Then .

in = M(n,m,w).

=1
Choosew — 1 greatest numbers of;, z, . . ., x,,. By rearranging the rows
we can assume that they are fitst— 1 numbers,xy, zo, ..., z,_1. Let
S la; = Afor someA. Then we have

M
A Minmw) ooy (3.18)
m

since M (n, m,w)/m is the average multiplicity of an element in that col-
umn.

Now consider a4 x n matrix C’ which is a submatrix o, such that its
rows are the rows of, for which the symbol on the first position belongs
to the se{1,2,...,w — 1}. C' is w-separate a€ is w-separate. Le€” be a

A x (n — 1) matrix obtained fronC” after deleting the first column. This
matrix C” is w-separate since there are mopairwise distinct symbols in
the first column ofC’. Hence

A< M(n—1m,w). (3.19)

From 3.18 and (3.19 we obtain

M (n,m,w)
m
which proves the lemma.

(w—=1) < M(n,m,w)
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For some small cases the following facts are known.

Lemma 3.4.5[37]
M(3,4,4) = M(4,4,4) = 5.

Example 3.4.6[37] An (3,5,4,4) — PHF

Q

Il
N R N
=W W N =
o WO N =

Lemma 3.4.7 [37]
M(5,4,4) =6

Example 3.4.8[37] An (5,6,4,4) — PHF

=W N =
=W R W N
= NN~
s WO N~
s W W N

Here we prove the following:

Lemma 3.4.9 M (6,4,4) = 8.
Proof. Applying the result in Lemma&.4.4to Lemma3.4.7we get
M(6,4,4) < 8.
Thus, from Exampl&.2.5it follows that M (6, 4,4) = 8. |

This proves our claim that the family in Exam@e2.5is optimal.

Lemma 3.4.10[37]
M(3,5,4) < 9.
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From Lemmas3.4.1and3.4.4we obtain a new bound ol (n, m, w).

Theorem 3.4.11[45]
The upper bound o/ (n, m,w) is given by:

< LM _
Mnmo) < [[LAx P e ) @320)
where
|2t (m —1)] for w=2n;—1
A=S |“=2(m—1)] for w=2n-2 ny >3 (3.21)
3m — 6 for w=4 ny =3

This bound together with Examp8?2.4shows that\/ (4, 3, 3) = 9 and proves
the claim that the perfect hash family given in Exampl2.4is optimal.

We remark that bound3(20) can be improved for other choices of and
A > M(ny,m,w). For example ifn; and M (n,, m, w) are chosen from Lemma
3.4.3or from bound 8.16) then bound .20 will be stronger for some parameter
sets. In the examples presented in the next section bdufd) (s the stronger
whenA is given by (§.21).

3.5 Comparison of Bounds

First we compare boundss.() and 3.2). To do this we prove the following
lemma:

Lemma 3.5.1 [45] For any fixedw, there exists a number,(w) such that for all
m > mg(w), the minimum of the right side in thedkner-Marton bound §.2)

1 mitl m—j
Z < .
- log M (n,m,w) 0<r]rg£1 ) i log p—— (3.22)
achieves forj = 0.
Proof: Denote by
A;(m,w) = s logw |
We computeAJH(m w) — Aj(m,w), 0 < j < w—3. Aj(m,w) —
—j—1 mH—l
A;(m,w) = J+210g == m]+llogw]1—
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j+1 . — i ;
= 22 l(m — j — 1) log == —mlog 4] =
mitl m—j—1)(w—7—1)1m m
e L [((mjj)()u(, ng) ™ —log (=1 jj QI)JH]
Sincew > kand WL llol) > 1, the valug ol =lolm increases

fasterthar(zfjf)”l whenm increases. Further, itis clear that there exists

a numbermg(w, j) such that form > mg(w, j) we haveA, . (m,w) —
A;(m,w) > 0.

Take

mo(w) = minmg(w, j).

Then for allm > m(w) the valueA;(m, w) increases monotonely with
which proves the lemma. ]

Lemma3.5.1in particular shows that except for a finite valuesmfthe
Korner-Marton bound3.2) is better than the Fredman-Koosl bound 8.1). We
remark that Lemma&.5.1compares the Brner-Marton bound and the Fredman-
Komlos bound in the general case. Some attempts to compare these bounds for a
few particular cases have been donedf|[ The results we present here in view
of Lemmas3.5.3and3.5.4

Lemma 3.5.2 [39] For m > 4 andw = m, the Kdrner-Marton bound§.2) is the
strongest when = m — 2 for n > ny.

Note that for; = w — 2 bound @.2) is originally given by Fredman-Korak
(bound @.1)).

Lemma 3.5.3[39] For m > 3 andw = 3 the Korner-Marton bound §.2) is the
strongest when = 0 for n > n,.

Lemma 3.5.4 [39] For m > 5 andw = 4 the Korner-Marton bound §.2) is the
strongest when = 0 for n > ny,.

Comparing bound3.4) with bound 3.20 we come to the following conclu-
sion:

For a fixedw there exists any(w) such thatn > m(w) the Korner-Marton
bound is stronger than the Fredman-Kombound. In the case when théier-
Marton bound is stronger than the Fredman-Kasthound, then our bound.0
is better than both these bounds. Bouriti§)(and @.2) and 3.20 are better than
bound @.5) whenw is close tom. If n — oo with fixed m andw, the Blackburn-
Wild bound is stronger for many values ofandm.

Our investigation shows that for some valuesiaindm our bound is stronger
than other known bounds. We illustrate this by an example.
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Example 3.5.5Letm =9, w =5, forn > 3

bound 3.3 case j=3 M(n,9,5) < (2.2837)"

bound 3.3 case j=2 M(n,9,5) <2(2,3776)"

bound 3.3 <case j=1 M(n,9,5) < 3(2.3913)"

bound 3.3 case j=0 M(n,9,5) <4.(2.25)"

bound 3.5 M(n,9,5) < 4(9M1 —1)

bound 3.20 M(n,9,5) < [[[12-2.25]2.25]x --- x2.25]

n‘—rS

Takingn = 9 we get
bound 3.3 case j =3 M(9,9,5) < 1689
bound 3.3 case j =2 M(9,9,5) < 4856
bound 3.3 case j=1 M(9,9,5) <7671
bound 3.3 case j=0 M(9,9,5) <5911
bound 3.5 M(n,9,5) < 2912
bound 3.20 M(9,9,5) < 1532

Takingn = 5 and calculating the possible exact value (in oppose to asymptotic
value) for bound§.3) in case;j = 3 we get

bound 3.3 case j =3 M(5,9,5) <87
bound 3.3 case j =2 M(5,9,5) <151
bound 3.3 case j=1 M(5,9,5) <234
bound 3.3 case j =0 M(5,9,5) <230
bound 3.5 M(5,9,5) < 320
bound 3.20 M(5,9,5) < 60
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3.6 Existence Results
The following theorem is obtained by a simple probabilistic argument.

Theorem 3.6.1[30] A (n, M, m,w)-perfect hash family exists where

M
n > log (m) .
~ logm® — log (m® — w! (™))

(3.23)

A weaker result is derived ir8[l] by performing some simple approximations.

Theorem 3.6.2[30] There exists arin, M, m, w)-perfect hash family with

w2
n > wem log M. (3.24)
The result of Theorer3.6.1has been improved int[/] for some parameter sets.

Theorem 3.6.3[47] There exits an(n, M, m, w)-perfect hash family with

log 4((,,) — (*,"))
~ logm® —log (m* — w! (™))

It is stated in {17] that bound 8.259 is better that the classical bouri#iZ3 when-
ever2 (M) < (M) this inequality holds whem is small compared witi/. It
is also shown in47] that bound 8.25) is tight for sufficiently largen. The upper
and lower bounds oi/ (n, m,w) are given in the following form in35].

(3.25)

Theorem 3.6.4[32, 35]

1 1 1 w=1
— log g = ElogM(n,m,w) = o log (m —w + 2)
Thus, the theorem states that

n = O(log M).

However, the existence results discussed above are non-constructive.

Linear perfect hash families are considered4f]] Let C be the matrix rep-
resenting a perfect hash family. A perfect hash family is called line@rabr-
responds to a linear code. 3], a probabilistic argumentation shows that there
exists alineatn, ¢', ¢, w)— PHF, wheren = i(w— 1) for sufficiently large prime
powerg. Itis also shown that no linedrn, ¢', ¢, w) — PHF exists ifn < i(w—1).
Thus the authors call the linear perfect hash faragyimalif n = i(w — 1).
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Theorem 3.6.5[43] Let i andw be integer such that> 2 andw > 2 and letq be
aprime powerM = ¢'. Ifalinear (n, M, q,w)— PHF exits , them > i(w — 1).
Furthermore, ifg > (1w(w — 1))"»~Y then a linear(n, M, ¢, w) — PHF exists
withn = i(w — 1).

The proof of the theorem is probabilistic, and produces no explicit classes of
perfect hash families.

Hereafter, we consider explicit constructions for perfect hash families in op-
pose to existence results.

3.7 Direct Constructions

In [43]itis shown that the techniques of Theor&m.5suffice to construct explicit
classes of linear perfect hash families in certain cases. Itis shown for instance, that
there exist explicit constructions fén, M, ¢, w) — PHF wheren = (w—1) lfogT];f
These constructions require the prime powes be very large compared toand
n.

A direct connection between error-correcting codes and perfect hash families,

due to Alon is as follows:

Theorem 3.7.1[34] Suppose there is am, M, m) codeC with minimum Ham-
ming distancel. Then there is afin, M, m,w) — PHF, where

(n — d) <‘2"> <n.

Proof: Let C be the matrix representin@ ThenC is an)M x n matrix, whose
entries are from a set ofi symbols. The conditiofin — d) (%) < n asserts

that for any givenw rows, sayiy, . .., i,, of C there is at least one column
whosew entries in the rows,, ..., i, are pairwise distinct. Thu€ is an
(n, M,m,w) — PHF, as desired. ]

This theorem together with some known results on error-correcting codes (see
for example [L3]) leads to several explicit constructions for perfect hash families.
The theorem shows that an error correcting code with large minimum Hamming
distance provides a perfect hash family.

We present some construction examples derived as corollaries of Theorem
3.7.1

Corollary 3.7.2 LetC be ag-ary MDS codén, k,d]), k+d =n+1. If k = (%1

for an integerw, thenC is an(n, ¢, ¢, w) — PHF.
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From Reed-Solomon codes we have:

Corollary 3.7.3 Suppose andq are given, withy a prime power and < ¢ + 1.

Zay ]
Then there exists am, ¢ (%) ,q,w) — PHF.

This construction is explicit and gives perfect hash families with

n = O(log M).

However, this class of perfect hash families is quite restricted with condition
n < g+ 1. Also, we haveM > ¢ for this class only ifn > (3), i.e., only if
a2 (3)- | |

In the case of the extended Reed-Solomon code G¥e&([p’ ) we may rewrite
the previous corollary as follows:

Corollary 3.7.4 Letq be a prime power witly > (%), and;j > 2 be an integer.
Then there exists &/, ¢" ¢/, w) — PHF.

Several other constructions derived as corollaries of The@&&m are given
in [38] and in [46].

Lemma 3.7.5 [46] Suppose there aré MOLS of orderm. Then there exists a
(t +2,m* m,w) — PHF providedt > (%) — 1.

Lemma 3.7.6 [38] Suppose there is afi\/, (15) +1; 1) -difference matrix and an
(no; Mo, m,w) — PHF. Then there exists & (%) + 1)no, My*,m,w) — PHF.

LetC be alineaAG code defined on the Garcia-Stichtenoth (G-S) curves with
parameters given in Theorerd.(.1).
Applying Theorens.7.1to C we obtain the following result:

Theorem 3.7.7 For every prime poweyg and any integef > 1, there exists an
(n; M, ¢?,w) — PHF, where

n=q""(q-1),
M = q2|_uql+1j’
u is a real number with < u < ¢ — 2, and

w= 301+ /1+ E5a - 1))
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This construction gives infinite classes of perfect hash families whete
O(log M). However, this class is restricted singenas to be a prime power,
¢ > (), and also the construction algorithm complexity is polynomiat.in

All constructions as direct application of Theor&ni.1are restrictive, in gen-
eral, in the sense that they can produce perfect hash families withlamgay if
q > (g’) In fact, the previous construction examples provide an evidence of this
fact, which follows from the Plotkin bound. The Plotkin bound given in Corollary

2.2.3together with Theorer3.7.limplies:

n(l—é)<d§n(1—é)%.

1—(Ti)<(1—é)%.

So whenM — oo for fixed ¢ andw, we have

()<

For smallM, however, we can construct perfect hash families witd (ij)
when(%) < -2-. Perfect hash families in Corollaf7.3can have; = (%). Note
however thaty > n — 1.

We present a class of perfect hash families, derived from codes constructed in
Section2.7 by applying Theoren3.7.1. This class provides examples of perfect
hash families withy < (%) andM > q.

Thus

Theorem 3.7.8 Let ¢y and g, be prime powers such that > g, andi > 1is
an integer. Then for any integerwith n < qoq + ¢, + ¢ '+ --- + ¢ + 1 there
exists an(n, M, q,w) — PHF with

M = ¢dq
qg = Qg
Ven+1-—1

whereq;, > qo are prime powers aneh > 1 is an integer.

Proof: First, recall that the parametefd/, M, ¢; d) of a codeC* in Theorem
2.7.8(ii) areN = qogi +qi +¢; '+ +a +1, M = ¢3¢}, ¢ = qoq}, and
d = N—1,wherem > 1is an integer. We remark thatdf is shortened, the
resulting code with length < N always has minimum distande= n — 1.
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Let (n, M, q;n — 1) be the parameters of a shortened c6d# C* (the case
C = C*is also included). Soy < N. Letw = [¥®*H=1]. By Theorem

3.7.1, C is aw-perfect hash family. The proof is complete. ]

Example 3.7.9 From Theoren3.7.8we obtain:

=3 q=4 i=1 (17,36,12,6) — PHF, (%) =15 > ¢ = 12.
=4, =5, 1=1 (26,80,20,7) — PHF, (2’)221>q:20,
Q=3 q=>5 i=3 (531,1125,375,33) — PHF, (“)=528> q=375.

Note that the condition in Theorei?7.1is sufficient for a code to be a perfect
hash family but it is not necessary.

For example, whem = 6 andw = 4 Theorem3.7.1 provides no perfect
hash families with\/ > 4. However, &6, 8, 4, 4)-perfect hash family exists (see
Example3.2.5.

More generally, the explicit constructions as described in the rest of this sec-
tion provide classes of perfect hash families, for which the condition of Theorem
3.7.1does not hold.

Theorem 3.7.10[37] For every integerf > 3 there exists an explicitly con-
structed(5,2/,2/~1 4) — PHF.

Theorem 3.7.11[47]
For every prime numbeyr, such thap = 11 or p > 17 there exists an explicitly
constructed6, p?, p,4) — PHF.

Theorem 3.7.12[49]
For every integer > 2 there exists an explicitly constructéd, a*, a1, w)
—PHF.

This improves the result in Theoren/.10whenw = 4. Takinga = 2¢ from
Theorem3.7.12we have a(4,2%,2% 4) — PHF, while takingf — 1 = 3i in
Theorem3.7.10we get(5, 231 2% 4) — PHF.

An other interesting result is given idJ] as follows:

Theorem 3.7.13[49]
M (n,m,w) = O(m) if and only ifw > n.
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In the case whem > w andm — oo the problem of computing the exact
constant in M (n, m,w) = cm by providing an explicit construction and a tight
bound is reduced to linear programming problemd].] Some examples given
in [49] achieve the bounds in Lemnia4.1, or bounds §.19, (3.16 and @.17),
whenm — oo.

An optimal class of perfect hash families for= 2n — 1 and(n — 1)|(m — 1)
can be found in the proof of Lemnia4.1

3.8 Recursive Constructions

Some recursive constructions given by several authors produce perfect hash fam-
ilies with small fixedm andw andn — oo.

Two recursive constructions are given iB8]. Using an easily constructed
specific family of difference matrices and Lemr&/ .6 the following result is
obtained iteratively.

Theorem 3.8.1[38] Suppose there exists &ny, My, m, w) — PHF and suppose
that ged(no, (%)!) = 1. Then there exists & (%) + 1)'ng, My* ,m,w) — PHF
for any integer; > 1.

Theorem3.8.1states that for fixedh andw we can construct an infinite class
of (n, M, m,w) perfect hash families, whereis O((log M)l"g((2)“)).
As immediate result of theorem we have:

Corollary 3.8.2 [38] There exists a3 x 47,5 3,3) — PHF for any integer
J=1

With the above parameters, we have
n ~ 0.556(log M)?.
The second recursive construction @8] is given in the following theorem:
Theorem 3.8.3[38] Suppose the following exist:
e an(ny, MoM;, m,w) — PHF,
e an(ny, My, My, w —1)— PHF,

e an(ng, My, m,w) — PHF.
Then there exists amny + n3, MoMy, m,w) — PHF.

The following corollary is an immediate consequence of Thede&R
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Corollary 3.8.4 [38] For any integer; > 2, there exists g252 — 25,37, 3, 3)
—PHF.

These parameters give
n ~ 0.796(log M)?.

Further general results are given in the following theorems:

Theorem 3.8.5[38] Suppose there exists dns, m? m,3) — PHF. Then, for
any;j > 2, there exists affas(}), m?,m,3) — PHF.

By using Theoren3.8.5for w = 4 we have:
Theorem 3.8.6 [38] Suppose there exists &ms, m?, m, 3)—PHF and an(a4, m

m,4) — PHF. Then, for anyj > 2, there exists arﬁa4(a3( ) +1),m7,m,4) —
PHF.

Y

These constructions have been generalized and improve&kVjin[{5], [46]
and (8.

The next lemma shows a simple product type construction of perfect hash
families, also called composition or concatenation.

Lemma 3.8.7 Suppose there exist &n,, My, mg, w)—PHF and an(ny, M, my,
w) — PHF, wherem; < M. Then there exists amgn,, M, mg,w) — PHF.

From Lemma3.8.7and from a particular case of CorollaBy7.3whenn =
(%) + 1 we obtain the following class of perfect hash families:

Lemma 3.8.8 [37] For any prime powely and any integetv with (7;’) < q there
exists a((%) + 1)/, m*, ¢, w) — PHF wherej > 1 is any integer.

In casey = w = 3 this lemma gives &7, 3%’ | 3, 3) — PHF for any integerj > 1.
These perfect hash families have

n ~ 0.398(log M)?>.
From Lemmas3.8.7and3.7.5it follows:

Lemma 3.8.9 [46] Suppose there exi ’g —1 MOLS oforderMo and an(ng, My,
m,w) — PHF. Then there exists @ (%) + 1)no, (Mo)?, m,w) — PHF.
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3.8.1 The First New Infinite Class

By combining Lemm&.8.7and Theoren3.7.7we can prove the following result:

Theorem 3.8.10For every given integers, m, wherem > w > 2, and for any
integer! > 1, there exists aiin, M, m, w)-perfect hash family with

n=mng.(q —1)g"*",

M = quuql+1J'

wheren, is a constantg is a prime power such that> “=D+l 4 1
andu is a real number with < u < ¢ — 2.

Moreover, we have = O(log M).

Proof: Letw,m, m > w > 2, be given integers. Let be the smallest prime

power such thatv = |1(1 + \/1 + 5@ —1)), withl < u < g -
2, as shown in Theorer.7.7. A simple observation shows that we can
always construct atmy, ¢*, m,w) — PHF explicitly for a certain value,.
Applying Lemma3.8.7and Theoren3.7.7yields the perfect hash families

with parameters as claimed. [ ]

We remark that the idea of using Garcia-Stichtenoth (G-S) curves and the
simple product construction to derive infinite class of perfect hash families with
n = O(log M), for fixed m andw is first given in 8] with a slightly different
interpretation.

It should be noticed that the first low-complexity algorithm for constructing
“one-point” AG codes on G-S curves has a runtime upper-bounded by, 1),
wheren the length of the code and the complexity is measured in terms of mul-
tiplications and divisions over the finite fielfl> [28]. The complexity of con-
structingw-perfect hash families in Theore&8.10is, therefore, polynomial in
n.

3.8.2 The Second New Infinite Class

Next we will describe an explicit new construction of an infinite class of perfect
hash families with the best known asymptotic behavior among similar classes.
This result has been presented in the papé?k [45. We should remark that

this result is independently obtained also 4®][ Here we will present also the
interpretations and notation id] since it is useful for our discussions in the next
two chapters.
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From Lemma3.8.7together with Corollans.7.4we obtain an infinite class
of perfect hash families for any integens and w with very good asymptotic
behavior.

The construction algorithm can be described step by step as follows:

Construction algorithm:

Step O:

Using some method to construgty, ¢’, m,w) — PHF for any: > 2 and

primeg > (4).

Step 1:
We have: (no, Mo = ¢, m,w) — PHF.
. .qd—1 .
Corollary 3.7 .4provides: (m'=¢,¢" ,¢/,w) — PHF.

Applying Lemma3.8.7gives:  (ny = nony’, My = qqu,m, w)— PHF.
Thus, in Step 1 we obtain a perfect hash family with

)

ng = — - qlog M.
Jjloggq
Stepi:
From Step — 1 we have: (ni—1, M;_1,m,w) — PHF.
M;_
Corollary3.7.4provides: (n/' = M;_1, M; 1« ' ,M; _1,w) — PHF.

Mi_y

Applying Lemma3.8.7gives:  (n; = n;_n/, M; = M; 1« ,m,w) — PHF.

Thus, in Step we obtain a perfect hash family with

Jlogq

q'log M;.

n;

In order to show that the last equation has the form

n = O(p(log M))

we perform the following approximations:
From the recurrent relation

i—1

M; = M;_, ¢« andM, = ¢’, we obtain

j—1
oy q?09

M; = gora™ =2 (3.26)
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whereay = j, anday = Y=L for1 <1 <i—1.

Takinga; = 1forall1 <1 <i—1in(3.26), we obtain:

j—1

M, > g7

If1<i<j—1,i.e.,q¢ <j¢ !, then 3.27) gives

n; = O | log og, - - -log, M; x log M;

i—1

andifj —1 < i < j¢’~1, then we get

n; = O | log Jlog , - - - log, M; X log M;

1—2

In general, we have

n = 0| loggog,---log,M x log M

T

wherer — oo whenn — oo.

43

(3.27)
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Example 3.8.11 Casew = 3 andq = 3.

In this case the algorithm described above suggests taking the Reed-Solomon

code with the parameter®r = ¢ — 1, k,d), whereq = 3/, k = 3! andd =
2-371 > 2(3/7! — 1) asanM DS code in corollary3.7.3 Thus we have:
Step O:
Take: (4,9,3,3) — PHF.

Step 1:
We have: (4,3%,3,3) — PHF.
Corollary 3.7.3provides: (8,3%,9,3) — PHF.
Applying Lemma&.8.7gives:  (32,35,3,3) — PHF.
Step 2:
From the Step 1 we have: (32,35,3,3) — PHF.
Corollary 3.7.3provides: (36 —1,363° 36 3) — PHF.

Applying Lemma&.8.7gives: (23296, 348 3,3) — PHF.

A similar construction is given with the following notation ifd].

Theorem 3.8.12 Suppose there exists dng, ¢*°, m,w) — PHF whereq is a
prime power and*° > @Ttl. Then there exists amgR;; ¢*, m,w)— PHF

forall i« > 0, whereR, = 1, and

R, = ¢ 'Ry,
qsifl
S; = Si—1 [WW

2

forall i > 1.

Proof: We proceed by induction oih Fori = 0, the assertion is correct. Now
assume > 1. Corollary3.7.3gives an(¢*-*; ¢*, ¢*~',w) — PHF when
n = g andgq is replaced by*-.

By induction, there exists amoR;_1,¢*~*,m,w) — PHF. Now applying
Lemma3.8.7yields an(ngR;, ¢°', m,w) — PHF. The proof is completes

The asymptotic behavior of the parameters of the perfect hash families pro-

duced by Theorerfi.8.12is calculated as follows 4[], pp.196-197.
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The functionlog * : ZT — Z* is defined recursively by

log*(1) = 1
log*(a) = log*([loga])+ 1,

Note that the functiofog * grows very slowly, e.glog *(a) < 7fora <

Definen; = ngR; andM; = ¢* for all i > 0.
First, we have that
Sio1q* 7t sl

Si >

Iterating this inequality, we see that

so R

S; = w% .

Since
_ log M;

S; —
log q

and .
Ri_z>
N
we have that
lOg Mz > SNy

logqg — now?’
From this, we get the following inequality:

n; <
~ sologq

For: sufficiently large, say > iy, we have

qsi‘l/“’2 > 2.

Now, for: > iy, we have

w2 szifl ’

w? (log M;).

if a > 1.

M, = g% > g0 et s 9d oM,

Hence, it follows that

for all : > 7y. Substituting 8.28) into (3.29, we get

n0w210

~ splogq

w2)log*(M¢) (log Ml)

45

65536
2277

(3.28)

(3.29)

(3.30)
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forall i > .

For any given values af*°, m andw we can always construct &ng, ¢*°, m, w
—PHF for somen, (as a trivial and naive solution we may takg = (qi)o), SO
that each subset of sizeis covered by one function). Therefore, frof130 we
have the following theorem:

Theorem 3.8.13For any positive integers: and w with w < m, there is an

infinite family of(n, M, m,w) — PHF such thatn is O((w?)°¢" ™) (log M).

3.8.3 The Third New Infinite Class

Now we give our next new explicit construction of an infinite class of perfect
hash families by means of a double recursive method. The main result is given in
Theorem3.8.15

The construction appears to be rather complex, even though we have attempted
to give a clear concise explanation. The result in the general form is presented in
the paper$2]. The case; = w = 3 is first proved in §5].

We first prove Lemm&.8.14below, which is essential for our purpose.

From now on let; be a prime power. We begin with a description of a collec-
tion of matrices derived from mutually orthogonal Latin squares (MOLS) whose
symbols are elements in the finite fiehf = {0,1,...,¢ — 1}.

Let M,..., M, , be a set ofy — 1 MOLS, of which the first column is the
vector(0,1,...,q—1)T. Let M, be theg x ¢ matrix whose al; columns are equal
to the vector(0, 1,...,q — 1)T (i.e. each row of\/, consists of a time repeating
of a symbol). The collection af/y, ..., M,_, is equivalent to an orthogonal array
OA1(2,q,q) (see, for examplel[7, p. 130]) and hence to a Reed-Solomon code
RS with parametersq, ¢*, q,d = q — 1).

For2 <m < ¢, set

A = {AO,WH ] 7Aq—1,m}7

where each matrix, ,, is obtained from)/;, by deleting itsq — m rightmost
columns.

Consider the? x (m + 1) array A” obtained from.A by extending each
matrix A, ,,, with the (m + 1) column(i,4,...,4)T. ThenA¥ is equivalent to
the Reed-Solomon code: + 1, ¢?, ¢,d = m) — RS. By TheorenB.7.1. A% is an
(m+1,¢* q,w) — PHF with (%) <m+ 1.

Conversely, ifw is given, we setn = (g’) Then the collectiod has the fol-
lowing crucial property: every subsBtof v’ distinct matricesA;, ., ..., A4; , m
of A, wherel < w' <w — 1, forms an(m, qu’, q,w) — PHF.

This can be easily seen as follows:
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ConsiderB as part ofA”. Note that4” has exactly one column more th&n
the (m + 1) column. For any given sét’ of w rows of 3, there is a columi in
AP such that the symbols efat the giverw rows are pairwise distinct, because
AFisan(m+1,¢% q,w) — PHF. Further, sincé is a collection ofw’ matrices
An.m, there are at least two rows of belonging to the same matrix . This
implies that the colum is not the(m + 1) column of A”, hencec must be a
column of 3, as desired.

Thus, we have proved the following result:

Lemma 3.8.14[82] Let A be the collection ofy matrices{ Ay, ..., A;—1m}
just described above, where eaehj ,, is a ¢ x m matrix, whose entries are

w

elements off,. Letm = (%). Then, any subsef of w' distinct matrices

Aiymy -+, Ai,.m OF A, wherel < w' < w—1, forms an(m, ¢.w’,q,w) — PHF,

We are now ready to prove the following theorem:

Theorem 3.8.15[82] Let w > 2 be any integer ang be any prime power such
thatg > (%). Then there exists afO((i + 1)*~'), ¢!, ¢, w) — PHF for any
integer: > 1.

Proof: The proof is by induction o and:.

In the following we user;(w) as an abbreviation fa((i + 1)*~') andC¥
for (n;(w), ¢, q,w) — PHF.

Note that the vector spacg*! is an (n;(2),¢'""",¢,2) — PHF, where
ni(2) =i+ 1. ThusC? exists for alli > 1. In other words the statement is
valid for w = 2.

Assume that the statement is valid for— 1 > 2. That means that for
every2 < u < w — 1 there exists at®} = (n;(u),q""',q,u) — PHF
for all 7. We prove that the statement is true fori.e., there is arC}* =
(ni(w), ¢, q,w) — PHF for everyi.

This is done by induction on

Fori = 1thereisa&C}’ = (m(w), ¢% ¢, w)— PHF, wheren, (w) = (%) +1
andg > ny(w) — 1. Infact,C}" is obtained from the Reed-Solomon code

(n1(w), ¢%, q) — RS by using Theoren3.7.1. Assume thaC}’ exists for all
j<i-—1.

Let B

denote the concatenation Bf* ; and E/”,*, which are defined as follows:
DY | is obtained fronTC}”, by repeating each of its rowstimes.
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E*7!is obtained fromC?"" by replacing each symbgl by matrix A;
described in Lemma3&.8.14

We depictC as ang.q x (n;—i (w)+n;_1 (w—1).(%)) array, where the first
n;_1(w) columns correspond t®® ; and the remaining,;_; (w — 1).(%)
columns correspond t&“;'. And we partition the rows of the array®

into ¢* consecutive blocks, say;, ..., B,:, each blockB; hasg rows.
Dy, By
Bl 1st row of Cﬂl A(l,l),w A(172)7w A(l,ni,1(w)),w

repeated, times

B, 2nd row of C | Aenw | 42w | - | A@nioi(w)w
repeated, times

qith row of Ciw_l A(qi71)711) A(qi,Q),w s A(qi,m_l(w)),w
repeated times

Array Cv

Remark that the matri¥d; ;) ., in the table corresponds to the symbol at the
entry (4, k) of the arrayC* "

Next, we prove tha€' is aw — PHF.

Letr,...,r, be any givenw rows of@w. If r1,...,r, belong tow dif-
ferent blocks, say;,, ..., B;,, then from the definition oD}" , there is at
least one column iD}” ; containing pairwise distinct symbols in the rows
r1,...,7y. Assume thaty, ..., r, belong tow’ blocks, sayB;,, ..., B; ,,
wherew’ < w — 1. AsC¥'isan(w — 1) — PHF, there exists a column,
sayc, whose symbols, say, . .., j., in the rowsi,, ..., i, are pairwise
distinct. From the definition ofs?’*, the symbolsj,, ..., 5, are replaced
by matricesA;, ., ..., A; , . (notice thatd;, ,,,..., A; , ., together form a
set of () consecutive columns of the block,, ..., B; , in E7'). By
Lemma3.8.144;, v, ..., A; , wisan((}),qw’,q,w) — PHF, so there is
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a column inE;“”_‘l1 having different symbols in the rows,...,r,. Thus
Cvisaw — PHF.

Now recall thatC?”," is ang’ x n;_ (w — 1) array and thatz" ;" is obtained
from C*7' by replacing each entry € {0,...,q — 1} of C*}' by the

(g % (%))-matrix A ,,.

Since the first column of each matrik; , is always the vectofo, ..., q —
)T, there arey;,_; (w — 1) identical columns irC'».

Now let C* denote the array obtained froffy by deletingn; _, (w — 1) — 1
of these identical columns. Théi}’ is ang™! x n;(w) array, where

) = a0+ sl = 1) x () = s = 1) = 1)

= (W) + i (w— 1)((2") 1)+ 1.

It is obvious thatC'” is anw — PHF, just asC®.
Asn;_i(w) = 0@G""") andn;_(w — 1) = O(i*?), we have

ny(w) = O@*™1) + O(z’“’_Q)[(Z}> —1].

Consequently
ni(w) = O((i + 1)),

HenceCy isan(O((i + 1)*~ 1, ¢, q,w) — PHF, as desired. ]

In the casev = 3 andq = 3 Theorem3.8.15gives us(:?,3",3,3) — PHF,
for every integet > 1.
Thus
n ~ 0.398(log M)?.

To compare the construction in Theorén®8.15with other known constructions
we recall that Corollar.8.2gives perfect hash families with

n ~ 0.556(log M)?
and Corollary3.8.4provides

n ~ 0.796(log M)>.
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Lemma3.8.8yields an(i?,3%,3,3) — PHF only if i = 27, wherej > 1,
whereas Theorerd.8.15gives an(i?, 3%, 3,3) — PHF for any integeri > 1.

Theorem3.8.10gives a better asymptotic performance, but in this case we are
restricted with construction algorithm whose complexity is polynomiat ind
we should also note that the small@gtwe can get by this construction is larger
or equal to7*s.

It is worth noting that at each recursion step the size of the constructed perfect
hash family in Theorerf.8.15increases much slower than thatin Theofef12
For example in second step of the construction algorithm in The@Gé&m2we
already obtain\/ = 3'4%® for ¢ = 3 andw = 3.

Actually, Theoren8.8.15roughly states that a perfect hash family for a certain
n can be constructed for any giverand any given code sizg, whereg is a prime
powerq > (”“2“) and: > 1is any integer. Thus, Theoref8.15gives an explicit
construction of perfect hash families for a very large set of parameter values.

As an application of Theore®8.15for the cases = 3 andw = 4 we have:

Corollary 3.8.16 For any prime powey > 3 there exists &(i + 1)?,¢"*, ¢,3) —
PHF.

Corollary 3.8.17 For any prime powey; > 7 there exists dgi* + 3i* + 3 +
1,¢""1, q,4) — PHF.

3.9 Summary

In this chapter we have studied combinatorial properties of perfect hash fami-
lies. An existence result proved by a probabilistic methods states that for any
g > w there exists an infinite class o, M, q,w) perfect hash families with

n = O(log M). However, it is a difficult problem to construct such an infinite
class explicitly. Theorer3.8.10presents an infinite class of perfect hash families
foranyw < gwithn = O(log M). The known low-complexity algorithm for con-
structing these perfect hash families has a runtime upper-bound@ddyy/)?.

This is considered still to be inefficient for practical purposes.

We present two new recursive explicit constructions for perfect hash families
which provide infinite classes of perfect hash families satisfying different require-
ments. Firstly, for anyw < ¢ we construct an infinite class of perfect hash families
which have a very good asymptotic behavior. Secondly, we present a new con-
struction technique which provides an infinite class of perfect hash families for
very large parameter sets. This family is not as good asymptotically as the fam-
ily obtained by our first construction. However, it provides ‘good’ perfect hash
families of small sizes. We also prove a necessary condition for the exitance of a
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perfect hash family in form of an upper bound 6 A comparison of bounds
shows that our bound is stronger than other known bounds for many parameter
sets. A survey of some significant known results, comparison of new results with
known ones and several open problems have been provided.
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Chapter 4

|dentifiable Parent Property Codes

4.1 Introduction

This chapter deals with the problem of protection copyrighted digital data against
piracy. The traitor tracing problem was introduced by Chor, Fiat and Naor in
[51] for broadcast encryption systems, where the data should be accessible only to
authorized users. When an illegal copy produced by a group of authorized users of
the copyrighted material is detected, traitor tracing schemes allow to trace it back
to at least one producer (parent) of it. In particular, these schemes are suitable
for pay-per-view TV applications. We consider, as an example, a pay-per-view
movie type scenario introduced by Fiat and Tassa&bh). [ In this scenario the
content is divided into» segments. Each of this segments is marked with one of

q different symbols. Each user receives a differently marked copy of the content.
The ordered set of the marks for each copy can be giveg-asyavector of length

n. A coalition of colluding users can make an illegal copy by combining different
segments of their data and broadcast it. After an illegal copy is detected traitor
tracing schemes attempt to reveal at least one traitor. The goal of such schemes
is to handle as many colluders as possible. The practical applications require to
accommodate many users when there is a restriction on the number of symbols
which can be used for marking the data.

Several codes providing some forms of traceability are designed to be used in
these schemes. These codes have been extensively studied in the recent years. The
weak forms are frameproof codes introduced by Boneh and Skigywand secure
frameproof codesd?]. We study strong forms of codes which allow the tracing
of at least one parent of any illegal copy when the size of the coalition of colluders
does not exceed some given numiecalled the traceability constant. The strong
form of codes studied in this chapter are identifiable parent property (IPP) codes
which have been introduced by Hollmann, van Lint, Linnartz and Tolhuiz&j [

53
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Other strong versions of such codes are TA schemes and TA codes introduced by
Chor, Fiat and Naor ing1, 58, 60]. In fact, TA codes turn out to be a subclass of
IPP codes§3].

Combinatorial properties of IPP codes and TA codes have been studied by sev-
eral authors. Relationships of IPP codes with several other combinatorial struc-
tures and codes have been studied by Hollmann et %], Staddon, Stinson
and Wei B3], Barg, et al. p4] and Sarkar, Stinsor6[/]. Based on these con-
nections several sufficient conditions on the existence of IPP codes are derived
in [51, 55, 64, 68, 70, 76, 77]. Necessary conditions for the existence of IPP
codes given in the form of an upper bound on the size of codes are obtained in
[55, 63, 68, 75, 77]. Probabilistic techniques are used to prove the existence of
w-IPP codes witm = O(log M), wheren is the length of the codes and is
the size, for any alphabet of size> w. Using the connections between IPP
codes and other known combinatorial structures several explicit constructions are
derived in b1, 63, 66, 67, 76]. The question of complexity of traitor tracing al-
gorithms for IPP and TA codes are treatedtd,[73, 78]. Certain classes of TA
codes are shown to have a fast traitor tracing algorithm by using the list decoding
techniques.

In this dissertation we focus on explicit construction methods for IPP codes
using recursion techniques.

Our first construction provides an infinite class of IPP codes with the best
asymptotic behavior among explicitly constructed classes of IPP codes known in
the literature. In fact, for any fixegl > w we are able to construct an infinite class

of w-1PP codes in which the lengthof the codewords ié)((w2)|°9*(M) (log(M)),
whereM is the number of codewords anal* is a very slow growing function.
Moreover, we prove that these codes allow a traitor tracing algorithm with a run-
time of O(M) in general. It should be noted that no IPP codes other than TA codes
with this property were known beforéJ]. For some infinite subclasses of these
codes even faster, in timely(log M) traitor tracing algorithms can be achieved.

Also, another new class of IPP codes is derived. We use perfect hash families
and recursive techniques to derive an infinite class of IPP codes. This class of IPP
codes is not as good asymptotically as the class of IPP codes constructed by our
first construction method. However, the method provides ‘good’ IPP codes for
certain parameter ranges.

The known construction methods and probabilistic existence results do not
prove the existence afi-TA codes withg < w?, thenb > ¢, whereb is the size
of the code and is the size of the alphabet. Thus, as an open problem Staddon,
Stinson, and Weid3] ask the following question: Can we construci{TA codes
with ¢ < w? andb > ¢? We give an affirmative answer to the Staddon-Stinson-
Wei’'s problem. Precisely, using the new general construction methogtdoy
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codes with large Hamming distance given in Sectiof) we are able to construct
a large class ofo-TA codes withg < w? andb > q.

Our results in this chapter have been presented in the pafr$12], [87],
and B3].

In Section4.2 we present some preliminaries. Sectib® summarizes the
known results. Some open problems are discussed.

In Section4.4 we prove that the concatenation of two IPP codes gives an IPP
code. The parent identification process for the concatenated code is described.
Using the concatenation technique we present a good infinite class of IPP codes.

In Section4.5we describe our first construction, in which the concatenation
technique and the recursive method are combined. The construction yields an
infinite class of IPP codes. We show the asymptotic behavior of the codes and
study the complexity of a traitor tracing algorithm.

In Section4.6the new class of perfect hash families given in TheoBe@l5
is used to construct a new infinite class of IPP codes in view of Thedrérh

In Section4.7 a new class of TA codes is derived based on the codes con-
structed in Sectio.7, which gives an answer to an open problem of the existence
of TA codes for certain parameter classes. Finally, Secti@rsummarizes new
results.

4.2 Definitions

In this section we give basic definitions and notation used in this chapter.

Let C be ag-ary codes of length. For any subset of codewords C C, the
set ofdescendantef (), denoteddescC)), is defined by

deSC(CO):{xGQ":xiE{ai:aECg}, 1§Z§7’L}

Thusdesd(C)) consists of alh-tuples that could be produced by a coalition hold-
ing the codewords 6. If z € desc()), then we say that’, produces.

Let w be an integer. Define the-descendant codelenoteddesg,(C'), as
follows:

desc,(C)= | J des¢Cy).

CoCC,|Co|<w

Thusdesg,(C) consists of alh-tuples that could be produced by some coali-
tion of size at most.

Definition 4.2.1 (Identifiable Parent Property code)
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Let C be an(n, M, q) code and letw > 2 be an integer. C is called an
(n, M,q,w) — IPP (ldentifiable Parent Property) code provided that, for all
x € desg,(C), it holds that

N C; 0.

{i:zed@SQCy), |Ci|<w}

In other words, a code has theidentifiable parent property if no coalition of
size at mostv can produce an-tuple that cannot be traced back to at least one
member of the coalition.

Definition 4.2.2 (TA code) Let definé(x,y) = {i : z; = y;} foranyz,y € Q™.
Suppos&’ C Q" is an(n, b, q) code andw > 2 is an integer.C is called aw-TA
code provided that, for all and all z € desc(;), there is at least one codeword
y € C;suchthatl(x,y)| > |I(x, z)| foranyz € C'\ C;.

The w-TA property eases the parent identification process allowing efficient
traitor tracing algorithms (linear in the code size in the general case).

Example 4.2.3An (5, 16, 4; 2)-IPP code (2-TA).

B~ W N — B WN R R WNDRFR &AW -
— N WERE N AR WWERERENERAR WD
N — W W R P DN DN WK R WDND -

> B B R W W W W NDNDN =
LR NN WERNRFE B W WD -

Note that this is a5, 16, 4; 4)-Reed-Solomon code. More generally, the relation-
ship between Reed-Solomon codes and TA codes is given in Séction
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4.3 Known Results

This section is a brief summary of basic known results and developments of the
subject.

T A codes form a subclass 6 P codes. This fact is pointed out in the fol-
lowing lemma.

Lemma 4.3.1 (B3], Lemma 1.3) An(n, M, ¢, w)-TAcodeis anin, M, ¢, w)-IPP
code.

Proof: Suppos€ is an(n, M, ¢, w)-TA code. Ifz € desg,(C), then thereis a
subset”; C C, where|C;| = w, such thatr € desd(;). Lety € C; such
that|I(z,y)| > |I(x,2)| foranyz € C;. Thus|I(z,y)| > |I(z, z)| for any
z € C by the definition of av-TA code. We will show that, for ang'; C C
with |C;| < w, z € desqC};) impliesy € C;. Infact, ify ¢ C;, then there
is! € C; such that(x,l)| > |I(z,y)| by the definition of av-TA code.
This contradicts the fact thak(z, y)| > |I(x, z)| foranyz € C. [

The converse of Lemmé& 3.1is not true, as it can be easily checked with a small
example.

Example 4.3.2 A (2,4,4;4)-IPP code which is not a (2,4,4;2)-TA code

= W N =
— N = =

It is easy to check that this code is an 4-IPP but it is not a 2-TA. It is a 4-IPP
code, since the symbols in the first position of all the codewords are different.
Now, takezr = 31, thenx is a descendant df32,4 1}. However,|I(z N 32)| =
|[I(xN41)| =|I(xN11)] = 1. Thusitis not 2-TA code.

More examples showing that a code having the IPP property do not necessarily
have the TA property can be found i8], [63] and [66].

The next result shows that-IPP codes cannot exist for certain parameter
situations.

Lemma 4.3.3[63] Suppose&’ is any(n, M, q) code, and\/ — 1 > w > q. Then
C'is not aw-IPP code.
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To avoid the triviality, hereafter we study IPP code with assumptionthato
andM > q.

In addition to perfect hash families, which have been discussed in Chapter
3, we define here some other families of hash functions, namely separating hash
families [62], partially hashing familiesg4] and strong separating hash families
[67]. These structures are useful for our discussion in the sequel.

Definition 4.3.4 (Separating hash family (SHF)) Am, M, q)-hash familyH is
called an(n, M, q, w;, w,) separating hash family denotéd, M, ¢, wy, ws)-SHF
if for any two disjoint subset&, B of {1,--- , M} with |A| = w; and |B| = ws,
there is a functiorh in H such thath(A) and i (B) are disjoint.

Definition 4.3.5 (Partially hashing family (PAHF)) Affn, M, ¢)-hash familyH is
called an(n, M, ¢, t,u) partially hashing family denote@h, M, q,t,u) — PAHF
if for any two subset®, U of {1,--- , M} suchthatl’ C U, |T| = ¢, and|U| = u,
there is a functiorh in H such that for any: € 7" and anyy € U, withy # = we
haveh(z) # h(y).

Definition 4.3.6 (Strong separating hash family (SSHF)) &n M, ¢)-hash fam-
ily H is called an(n, M, q, w;, ws)-strong separating hash family denoted

(n, M, q, wy,ws)—SSHEF if for any two disjoint subset, B of {1,--- , M} such
that|A| = w;, and|B| = ws, there is a functiorh in H such thath injective onA

andh(A) N h(B) = 0.

The connection of strong separating hash families and partially hashing fami-
lies is as follows:

Theorem 4.3.7[67] A hash familyH is an(n, M, ¢, wy, we) —SSH F if and only
ifitis an (n, M, q,wy,w; +we) — PAHF.

Recently, hash families have found many applications in cryptography. These
applications are discussed for example3n, [40, 39, 44, 62]. The relationships
with IPP codes are presented below.

4.3.1 Connections Between IPP Codes and Other Combinato-
rial Structures

Connections between hash families and identifiable parent property codes have
been studied ing5, 63, 64, 67]. We recall some of the results here.

Forw = 2 necessary and sufficient conditions for the existence of 2-IPP codes
using hash families are obtained &5].
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Theorem 4.3.8[55] Let C be the matrix representing am, M, ¢) codeC. Then
C is a 2-IPP code if and only i€ is simultaneously afn, M, ¢,3) — PHF and
an(n,M,q,2,2) — SHF.

A relationship between perfect and separating hash familiesvali®P codes
for anyw > 2 is given in the following theorem:

Theorem 4.3.9[63] Let C be the matrix representing am, M, ¢q) codeC. Sup-
poseC is aw-IPP code. Then we have the following

1. Cisan(n,M,q,w+1)— PHFif M >w+ 1.
2. Cisan(n,M,q,w,w) — SHF if M > 2w.

It is an open problemd3] whether the converse of the theorem is truedor 2.
A characterization of afin, M, q,3) — I PP code is given in §4]. The cases
w = 4,5 have been studied irB]]. Results show that the converse of Theorem
4.3.9is not true in these cases.

However,w-IPP codes can be obtained from certain perfect hash families. The
following theorem, due to Staddon, Stinson and V&l [ provides a sufficient
condition for existence of IPP codes.

Theorem 4.3.10[63]( Theorem 2.8) LeC be an(n, M, q) code whose matrix
representation i<C. If Cis an(n, M,q, |(w + 2)?/4]) — PHF, thenC is an
(n, M,q,w) — IPP code.

This leaves the question of the existence of IPP codesfer ¢ < [(w +
2)2/4] open, since a-PHF exists if and only ify > w.

The connection of partially hashing families and IPP codes is shown in the
next result.

Theorem 4.3.11[64] Let C be an(n, M, q) code whose matrix representation is
C.If Cisan(n, M, q,w, | (w+2)?/4])—PAHF, thenCisan(n, M, q,w)—IPP
code.

Based on this result a probabilistic method is used to obtain a lower bound on
the size of the codes iBf]], showing thatuv-IPP codes exist for any > w + 1.

A similar result in terms of strong separating hash families is giverbi [
which is used later for constructing an infinite class of IPP codes.

Theorem 4.3.12[67] Let C be an(n, M, q) code whose matrix representation is
C.IfCisan(n, M, q,w, | (w+2)?/4] —w)—SSHF, thenCis an(n, M, q,w) —
I PP code.
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The relationship of error correcting codes and IPP codes have been studied in
several papers.

The following result stated irg[1], [60], [63] is useful. We present it here with
a simple proof.

Theorem 4.3.13Any (n, b, ¢; d) code withd > n(1 — 1/w?) is an(n, b, q) w-TA
code.

Proof: LetC be an(n,b,q;d) code withd > n(l — 1/w?). Seta = n(1 —
1/w?). Any two codewords:, ¢, € C agreeinatmost =n — (a+ 1) =
n/w? — 1 positions. LetC’ = {c,,...,c,} C C be a subset of size. For
anyu € desd(C’), defineM (u) = max{|I(u,c})| : i =1,...,v} and
M = min, desgey M(u). Thenn/v < M. On the other hand, for any
ce C\C wehave) . |l(cc)| < vB. Now C will be av-TA code if
vB < nfv. Thusp < n}vQ, equivalentlyn/w? — 1 < n/v?. Hencev < w,
as desired. n

The relationships between TA and IPP codes and hash families described in
this section are depicted in the following diagram.

Figure 4.1: Connections among different types of codes and hash families

codes with

d>n(l-1/w?)

\
[(w+2)2/4] — PHF w—TA
Y 4
(w, [(w+2)*/4]) — PAHF = w—IPP = (w,w)—SHF

0 Y

(w, [(w+2)?/4] —w) — SSHF (w+1)— PHF

Further relationships between IPP codes and some other combinatorial struc-
tures not discussed here can be foundisj [see Figure 1,43)).

4.3.2 Necessary Conditions

Theoremd.3.9(case 1) asserts that|PP codes are subsets(af + 1)-PHF. Thus
the necessary conditions for the existence of perfect hash families presented in
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Section3.3 also provide necessary conditions for the existence-t®PP codes,
which can be given in form of an upper bound on the size of the codes.
In particular, from bound3.3.9 it follows:

Theorem 4.3.14LetC be an(n, M, ¢;w) — I PP code, then
M < w(ghs! —1).

A stronger upper bound for the size of IPP codes is given in the next theorem.
Using an upper bound for separating hash famil&g [Theorem 3.9) together
with Theorem4.3.9(case 2) we obtain:

Theorem 4.3.15[63] Let C be an(n, M, q; w) — I PP code, then
M < ¢lvl 42w —2.
A stronger bound is establishes for w = 2.
Theorem 4.3.16[55] Let C be an(n, M, q;2) — I PP code. Then
M < 3¢5
The bound in Theorem.3.15has been improved irvp, 77].

Theorem 4.3.17[75] Let C be an(n, M, g;w) — I PP code. Then
M < %u(u —1)¢lw1

whereu = [(% +1)%].

A similar upper bound with a somewhat better constant deriveddwill be we
presented in next section together with the lower bound.

4.3.3 Nonconstructive Existence Results

Probabilistic methods were used to prove existence results for IPP cod€s in [
55, 60, 64, 70, 76, 77]. The results are summarized below.

Theorem 4.3.18[51, 60] There exists ann, b, ¢, w)-TA code, wherg = 2w?
andn = 4w?logb.

Note that this result does not prove the existence-GA codes for small.
In the case of 2-IPP codes, the probabilistic method was usédbling prove
the following result:
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Theorem 4.3.19[55] There exists ann, M, q,2)-IPP code withM > c¢(%)3,

4
wherec = (2)s.

The existence ofv-IPP codes for any > w > 2 was first proved ing4].
Theorem4.3.11together with an existence result for partially hashing families
obtained from the probabilistic method provides next theorem:

Theorem 4.3.20[64]
For any fixed; andw, ¢ > w there exists an infinite class 6f, M, g, w)-IPP
code with

log, M S 1 o (g —w)lg"
B1lq —w)lg — ql{q — w)

lim >
n—oo N u—1

whereu = [(% +1)%].
This result has been improved for allexceptw = 2, 3.

Theorem 4.3.21[7Q]
For any fixedy = w + 1, there exists an infinite class 0f, M, w + 1, w)-IPP
code with

u—w

. log, . M wl(u — w)
lim >
n—oo M u(u— 1) In(w + 1)
whereu = [(% +1)%].

Performing simple asymptotic manipulations this result can be given as fol-
lows:

Theorem 4.3.22[76]
There exists an absolute constant- 0 such that for any fixeq = w + 1,
there exists an infinite class 6, M, w + 1, w)-IPP code with

. log,, .1 M - cw!2?v _ y-w(iro(1)
n—oo 1 — w?(ew?)V

For fixedn, ¢, w; ¢ > w denote byM (n, ¢, w) the maximum value of\/ for
which an(n, M, ¢, w)-IPP code exists. It is proved iif ] that

Theorem 4.3.23[77] For everyn, q,w; q > w there exist two functions, (w)
andcy(w), such that

(c1(w)q) T < M(n,q,w) < ca(w)g 7]
where ]
{ T tw whenw is even
w? 1 .
“+w— 3 whenwis odd
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These existence results together with the upper bounds on the size of the code
theoretically state that for any fixegdandw such that; > w

n = O(log M).

However, the existence results surveyed in this section are not constructive.
Several explicit constructions of IPP codes will be presented in next sections.

4.3.4 Direct Constructions

Using the relationships between IPP codes and other combinatorial structures dis-
cussed in Sectioi.3 several explicit classes of IPP codes can be derived.

Applying Theorem4.3.13to Reed-Solomon codes we obtain the following
theorem:

Theorem 4.3.24[63] Supposen, ¢ and w are given, withg a prime power and
n < q + 1. Then there exists am, b, ¢) w-TA code withh = ¢"/**1.

This construction is explicit and gives-TA codes with

n = O(logb).

It gives better parameters than the probabilistic method in Thedr8m8
However, this class is quite restricted because of conditiehq + 1. The codes
in this construction only havie > ¢ only if n > w?, i.e., if ¢ > w?.

By combining Corollary2.5.6 and Theorem!.3.13we obtain the following
more general theorem:

Theorem 4.3.25[82] Let w > 2 be any given integer. For any integer> w?
and s havings = p{ ...p;* as its prime factorization witlh < p{’ for all i =
1,..., kthere exists arin, M, s, w) — I PP code, wherel/ = s/"/v’1,

Here we describe another nice class of w-TA codes which can be derived as
an application of Theorem.3.13

LetC be alinearAG code defined on the Garcia-Stichtenoth (G-S) curves with
parameters given in Theoreit. L

Applying Theorem?.3.13to C we obtain the following result:

Theorem 4.3.26 For every prime poweyg and any integef > 1, there exists an
(n; b, ¢*, w)-IPP code, where
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n=q""(q-1),
b = q2Luql+1J’

w is a real number with < u < ¢ — 2, and
-1

This construction gives an infinite classwfTA codes, wherer = O(logb).
However, this class is restricted to the condition thaé a prime power and is
very large compared t@. Also the known construction algorithm complexity of
these codes is polynomial inas discussed in Sectiant.

The constructions which are direct applications of Theofednl 3are restric-
tive, in general, in the sense that they can produ€BA codes only ifg > w?
whenb is large. This fact follows from the Plotkin bound. The Plotkin bound
given in Corollary2.2.3together with Theorem.3.13implies:

1 1 b
1— — <n(1-2) "2,
n( w2)<d_n( q)b—l

1—1< 1—1 b
w? q) b—1

So whenh — oo for fixed ¢ andw, we have

Thus

w? < q.

For smallb, however, we can construet-TA codes withg < w? andw? <

n

n—d”

In Section4.7 a new class ofv-TA codes is obtained by applying Theorem
4.3.13to theg-ary codes constructed in Sectid@rv. This provides examples of
w-TA codes withg < w? andb > q.

4.3.5 Efficient Traitor Tracing

In this section we discuss briefly the problems concerning the complexity of the
traitor tracing algorithms(TTA) of IPP codes.

It is clear that for any given IPP code the traitor tracing can be carried out in
time O((Z‘j)), whereM is the number of users (code size). This is to say if we
have no other better idea than to check all coalitions of site find at least one
of the dishonest users (the parent).

To find the parent in case af-TA codes it is enough to check the distance of
the descendent vector (recognized illegal copy) to each codeword of the code and
find the “nearest” codeword to it.
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Thus, in the general case, the runtime of a TTA for a TA code(ig, where
b is the number of the users. This is still inefficient for large populations.

Efficient traitor tracing algorithms can be applied to TA codes, when error
correcting codes are used to construct these codes. This problem is discussed
first by Silverberg, Staddon and Walker i66]. They show that powerful new
techniques for the list decoding of error correcting codes discussed in S2@ion
enable to construct a very fast TTA for some TA codes. When algebraic geometry
codes, Reed Solomon codes or some concatenated codes are used as TA codes,
then traitor tracing can be done in time polynomialiin(log M )). These traitor
tracing algorithms produce a list of all coalitions capable of creating a given pirate.
The results are summarized in following theorem:

Theorem 4.3.27[66]

(i) LetC be a Reed-Solomon code of lengtand dimensiork over a finite field
F, of size at mos2™. If w is an integerw > 2, andn > w?(k — 1), then
Cis aw -TA code and there is a traitor tracing algorithm that runs in time
O(n'?). If n = (1+6)w?(k — 1) then the algorithm runs in tim@ (% >). For
n = 6(w?k), the runtime i (w*log,'* M).

(i) Let X be a nonsingular plane curve of genpsdefined over a finite field,,
P a set ofn distinct Fi-rational point onX, F, an Fj-rational point onX
which is not inP, andk an integer such that > g — 1. Letw be an integer
such thatw > 2 andn > w?(k + g — 1), assume thag < 2", and assume
the pre-processing described i4] has occurred. Then the one-poiAlz
codeCx (P, (k+ g — 1)F) is aw-TA code with a traitor tracing algorithm
that runs in time polynomial in.

(i) If £ andw are positive integersy is a prime powerg > w? > 4, andd
is a real number such that < § < Q/“’ , then there exists an explicit
linear w-TA code over the field; of Iengthn = O(m) (or length
n= O(m)) and dimensiort with a polynomial (in2) traitor tracing
algorithm.

It should be noticed that the IPP codes given by this theorem are derived from
direct applications of Theorem.3.13 Thus Theorem!.3.27does not provide
IPP codes for fixed smail, when)M — oo. Roughly speaking, the alphabet size

of these codes ié)(MwTQ). In [6€], the authors discus potential applications of
other decoding methods to the problem of tracing traitors and suggest alternative
approaches when additional information is known about the way the traitors are
operating. Further developments in this direction can be founddn/p, 80].
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4.4 Concatenation Construction of IPP Codes

In this section , in view of Theorem.4.1, we prove that the concatenation of
two IPP codes gives an IPP code. The proof of Theofefnl describes, at the
same time, a traitor tracing algorithm for the resulting codes by using the traitor
tracing algorithm initial codes. Finally, an infinite class of IPP codes is presented
in Theorem4.4.3for any fixedg andw, ¢ > w > 2.

Let A be an(n,, Ms, ¢2) code over an alphabé), with |Q,] = ¢, and letB be
an(ny, ¢2, ¢1) code over an alphabé};, with |Q1| = ¢1. LetQs = {a1,..., a4}
and letB = {bq,...,by,}. Letf : Q2 — B be the one-to-one mapping
defined byd(a;) = b; for 1 < i < ¢,. For any codeworé = (ay,...,a,,) € A
we denote bya = (0#(a1),...,0(an,)) = (b1,...by,) the g;-ary sequence of
lengthn;n, obtained froma by usingd. The selC = {&a = (by,...,by,)/ a =
(ay,...,an,) € A} is an(ning, My, q1) code, called the concatenated codedof
andps.

Our next important theorem shows that the concatenation technique works for
IPP codes.

Theorem 4.4.1[82] Let A be an(ny, Ms, g2, w) — I PP code and let3 be an
(n1,q2,q1,w) — IPP code. Then the concatenated catlef .4 and 55 is an
(nlng, M, qq, w) — I PP code.

Proof: Letx = (x1,...,Zn0,) € Q7. We partitionx into n, blocks
X100y Xpy with X; = (ZL’(i_l)nl+1,...,l’ml) € Q?l, 1 < i < ny. We
will write x = (x1,...,X,,). Specially, ifx = ¢ = (by,...,b,,) € C, then
b;’s are themselves blocks of the partitioncof

Supposex € desc(C;), 1 < i < r, whereC; C C with |C;| = o; < w. We
prove tha(,_,_.(C;) # 0, i.e.,Cisaw — I PP code.

LetC; = {cg">,...,c533} cc, where‘cg.") = (b%), . ,b§22). For anyl <
i <randanyl < /(< n,defineD)” = {b{),...,b",}, i.e., D" is the
collection of all** blocks of the codewords @f. In other WordsDéi) CB
is a subset ofy; codewords. Ax € desc(C;) by the assumption, we have

X, € desc(Déi)) forl <i<randl </ < ny. SinceBisaw — IPP
code, we have '

(N D #0.

1<i<r

Letb, € (<<, D,Si) be an arbitrary but fixed codeword, i.b, is a parent
of x, in codeB. Sety = (by,...,b,,). Lety = (a1,...,a,,) € Q™ be
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the corresponding sequence obtained fyomsingd, i.e.,a; = 6~'(b;). In

the same way lef; = {aﬁ“, e ,6553} C A denote the corresponding subset
of C;.

Sincey € desc(C;) by the construction, we hayec desc(C;) for1 <i <

r. Hence

y€ ﬂ desc(C;).

1<i<r

SinceA is aw — I PP code, we have

() C#0.
1<i<r

Letz' = (aj,...,a,,) € i<, (Ci) be a parent off in A. Thenz' =
(by,....b,) € C;for1 <i < r, wherez’ the codeword of correspond-
ing toz'. Therefore

() c#0.

1<i<r

ThusC is anw — I PP code. [

Remark: Note that the proof of Theorem4.1describes how to identify a
traitor. This fact is used for the proof of Theoreh®d.4
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We demonstrate an IPP code obtained from concatenating two IPP codes in
the following example.

Example 4.4.2 Let A be the following code

SN = O
— N = O
NN = O
=N NN O
O = N =

Itis easy to check that is a 2-TA code. And |é& be the following 2-TA code.

S WNODNWOHFORFDNWWNDRFRO
WO OFNWFOWNDWND RO
N W OWNDN WO WND —O

W WWWNONDNDND =2 OOOO

—_
N}
=)

0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0]

Now we define the following mapping of alphabet symboktofthe rows of

Q

A.

1111
AN TN TN TN
SN = O
— N = O
NN = O
NN O
O = N =
S— N N

w N = O
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Applying this mapping t@ we obtain a code’ with parametersn = 25,
b=16,q=3:

o0 0 00 1/0 000 1/0 0 0 0 1]0 0 0 0 1|0 0 0 0 1]
1112 2/1 1122111221 1122/00001
2 2 22 1|22 2 2 12 2 2 2 1/2 2 2 2 1|00 0 0 1
01 210/01210[01210/01 21000001
01 210[/22 2 2 1l1 112 2/0000T1[1 11 2 2
2222 1/01 2 10l0000T1[1 112211122
1112 2/00001/01 2102222111122
000011 11222222 1/01 21011122
1112 2/01 210222 21/00001/2 2 2 21
0000 1/2 2 2 2 1/01 2101112 2[22 221
01 2101112 2/0000°1[22 22122 2 21
2222 1/00 00 1/1 112 2/01210[22221
2 222 1|1 112 2/01210/0000T1/01210
01 210/00001l22 22 1/1 112 2/01 210
000O0OT1/01 2 101 112 2[22 221|001 210
|1 11222222 1{00001/01 21001210 |

From Theoreni .4 .1it follows thatC is a 2-IPP code.

We remark that the concatenation of tweTA codes does not necessarily give
aw-TA code. In particular the code from Example4.4.2is not a 2-TA code.

We show that the codé is not a2-TA code as follows:

Let the vector

x = {1112111122010010000100001}

be a descendent vector of the gt= {a, b}, where

a = {0000100001000010000100001}

and
b= {1112211122111221112200001}

are the first two rows of.
On one hand it can be computed thét, a) = I(x,b) = 15. On the other
hand we havé (z, c¢) = 15 for
¢ ={2222111122012100000101210}.

ThusC is not a 2-TA code.
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Now we demonstrate how the traitor tracing algorithm given in the proof of
Theorem4.4.1works.
First we partitionz into 5 blocks as follows:

z = {11121]11122/01001|00001|00001}

For each block we find a parent in the caleSinceA is a 2-TA code we have

11121 —(@1112 2)
11122 —(@117122)
01001 —(0O0O00 1)
00001 —(0O0O00 1)
00001 —(0O000 1)

Thus we obtain
y = {11122|11122|00001|00001]00001}.
Now applying the mapping~! to each block we get
y = {1]1/0[o]0}.

Next we need to find a parent gfin the codeB. It is easy to check that
I(y,a) = I(y,b) = 3andI(y,¢) < 3, for anyc € B\{a;b}. This shows that
andb are parents of in B. Thusa andb are parents af in the codeC.

As a first application of Theorer.4.1we obtain the following:

Theorem 4.4.3 For every given integers andm; wherem > w > 2, and for
any integeri > 1, there exists afin, M, m, w)-IPP code, with

n =mng.(q — 1)¢"t,
M = qZLuql+1J,
wheren, is a constantg is a prime power such that> w?(u + 1) + 1,

andu is a real number with < u < ¢ — 2.

Moreover, we have = O(log M).

Proof: Letw andm be given integers witm > w > 2. Let ¢ be the smallest
prime power such thap = L,/%J, with1 < u < ¢ — 2, as shown in

Theorem4.3.26 The existence of afng, ¢*, m, w)-IPP code for a certain
value ng is shown for in Theorem!.3.2Q Applying Theorem4.4.1 and
Theoremd.3.26yields the IPP codes with parameters as claimed. =



4.5. INFINITE CLASS OF W-IPP CODES WITH EFFICIENT TTA 71

From the proof of Theorem.4.1it follows that the runtime of the traitor trac-
ing algorithm of a code in Theorer4.3differs from the traitor tracing algorithm
runtime of a corresponding code from Theoréri.26by a constant factor. This
together with Theorem.3.27(case(ii)) implies that the codes in Theoref.3
have a traitor tracing algorithm that runs in time polynomialdg M. So, the
complexity of the construction algorithm and the traitor tracing algorithm runtime
of the codes in Theorer 4.3grow polynomially withlog M.

It can be easily checked that the minimum distana@ iof Theorem4.4.1does
not satisfy the condition of Theorefm3.13whereas the minimum distance of the
codesA andB do. This proves that the converse of Theor£.13is not true.
It can be observed that with the traitor tracing algorithm described in the proof of
Theorem4.4.1a descendent of codkis not necessarily traced back to its nearest
vector even whemd and B arew-TA codes. Thus codé€ does not necessarily
have aw-TA property. In the next section, using the concatenation construction
together with some recursive techniques we show the existence of a very good
class of IPP codes allowing an efficient traitor tracing algorithm for the range of
parameters, for which the existence of TA codes is not known. This emphasizes
the advantage of considering codes witHPP property than only codes with
w-TA property.

We remark that Barg and Kabatiansky in a recent papéf §lso prove a
similar result by concatenating IPP codes with error correcting codes.

In the next section we present an explicit construction of IPP codes which
provides an infinite class of IPP codes for any fiyed w with an efficient traitor
tracing algorithm and with a best known asymptotic behavior among explicitly
constructed codes.

4.5 Infinite Class of w-IPP Codes with Efficient TTA

We are now in a position to describe our first construction. First, we describe the
construction by making use of Theoreh8.25and4.4.1. The result is presented

in Theorem4.5.1. The asymptotic behavior of these codes is shown in Theorem
4.5.2 Using the same method a more general result is obtained, which is formu-
lated in Theoremt.5.3 Theorem4.5.4shows that the codes of Theorehb.1

have a traitor tracing algorithm with a runtime @f /). Theorem4.5.5summa-

rizes our main results. Finally, an infinite subclass of these codes having a traitor
tracing algorithm with a runtimgoly(log M) is given in Theorend.5.6
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45.1 Recursive Construction

The construction is carried out by induction on the number of iterations.
Letw > 2 be any integer. Let, > w? be an integer and lef, be an integer
with the prime factorization, = pi* ... p;" suchthak, < p{*foralli =1,... k.
For thel* iteration we choose two cod€s andC; using Theorem.3.25
ng
Cy is an(ng, My, sg, w) — I PP code withM, = sg“"‘ :
[241

O is an(ng, My, My, w) — IPP code withn = ng** ' andM; = M"0/™"1,
Applying Theoremi.4.1with A replaced byC} and3 by C, we obtain an

m
(n1, My, sg, w) — I PP codeC; with n; = ng * njy = ng * ng’ﬂ
Now an(n;_1, M;_1, so,w) — I PP codeC;_; exists by induction for thé; —

1)™ iteration. Choose afin}_,, M;, M;_1,w) — IPP codeC; from Theorem

4.3.25with

":_2 n:;l
ni =ni, ) and My = M, .
Applying Theoren¥.4.1with A = C} andB = C;_,, we get ann;, M;, so, w) —
1 PP codeC; with

% [nz"ku‘l
Ny = Nj—1 *N;_o w2 .

Thus we obtain the following result:

Theorem 4.5.1[82] Let w > 2 be any integer. Let, > w? be integer and let,
be an integer with the prime factorizatiop = p{* ... p;* such thaty, < p;* for
alli=1,... k. Then, for allh > 0 there exists arin;, M;, so, w) — I PP code,
where

B (o2
* * *
Ny =Mnp_1*ny,_q, My=DM_V" ", mn,_=mn, o v,

m
"0

g
w2

[
—_— * —_—
My =sy""", and ny=mn,

4.5.2 Asymptotic Behavior

The asymptotic behavior of the parameters of the codes produced by Theorem
4.5.1can be examined by a similar argument, which is demonstrated in Section
3.8(see also46], pp. 196-197.) In fact, we can show that

ny < a.(wz)log*(Mh) (log Mp),
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for all sufficiently largeh, wherea is some constant and the functibsg * :
7" — Z* is defined recursively by

log*(1) = 1
log*(n) = log*([logn])+1, ifn>1.

Note that the functiorog *(n) grows very slowly, e.g.Jog*(n) < 7 for n <

2265536
We have the following result:

Theorem 4.5.2[82] For any integerw > 2 and any integes having the prime
factorizations = p{'...ps* with w? < p{ forall i = 1,...,k, there exists an

infinite class ofn, M, s, w) — I PP codes for which is O((w?)109 ) (log(M)).

As we want to show that the constructed codes in Thegtéin having an
efficient tracing algorithm, we have chosen the starter code dg A% code. In
fact, the construction works for any starter code. For instance, for gitenw >
2, the probabilistic method in6f] shows the existence @', M, q,w) — IPP
codes withy > w and some.’. Thus, if we take thign', M, ¢, w) — I PP code as
a starter code and carry out the same recursive construction, then we get a more
general result as follows:

Theorem 4.5.3[82] For any integerw > 2 and any integey > w, there exists an
infinite class ofn, M, ¢, w) — I PP codes for which is O((w?)!9 ) (log(11)).

To our knowledge Theorerh 5.2and4.5.3yield a class of explicit constructed
codes with the best known asymptotic behavior among similar known classes.
In fact, from Theoremt.3.10it follows that an(n, M, ¢,w) — I PP code is an
(n, M, q,w+1)—PHF, and therefore atm, M, g, w)— PHF. Butthe converse is
nottrue: ann, M, q,w+1)— PHF isnotan(n, M, q,w)— I PP code in general.

This is to say that afn, M, ¢q,w) — I PP code is a much stronger structure than
an(n, M, q,w) — PHF. Even though, our constructéd® P codes have the same
asymptotic size as that of the best known explicitly constructed classe#l ¢t
(see Sectior.8).

Remark: It is worth noting that in a recent pape6[], Sarkar and Stinson
construct an infinite class @f, M, ¢, w)-IPP codes for which is
O((w*)!09 D) (log(M1)), for integersg > w > 2 in terms of strong
separating hash families. [ ]
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4.5.3 An Efficient Traitor Tracing Algorithm

The discussions in Sectiogh3 show that forw-IPP codes, a traitor tracing algo-
rithm (TTA) will have a runtime complexity of siz€( (ﬂf)) in general. For-TA
codes, however, the runtime of a TTA will l6&( /). Therefore, the question of
the existence ofv-IPP codes in general with an improved runtime for a TTA was
raised in B3].

Here, we show that our constructedIPP codes have a TTA with a runtime
O(M), thereby answering the above question affirmatively.

The recursive process of concatenation used to construct/ PP codes in
Theoremd4.5.1provides a way to build a TTA for cod@; based on the TTAs of
codesC;_; andC?. In fact, the proof of Theorem.4.1describes precisely how a
traitor can be traced back for the cadg In doing so we assume that the TTA's for
codes”;_; andC; are known. Letl;_; andL} be the runtime complexity of such
a TTA for C;_, andC}, respectively. Let assumee desd k), forj =1,...,r,
andK; C C; with |K;| < w, i.e.,x is a pirate word of length; = n;_, * n}_;
created by possible coalitiongs;. From the proof of Theorem.4.1we see that
the runtimel; of a TTA for codeC; is given by

Li = Lifl * n;‘fl + L;k (41)

If we start withC, andC’y asw-TA codes, for which the runtime of their TTAs
areO(M,) andO(M;), then we havd.; = O(M,), as|M,| << |M;|. Therefore,
if C is aw-TA code for each step of the recursion, then we haye= O(M/;).
Now the codes’, andC; in Theorem4.5.1are in factw-TA codes, so we have
the following result:

Theorem 4.5.4[82] For any integerw > 2 and any integes having the prime
factorizations = p{'...p{* with w? < pf for all i = 1,...,k, there exists
an infinite class ofn, M, s, w) — I PP codes withn is O((w?)!09 ) (log(M)),
which have a traitor tracing algorithm of linear runtim@(1/).

Proof: Let C; be the code obtained in theth recursion step of the Theorem
4.5.1 ThenL;, the runtime of a TTA for it , is given by4(1).

Sinceny < s, we haven; < M,. Thus, fromn: , = n; /= | and
'n;_Q . .
M;_, = M;_,/ == ! we obtain than_, < M;_, for anyi > 0.

Now, asC;_; is aw-IPP code of sizé\l;_; we getL;, ; < O((Mzufl)) =
O(Mi_lw). HencelL,;_; * n;f_l < O(Mi_1w+1).

151

This together with the fact that/; = M, v* ' implies that
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Li—l X nf_l S O(MZ) (42)

whenn? | > (w + 1)w?.

Note thatC} is aw-TA code for each step of the recursion, this <
O(M;). This together with4.2) and @.1) givesL; < O(M;).

So we have proved that, < O(M;) withoutassuming that, ; < O(M;_,).
Thus for the codes from Theorefn5.3there exists a TTA with a linear in
the size of the code runtime. This completes the proof of the theorem.

More generally, taking any starter code we obtain the following result:

Theorem 4.5.5 For any integerw > 2 and any integer; > w there exists an infi-
nite class ofn, M, ¢, w) — I PP codes withn is O((w?)109 () (log( A1), which
have a traitor tracing algorithm of linear runtime ().

It turns out that the method of list decoding discussed in Seci8ran be
applied to traitor tracing algorithms, when the mentioned codes are used-as
codes. This fact is discussed in Sectibfi. For instance, from Theoreh3.27
( case (i)) we see that A codes based on Reed-Solomon codes will have traitor
tracing algorithms of runtimgoly(log M), where) is the size of the codes. This,
in turn, implies that the method can be applied to our construttedt codes.
Consequently, ifs = ¢ is a prime power and the ingredients of the recursion
are Reed-Solomon codes, then theP codes of Theorem.5.4allow a traitor
tracing algorithm which can run iply(log M) time. We present this class in the
following theorem:

Theorem 4.5.6 For any integerv > 2 and any integet; > w there exists an infi-
nite class ofn, M, ¢, w) — I PP codes withn is O((w?)!09 M) (log(A1)), which
have a traitor tracing algorithm of runtimgoly(log M ).

4.6 Construction of a New Class ofv-IPP Codes Us-
ing PHF

In this section we use the new class of perfect hash families given by Theorem
3.8.15to derive IPP codes in view of Theorefr6. 1

Using Theoremt.3.10and Theoren3.8.15we immediately obtain the follow-
ing new class of IPP codes:
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Theorem 42.6.1 [82] Letw > 2 be any integer and be any prime power such that
g > ({*2°/4)  Then there exists afO((i + 1)L@+2*/4=1) i+l ¢ w) — PP
code for any integei > 1.

Proof: By Theorens.8.15there exists afO ((i+1)L+2°/4=1) i+l ¢ | (w 4 2)2/4])—
PHF. The theorem then follows from Theorefr3.10 [ ]

It is worth noting that at each recursion step the size of the constructed code
in Theorem4.6.1increases much slower than that in Theorém.1 Actually,
Theorem4.6.1roughly states that — I P P codes of certain codeword length can
be constructed for any given and any given code sizg¢. Thus, Theorend.6.1
gives an explicit construction of IPP codes for a very large set of parameter values.

4.7 On aClass of TA Codes

Staddon, Stinson, and WebJ], ask the following question: Can we construct
w-TA codes withg < w? andb > ¢?

Our aim is to give an answer to the Staddon-Stinson-Wei’s problem. In Section
2.7 we have presented a new general construction methoghéoy codes with
large Hamming distance. Using this method we are able to construct a large class
of w-TA codes withg < w? andb > ¢, and thus obtain a positive answer to the
problem.

4.7.1 Construction ofw-TA Codes with ¢ < w? andb > ¢

The following theorem shows that codes constructed in The&éng in fact,
provide a large class af-TA codes withg < w? andb > q.

Theorem 4.7.1[71]]
Letg, andg; be prime powers such that > qo.

(i) Suppose/qoq1 + 1 < [v/qq1 + ¢1 + 1]. Then for any integen with
Voo +1 < [vVn] < [Vaoq + ¢ + 1]

there exists aiin, b, ¢) w-TA code with; < w? andb > ¢, where

b = q§q1
q = dqod1

w = [Val-1.



4.7. ONA CLASS OF TA CODES 77

(i) For any integern > 2 and for any integer with

Vg +1 < [vn] < [Vad + ¢+ +q + 1]

there exists aiin, b, ¢) w-TA code with; < w? andb > ¢, where

b = q¢qf"
q = qq"
w = [vn]-1

Proof: First, recall that the parametdid’, b, ¢; d) of a codeC* in Theoren?.7.8
(i) areN = qo@* + ¢ +q7" ' + -+ + 1,0 = ¢¢", ¢ = qoq}", and
d = N—1,wherem > 1is aninteger. We remark thatdf is shortened, the
resulting code with length < N always have minimum distande= n—1.

Let (n,b,q;n — 1) be the parameters of a shortened c6d# C* (the case
C = C*is also included). Say < N. Letw = [y/n] — 1. By Theorem
4.3.13 C is aw-TA code. The conditiory < w?, i.e., /g < w, thus
becomes /g < [/n] — 1, equivalently,/g + 1 < [/n]. Asn < N, we
have,/7 + 1 < [vn] < [VN]. Now ¢ = qog}", so if m = 1, we have
the condition,/qoqr + 1 < [v/n] < [V@oq1 + ¢ + 1]. Thus(i) follows.
If m > 2, we see that the conditiofyg + 1 < [V/N] is always satisfied.
In fact, we only need to verify thayg + 1 < V/N, i.e., (V@@ + 1)? <
Q" + q" + ¢+ - 4+ ¢1 + 1. Simplifying the last inequality yields
4qoq % < (¢t 4 -+ 4+ ¢ + 1)?, which is satisfied for all integerg >
qo > 2 andm > 2. Thus we havéii). The proof is complete. [ ]

Remark: In the proof of Theorem.7.1above, we do not use the
approximation,/g + 1 < v/N to show,/g + 1 < [/N for the case
m = 1. If we used it, we would get an inequality, < ¢;. And therefore,
we would miss a large number @fTA codes. In fact, the condition

Vi + 1 < [vaq + 1 + 1], as stated in the theorem, is much stronger.
[ ]

Example 4.7.2 Some smallv-TA codes of Theoremd.7.1(:) are as follows: A

(10,12,6) 3-TA code corresponds i@ = 2 andg; = 3. This code is also dis-
played in Example€.7.3 Forgy, = 3 andq; = 4 we have a (17, 36, 12) 4-TA
code, and fory = 4 andq; = 5 we have a (26, 80, 20) 5-TA code.

The discussions in Sectigh3 show that we cannot constructTA codes as
application of Theorend.3.13for fixes¢ < w? whenM — oo. The known
existence results om-TA codes studied above requife> w?. We have seen that
w-IPP codes in general exist for any fixgd> w with n = ©(log M). However,
the existence ofv-TA codes withg < w? whenM — oo remains open.
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4.8 Summary

In this chapter we have investigated identifiable parent property codes. These
codes are designed to be used in the schemes that protect copyrights of digital
data against a colluding coalition of authorized users of the data. From the known
sufficient conditions for the existence of IPP codes we have that for any fixed
q > w there exists an infinite class of IPP codes with- O(log M).

We focus our attention on explicit constructions of IPP codes. We prove that
the concatenation of two IPP codes gives an IPP code. This result together with
some recursive techniques allows us to construct an infinite class of explicit IPP
codes for any alphabet size which is larger than the coalition size that the code is
able to handle. We observe that our constructed class has the best known asymp-
totic behavior of the parameters among explicit classes. We also study the com-
plexity of the traitor tracing algorithms of these codes. We show the existence of
a traitor tracing algorithm with a linear runtime in the size of the code.

It is shown in pB6] that powerful list decoding techniques from coding theory
can be applied to some classes of TA codes to give a traitor tracing algorithm with
runtime polynomial in the length of the code. The classes of codes discussed in
[66] are restricted with the large sizes of alphabet compared with the coalition size
that the code can handle. We show that list decoding techniques can be applied
also to some infinite subclasses of the IPP codes derived by our construction. Thus
for any fixedg > w we obtain an infinite class of explicit-IPP codes with very
good asymptotic behavior of parameters which has a traitor tracing algorithm with
runtime growing polynomially with the code length.

The connections between IPP codes and other combinatorial structures such as
hash families and error correcting codes have been established by several authors.
These results yield several explicit construction for IPP codes. We also present
two new classes of IPP codes based on these relationships.

First, using a new class of perfect hash families constructed in the Subsec-
tion 3.8.3we derive an infinite class of IPP codes which covers a wide range of
parameters.

Secondly, we give an affirmative answer to an open problem of Staddon, Stin-
son, and Wei about existence of TA codes wijtk w? andb > ¢. In fact, using
a new class ofi-ary codes with large Hamming distance, constructed in Section
2.7, and using the connections between TA codes and error correcting codes, we
obtain a new class ab- TA codes with desired parameters. The existence-of
TA codes remains open in the case whemdn — oo for fixed ¢ andw such that
w < g < w?.



Chapter 5

Covering Arrays

This chapter concernscovering arrays which are known also as a qualitatively
t-independent family of vectors @rsurjective arrays. Covering arrays have un-
dergone an intensive survey by many researchers due to their numerous applica-
tions in computer science such as software or circuit testing, switching networks,
data compression problem, and also several mathematical applications such as
difference matrices, search theory and truth functions.

The application of covering arrays to software system testing is discussed in
many papers e.g., see(J1]. One of the approaches to reduce costs for testing a
software system is to use combinatorial designs to generate an efficient test set.
Software system faults are often caused by interactions among components. The
goal of a software developer is to test all combinations of potential interactions
with not very large number of tests. For the system where most errors occur be-
cause of interactions of its maximutrcomponents, a test plan can be designed
usingt-covering arrays. As example in(1] covering arrays have been used to
design efficient test plans for a telephone switch system and a network perfor-
mance monitoring system.

Other applications related to covering arrays are authentication, block ciphers,
intersecting codes, obvious transfer, pseudorandomness, span programs, universal
hashing, resilient functions and zero-knowleddelq

We focus on explicit construction methods fecovering arrays. Firstly, using
the relationships between perfect hash families and covering arrays one can con-
struct infinite families oft-covering arrays with very good asymptotic behavior.
We obtain an upper bound on the covering array number, which is shown to be
better than the known probabilistic upper bound.

Secondly, inspired from a result of Roux and also from a recent result of
Chateauneuf and Kreher for 3-covering arrays, several direct constructions for
t-covering arrays are presented, which can be viewed as generalizations of their
results fort-covering arrays; > 4. These constructions yield good upper bounds

79
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on the covering array number when the size of arrays is small. Our main results
in this chapter are contained in Theorén3.2 Theorem5.3.7, Theorem5.3.§
Theorem5.4.1, Theorenb.4.8and Theorend.4.9(see also]09).

Anintroduction to covering arrays is given in Sectimi. Some known results
are presented in Secti@dn2 New infinite families of covering arrays are derived
in Section5.3 using recursive techniques. A comparison of parameters of the
constructed arrays with a known probabilistic bound is provided. Seétidn
includes several new constructions fecovering arrays witht > 4. Finally, in
Section5.5we give a summary of new results.

5.1 Introduction
Definition 5.1.1 A t-covering array, denotedA(N;t, k,v), is ak x N-array
with entries from a set af > 2 symbols such that ea¢hx N-subarray contains

each ordered-tuple of symbols at least once as a column.

Example 5.1.2 Example of &CA(33; 3,6, 3)

012211200220110102200211221001012
122102002101102022012112010012012
221010021211020220101120200121012
210120212010201201021202101210012
101222120002011010222021112100012
000001111122222111110000022222012

Let CAN(t, k, v) denote the minimum numbe¥ such that &A(N; ¢, k, v) exists,
i.e.,
CAN(t, k,v) = min{N : 3 CA(N;t, k,v)}.

ThenCAN(t, k, v) is called thecovering array number

A CA(N;t, k,v) is minimal if N = CAN(¢, k, v). Itis shown in [LOS that the
covering array given in the Examptel.2is minimal, CAN(3, 6, 3) = 33.

Covering arrays can be viewed as a generalization of orthogonal arrays. In
fact, if we require that eachx N-subarray contains each orderetliple of sym-
bols in exactly\ times as a column, then we havetaorthogonal array denoted
OA\(t, k,v) (see Sectior2.5 for details). In this case we havé = \v'. Thus,
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anOA,(t, k,v) isaCA(\'; ¢, k,v). In particular, if there is a®A (¢, k, v), then
CAN(t, k,v) = v'. For instance, a®A;(¢,t + 1,v) exists for allt andv, see
e.g., 3] ; also, for any prime powey and anyt < ¢, OA;(t,q + 1, q) exists p].

Therefore CAN(¢,t + 1,v) = v* andCAN(¢, ¢ + 1,q) = ¢".

A main problem of covering arrays is to minimi2éfor given valueg, k, v,
or equivalently to maximizé for given valueg, v, N. The case = 2 has been
studied by several authors, see for instarig, [[89], [89], [99], [10]. For the
casev = 2 andt = 2 the problem has been completely solved by Katdifa,
Réni [87], and Kleiman and Spence#d] using the Sperner lemma and BsdKo-
Rado theoremd5).

Forv > 2 andt = 2 the problem is much harder. Garganojrker and
Vaccaro pP7, 99 have studied the asymptotic behavior for this case, showing that

tim ANERY) v (5.1)
k—oo  logy k 2

However, this result is non constructive and is of theoretical naturev Bo?
there are no explicit constructions known which achieve bouni),(and not
much is known about the covering array number for smallSloane in 10q
gives a survey on known bounds for the case 3 andt = 2. Improved tables
of upper bounds on covering array number foK 7 andk < 50 have been
generated in]04] and [LO7]. Several lower bounds are derived itOp]. Some
construction techniques are given #6[ 97, 103 104, 107].

The caseé = 3 can be found in92, 94, 100, 105 106, 10§. Probabilistic
upper bounds on the number of colum¥idor ¢-covering arrays are given ig).
George Sherwood has a database for covering arrays constructed using various
computer search techniquesl[]. However, very little are known fot-covering
arrays witht > 4.

This chapter is concerned withcovering arrays for an arbitrary valueOur
interest is in constructingcovering arrays using combinatorial techniques and in
establishing bounds on the covering array numkéM (¢, k&, v). In particular, we
present constructions of good classes-obvering arrays using recursive meth-
ods and perfect hash families. We then show combinatorial methods of how to
construct new covering arrays from other covering arrays and thus obtain several
bounds fort-covering arrays in the spirit obf], [109).

5.2 Preliminaries

The following basic facts o€ AN(¢, k£, v) can be found in10§. Let A be a
CA(N;t, k,v) with entriesa;; € V ={0,...,v — 1}.
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Symbol-fusing. If a symbolzx is replaced with any symbol it \ {z}, wherever
x occurs in the array, then the resulting array is@ (N t, k,v — 1). Thus

CAN(t, k,v — 1) < CAN(t, k,v).
Row-deleting. If any row of A is deleted, then the remaining rows form a
CA(N;t, k —1,v). Hence

CAN(t, k —1,v) < CAN(t, k,v).
Derived array. Note thatifz € V appears\/ times in row; of A, thenM > v'~!.
Removing all columns oA not havingz on row: and then deleting rowform a
CA(M;t—1,k — 1,v). Therefore

CAN(t, k,v) > v.CAN(t — 1,k — 1, v).

Product. Let B be aCA(M;t, k, w) with entriesb;; € W = {0,...,w — 1}.
From thek x N arrayC, with entries(a;;,b;) € V x W foralli =1,...,k and

j=1,...,N. Then|[Cy,...,CylisaCA(NM;t, k,vw) on symbol set” x W.
Therefore,

CAN(t, k,vw) < CAN(t, k,v)CAN(¢, k, w).

Squaring £[105
If ((3)!, k) = 1, and there is &A(N'; ¢, k, v), then forj > 0

CAN(t, K%, v) < N((;) + 1) (5.2)

We prove a simple lemma which shows rough lower and upper bounds for
CAN(t, k, v) for certain values of.

Lemma 5.2.1 For anyv > 2,t > 2 we have
v' < CAN(t, k,v) < 280" — 1,

wherek < 2" andn is the smallest integer such that< 2™.
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Proof: An obvious lower bound is
v" < CAN(t, k,v),

and this bound is reached:if= ¢ is a prime power anéd < ¢ + 1 because
an orthogonal arrapA, (t,q + 1,q) exists B]. If v is not a prime power,
then2"~! < v < 2" for a certain integen. Now takeCA(N;t,2", 2") =
OA.(t,2",2"). ThenN = 22", Using the symbol-fusing method one gets
aCA(N;t, 2" v). SinceN = 2t.2("=Dt < 2t »t we haveN < (2t —1). m

Non trivial lower bounds can be derived using the derived array technique. We
discus nontrivial lower bounds useful for large value¢ afi the next section.

In [94], a Ph.D. dissertation, Roux shows the following theorem, see also

[100.
Theorem 5.2.2 (Roux 94))
CAN(3,2k,2) < CAN(3, k,2) + CAN(2, k, 2).

Thus, Roux’s theorem gives an upper bound for 3-covering array fop.
Recently, Chateauneuf and Kreh&df generalized Roux’s theorem for any
v > 2.

Theorem 5.2.3 (Chateauneuf and Kreher109)

CAN(3,2k,v) < CAN(3, k,v) + (v — 1)CAN(2, k, v).

5.3 Recursive Construction of CA Using PHF

Perfect hash families discussed in the Chaftean be used to derive bounds
on the covering array number. We describe a relationship between covering ar-
rays and perfect hash families. L&t= (a;;) denote thek x N-matrix of a
CA(N;t, k,v). For any two column; andy, of A, define
I(v,g2) = i+ aig = aig}
and
I(A) = max{I(j1, j2) : j1 7 Ja}-

Theorem 5.3.1 Suppose there exists@\(N;t, k,v).
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(i) Then there exists &V’ k,v,t) — PHF whent < v, N =N —v x (v —
Dx(w—=2)x---x(v—t+1)+1

(i) If k/I(A) > (%), then there is dk, N,v,w) — PHF.

Proof: Let A denote the: x N-array presenting th€A(N; ¢, k, v).

(¢) Itis obvious that any rows of A contain at Ieas{vﬁ—’t)! columns with alll
different symbols it < v. Thus if we delete anyv%)! — 1 columns ofA we
obtainanarrayl’ with N = N—vx (v—1)x (v—2) x---x (v—t+1)+1
columns. Anyt rows of the arrayA’ include at least one column with all
different elements. Thud’isa (N’ k,v,t) — PHFE if t < wv.

(#7) Taking the columns oA as codewords, we have(a, N,v;d = k —
I(A)) code. Then apply Theoref7.1 [

A construction of covering arrays using perfect hash families is as follows:

Theorem 5.3.2 Suppose there existy & k, m,t) — PHF and aCA(N;t, m,v).
Then there is £A(sN;t, k,v).

Let n(k,v,t) = min{n : I (n,k,v,t) — PHF}. Some characterizations of
covering array number we give in next lemmas.

Lemma 5.3.3 For anyv > t we have

n(k,v,t) + T —1< CAN(t, k,v) < (2%" — 1)n(k,v,t).

(v —1t)!

Proof: The left hand side of this inequality follows from Theorén3.1(case
(i), and the right hand side follows from Theorén8.2and Lemméb.2. 1.
n

Lemma 5.3.4 For anyv > t, v is a prime power we have

n(k,v,t) + ; — L< CAN(t ko) < v'n(k,v,t).

(v—1t)!

Proof: The left hand side of this inequality follows from Theorén3.1(case
(1)), and the right hand side follows from Theorén8.2and the fact that
CAN(t,v,v) = v* whenw is a prime power, u

Lemma 5.3.5 For anyv < ¢, we have

n(k,v,v) +v! — 1 < CAN(t, k,v) < v'n(k,t,t).
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Proof: The left hand side of this inequality follows from Theorén3.1(case
(1)) and the fact tha€AN(v, k,v) < CAN(t, k, v) whenv < t, and the right
hand side follows from Theoref3.2and the fact tha€AN(¢,¢,v) = v'. m

In particular these lemmas show that nontrivial lower bounds on the covering
array numbers can be obtained from the lower bounds of minimal number of hash
functions of a perfect hash family having corresponding parameters. It would be
interesting to derive tighter nontrivial lower bounds on covering array number us-
ing similar techniques as for perfect hash families. A survey on the lower bound
for n(k,v,t) is provided in Section8.4, 3.3 3.5. From the lemmas given above
it can be also observed that an asymptotic bound of covering array number when
k — oo with fixed v andt will differ at most by a constant factor from an asymp-
totic bound of minimal number of hash functions of perfect hash family having
corresponding parameters.

We now use Corollarg.7.3and Theoren®.3.2to construct an infinite class
of t-covering arrays with good asymptotic behavior.

Theorem 5.3.6[109 Suppose there exists@\(Ny; t, ¢°°, v), whereq is a prime
power andg* > "1 Then there exists 8A(NyR;;t,¢%,v) for all i > 0,

whereR, = 1, and

Ry = ¢ 'Ry,

qsi—l
S; = 3i—1|__-|
(5)

2

forall 7 > 1.

Proof: We proceed by induction o Fori = 0, the assertion is correct. Now
assume > 1. From Corollary3.7.3we have g¢*-', ¢%, ¢*~',t) — PHF.

By induction, there exists@A(NyR;_1;t, ¢*~*,v). Now applying Theorem
5.3.2yields aCA(NyR;; t, ¢°,v). The proof is complete. [ ]

Let N; = NyR; andk; = ¢°. Then, by a similar argumentation as in Section
3.8([46] pp.196-197) it can be proved that

Nyt .
N; < —— ()" *) (log k;)
S logq

for all i > 1.
For any given values df,, v andt we can always construct@\(Ny; ¢, ko, v)

for somelN,. Therefore, we have the following theorem.
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Theorem 5.3.7[109 For any positive integers andt, there is an infinite explicit
constructive family of covering arrayA(N; t, k,v) such that

N = O((t*)*¢" ®(log k).

Theorem5.3.2becomes powerful when algebraic-geometric (AG) codes are
used. The idea is to derive good classes of perfect hash familiesAtooodes
by Theorenf3.7.1, and then apply Theoretn 3.2

Now, combining Theorerb.3.2and Theoren3.7.7we can prove the follow-
ing result:

Theorem 5.3.8[109 For every given integers, v > 2, and for any integen >
1, there exists a covering arrayA(N; t, k,v), where

N = Ny.(q — 1)¢"*™!, Ny is a constant,

_ 2l s apri t(t=1)(u+1)
k= q2_L "l gisa prime power such that > =5 + 1,
andu is a real number with < u < ¢ — 2.

Moreover, we havéV = O(log k).

Proof: Lett,v > 2 be given integers. Lef be the smallest prime power such

thatt = [5(1 + \/1 +235(g—1))), with 1 < u < ¢ — 2, as shown in
Theorem3.7.7. A simple observation shows that we can always construct a
CA(Ny; t, ¢%,v) explicitly for a certain valueV,. Applying Theorenb.3.2

and Theoren3.7.7yields the covering arrays with parameters as clainsed.

It should be noted (see also Sectidr®) that the first low-complexity algo-
rithm for constructing “one-pointAG codes on G-S curves has a runtime upper-
bounded by(N log, N)3, whereN the length of the code and the complexity is
measured in terms of multiplications and divisions over the finite figld[28].
The complexity of constructing-covering arrays in Theorefm 3.8is, therefore,
polynomial inN. The covering arrays in Theore®n8.13 however, can be viewed
as an explicitly constructed family.

The following probabilistic upper bound f@AN(t, k, v) is due to Godbolet
al [86].

Theorem 5.3.9 (Godbole, Skipper, Sunleydo])
(t—1)logk

og (=)

CAN(t, k,v) < {1+o(1)},

ask — oo.
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It turns out that the covering arrays in Theorerfi.8yield much better results
compared to Godbole-Skipper-Sunley bound.
To see it we consider e.g., the case with a square prime power?. For

any givent > 2 and any prime powey satisfying the condition of Theorem
5.3.8choose a real number < u < ¢ — 2 such that% = (}). By taking
a CA(Ny;t,q%, ¢*) with Ny = ¢*, Theorem5.3.8gives aCA(N;t, k, ¢*) with

N = ¢®(q —1)¢"*" andk = 20"}, ThusN ~ qjé—‘f;q”ln k. For these andk,

the Godbole-Skipper-Sunley bound ghv@&N (¢, k, v) < - - k{1 + o(1)}.

2.1

Leta = q%u(‘{;ql) andg = =31 Then

2
In 201

(g — 1) In A

e ¢
B 2u(t—1)lng
N (u—i—l)zf7 or
duln g
t

<
~ 4lng

by taking into accoung? In qgfil ~ 1. Thus% < 1 for ¢ > 3. This shows that
sizes of arrays from Theorem3.8with v = ¢* are better than Godbole-Skipper-
Sunley bounds.

As examples we consider several values.of

Forv = 3%t =2u=1we haven = 73.729 and3 = 80.498

Forv = 7%t =3 andu = 1 we haven = 181378.878 and3 = 235296.999.

Forv = 132 andt = 4 andu = 1 we havea = 1908179711.915 and =
2447192161.523.

Since% — 0 asq — oo, the Godbole-Skipper-Sunley bound becomes weak.
For instance, ifv = 232, ¢t = 2, u = 2'® — 2 we havea ~ 8,3 * 10'” whereas

3 =25 % 10'®. Thus,« is about 30 times smaller thah

5.4 Constructions of Roux’s Type fort-CA

The constructions from the last section provide asymptotically good classes of
covering arrays, wheh — oo with fixed v, ¢. In this section we focus on con-
struction techniques which can be used to improve the results for small values of
k.

With Theorem5.2.2Roux shows an interesting bound for binary 3-covering
array, i.e.,o = 2. This bound is recently generalized by Chateauneuf and Kre-
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her to anyv > 2, as presented in Theorem2.3 The idea is to construct a
CA(3, 2k, v) using aCA(3, k,v) and aCA(2, k, v).

Remark: We want to make a remark that Theorem 4.6. of Chateauneuf and
Kreher [10§ p.231 is incorrect. Theorem 4.6109 states that one obtains

lim CAN(3, k,v) _ <v>

k—00 log k 2

from

CAN(3,2k,v) < CAN(3,k,v)+ (v—1)CAN(2,k,v), (%)

and

i CAN(2, k,v) _wv (45)
k—o0 10g2]€ 2

In fact, it can be shown frorfx) and (xx) that

. CAN(3,k,v)
lim ————— = 0.
k—o0 log k

In this section, in the spirit of Roux, Chateauneuf and Kreher, we discuss
several constructions &fA(¢, 2k, v) usingCA(s, k, v) for s < t.

5.4.1 4-Covering Arrays

The structure of covering array becomes more involved when its strength grows.
This might be one of the reasons that very little is known albadvering arrays
for ¢t > 4 in comparison with 2-, 3- covering arrays. In this section, we present a
recursive construction of 4-covering arrays based on 2-, 3- covering arrays.

Let D be aCA(N;;2,v,v) with entriesd;; € V = {1,...,v}. LetFp =

{f1,.-., fn,} be a set of mappings derived frobh as follows: For eachi =
1,..., N, define

fi: V—V
by

fi(§) = dj,.

Thus f; maps the vectofl, . .., v)” to thei—th column ofD, i.e., f;(j) = d;.
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Remark: The familyFp has the following property. For any given two pairs
(z,y) and(z,w) with z, y, z,w € V andx # y, there is at least an
fi € Fp such thatf;(x) = z and f;(y) = w. This is becausP is a
CA(Nop;2,v,0). n

In the following theorem we give a bound for 4-covering arrays by means of a
direct construction.

Theorem 5.4.1[109 For any v > 2 we have

CAN(4,2k,v) < CAN(4, k,v)+(v—1)CAN(3, k,v)+2CAN(2,v,v)CAN(2, k, v).

Proof: LetA beaCA(Ny;4,k,v), BbeaCA(Ns;3,k,v), CbeaCA(Ny; 2k, v),
andD be aCA(Ny;2,v,v), all on the symbol set’ = {1,2,...,v}. Let
Fp ={f1, f2,---, fn,} be the set of mappings derived frdinas defined

above. Finally, letr = (1,2,...,v) be a cyclic permutation on the symbol
setV. Define
e, — 2]
Al
B B B
Ey =
B B™ gV
C C C
E3 =
ch | c2 | ... | M
| I I LE T N IR
C C C

whereB™ and C’i are the arrays obtained by applying and f; to the
symbols ofB andC, respectively.

Construct an arraf as follows:
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E is therefore arzk x N-array, whereV = Ny + (v — 1) N3 + 2N, V.
Consider 4 rows, 1o, 73, 74 Of E.

1. If 1, r9, r3, r4 include 4 distinct rows oA, then all quadruples occur
on these rows among the columndmf

2. If?”l <T2<T‘3§k’<7“4:7“1+k’0r7”1 §k<7“2:’f’1+k<7“3<7”4,
then all quadruples of the forifx, y, w, )* for any z, y, w occur on
these rows among the columnskfand quadruplegr, v, w, z)” with
x # z occur inEs,.

3. I1fri <ry <k <rs=r +k < ry then we have two subcases.

3.1. r4 # 79 + k. Quadruples of the formw, y, z, 2)* for anyz, y, 2
occur among the columns Bf. Letr), = r,—k. Thenry, ry, 1) <
k < r3 = r1 +k. For any quadruple of the forfa, y, 2/, )" with
2’ # z, thena’ = 2™ for somei. Hence there is a column i,
containingz in row ry, i in rowr,, 2™ in rowr/,, andz’ = 2™
in row r3. Therefore(z,y,2’, 2)* appears in that column on the
FrOWS7ry, 19,73, 74.

3.2. ry = ry + k. Quadruples of the forniz, y, w, )T with 2 # y
for any w, z occur on the rows, r,, 3,7, among the columns
of E3, because there exists gnsuch thatt/s = w andy/ = z;
similarly quadruplegz, y, w, 2)T with w # z is covered byE,;
quadruples of the forrtw, =, y, y)* for everyz andy occur among
the columns oft; andE,.

ThereforeE is a covering arragA(N; 4, 2k, v) with N = Ny+ (v—1) N3+
2N, N7, as required.
]

From the proof of the theorem it can be observed that shorter covering arrays
can be constructed in several cases by choosing the &ray® more carefully.
These cases are listed in the following lemma.

Lemma 5.4.2 The construction in Theoref4.1still works if any of arraysA, C
andD is chosen as follows:
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1. Cis ak x Ny-array with entries from a set af symbols such that each
2 x N-subarray contains each order@etuple of not equal symbols at least
once as a column.

2. In the binary alphabet cas® is a2 x 2 array where both rows are equal
to {0, 1}.

3. Inthe casé: < 4, Ais the same as the arrdy.

From Lemmab.4.2(case 2) and Theorem4.1we obtain the following corol-
lary.

Corollary 5.4.3
CAN(4,2k,2) < CAN(4, k,2) + CAN(3, k, 2) + 4CAN(2, k, 2).

Theoremb.4.1together with Lemm&.4.2gives the following example.

Example 5.4.4 CA(28;4,6,2)

0001110100011101000100111100
0010101100101011000010111010
0100011101000111000001111001
0001110111100010100000100111
0010101111010100010000010111
0100011110111000001000001111

It should be noted that the parameters of the covering array in this example
matches with the parameter of the corresponding array generated by the Con-
strained Array Text Systen®f] when an "expand” computer search program has
been used, seé (.

Example 5.4.5 CA(40; 4, 8,2)
We take the array8, B, C andD as follows:

0001110100011101
0010101100101011
0100011101000111
0001110111100010
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A is a 4-covering array.

00011101
00101011
01000111
01110001

B is a 3-covering array.

1000
0100
0010
0001

Cis an array defined in Lemnta4.2(case 1).

01
01

D is the array from Lemma.4.2(case 2).

Now applying Theorerf.4.1to A, B, C and D we obtain the arrayF as fol-
lows:

0001110100011101 | 00011101 | 1000 | 1000 | O0OCO | 1111
0010101100101011 | 00101011 | 0100 | 0100 | O0OO | 1111
0100011101000111 | 01000111 | 0010 | 0010 | OOOCO | 1111
0001110111100010 | 01110001 | 0OO1 | OOO1 | OOOO | 1111
0001110100011101 | 11100010 | 0000 | 1111 | 1000 | 1000
0010101100101011 | 11010100 | 0OOO | 1111 | 0100 | 0100
0100011101000111 | 10111000 | 0000 | 1111 | OO10 | OO10
0001110111100010 | 10001110 | 0000 | 1111 | 0001 | 0001

A covering array with this parameters is also constructed irfjf However,
there are no construction methods given in general case. For the binary case, the
idea in [L1( is to use a computer search program to check all combinations of
rows of a specifie@’ x 2/*! array, wherej > 2 is an integer. The goal of this
search is to find covering arrays for sothe: k < 27. In the last step, a computer
program is used to remove redundant rows. This technique yi€ld$30; 4, 6, 2)
covering array while we obtain @A(28;4, 6, 2) as shown in Examplé.4.4 |t
should be noted that@A(31; 4, 8, 2) has been found by a computer seardi(
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If v = ¢ is a prime power, then GA(¢%; 2, ¢, q) exists. Hence, the bound in
Theoremb.4.1can be strengthened and we obtain:

Corollary 5.4.6 For any prime power; > 2 we have

CAN(4, 2k, q) < CAN(4, k, q) + (¢ — 1)CAN(3, k, q) + 2¢°CAN(2, k, q).

5.4.2 5-Covering Arrays

We present a construction for 5-covering arrays similar to the contraction for 4-
covering arrays described above. We prove the following theorem:

Theorem 5.4.7[109 For any v > 3 we have
CAN(5,2k,v) < CAN(5, k,v) + (v — 1)CAN(4, k, v)
+[6v(v — 1) + 2CAN(2,v,v)]CAN(3, k, v).
Proof: LetA beaCA(Ns;5,k,v), BbeaCA(Ny; 4, k,v), CbeaCA(N3; 3, k,v),
andD be aCA(Ny;2,v,v), all on the symbol set” = {1,2,...,v}.
Again let Fp = {f1, f2,..., fn,} be the set of mappings defined from a

CA(Ny;2,v,v) as in Section 4. Also, let = (1,2,...,v) be a cyclic per-
mutation on the symbol séf.

We define three families of mappings framinto V' as follows:

(). LetG ={gap: V—V: a,beV, a#b}, where
(z) = a ifr=a
Jab )= b if v #a

(ii). LetG ={Gap: V—V : a,b eV, a+#b}, where
Gus(1) = a ifz=0>
Gl =V b ifx£b

(ii). LetH ={hap: V—V : a,beV, a+#b}, where

_Ja fx#aorz#b
h”’b(x)_{b if rt=aorz=2»%

Define
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e, _ A7
A
B B B
Es =
Bﬂl B"2 grv 1
E C C C cfr | cf2 | | My
g
chr | cr2 | | M c C c
E C C C c91,2 91,3 CIvw—1
4 =
c91,2 | ¢91,3 | .| c9v,u—1 c c c
E C C C c91,2 c91,3 | vt
5 =
c9r2 | ¢91,3 | .| CIvu—1 c c c
E C C C chi,2 chi,3 | crow—a
6 =
chrz | chis | L] e C C C

Construct an arraff as follows:

Letry, o, 73,74, 75 De 5 rows ofE. Because of the symmetry &fwe need
to consider the following cases.

1. 1If T, T9, T3, T4, T5 SatiSfyn- # r; + k, 1 7£ 7 andi,j =1,2,3,4,5,
then all 5-tuples occur on these rows among the columiis.of

2. Ifry <ry <r3 <ry <k <rs=r+k, then 5-tuples of the form
(a,b,c,d,a)’ occur on these rows among the column£gfand all
5-tuples(a, b, ¢, d,a’)” with o’ # a appear in the columns &,.
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3. Assumer; < ry <r3 <k <ry<rs,ry =11 +kandrs #r; + k for
alli = 1,2,3. Consider a 5-tupl& = (a, b, c,a’,e)’. If a = o/, then
X is covered byE;. Now assume: # a'. As B is a 4-covering array,
all (v — 1) quadrupleda,b,c,e))”, ..., (a,b,c,e,—1)" with e # ¢,
appear on the rows,, ry, r3, r5 — kK among the columns. Thus, for
eachr’, there is &, such thatr’(e;) = e. Further,7*(a) = a; with
a # a;. It follows that all 5-tuples(a,b,c,ay,c), (a,b,c,as,c),...,
(a,b,c,a,-1,c), where andy; # a; for i # j, appear in the columns
corresponding to rows,, ry, 73, 14, 75 iN Es.

4. Assumer; < ro <r3 < k <ry <rs,r4e =1 +kandrs = ry + k.
We need to consider different types of 5-tuples.

(i) A 5-tuple of the form(a,b, z, a,b)” for anya, b, z is covered by
E;.

(i) A 5-tuple of the form(a,a,z,b,b)" for anya, b, z is covered by
E,.

(iii) A 5-tuple of the form(a, b, z, ¢, d)” for anya, b, z,c,d anda # b
is covered byE;. This is becaus€ is a 3-covering array, there is
at least one column & containing the tripléa, b, x)* in the rows
r1, T2, r3 and there is and; such thatf;(a) = c and f;(b) = d.
From now on we can assume# d.

(iv) Consider a 5-tuple of the forifa, a, z, ¢, d)* for anya, z, ¢, d and
¢ # d. We have the following subcases:

() x # a,c,d. There is a columr of C containing the triple
(z,c,d)T inthe rowsrs + k, r; + k, ro + k of E4. Therefore
the columnyj of the block

Cgm,a
C

contains the 5-tupléz, a, x, ¢, d)” with z # a, ¢, d in the rows
ry, Te, s, T + k; T2 + k! beCaus@x,a(x) =, gm,a(c) = a,
andg, .(d) = a.

(8) = =a. AsCis a 3-covering array, there is colunjrcontain-
ing the triple(c, d, ¢)T in the rowr, + k, ro +k, 73+ k. Also
there is a mapping;, 1 < i < Ny, such thatf;(c) = a« and
fi(d) = a, by Remark5.4.1 Therefore the colump of the
block

Cfi
C
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in E; contains the 5-tuplés, a, a, ¢, d)T inthe rowsr, ro, 73,
T+ k?, Ty + k.
(v) z # aandx = c. Again there is a colump of C containing

the triple(c, d, a)” in the rowr; +k, ry+k, r3+k. Therefore
the columnyj of the block

(e
C

in E; contains the 5-tuplés, a, ¢, ¢, d)* in the rowsry, ro, 73,
ri+ k, ro + k.

(0) z=a=-c(i.e.a+#d). The5tuplga,a,a,a,d)’ is covered
by a column of the block

Cfi
C

with f;(a) = a and f;(d) = a in partE;.

(0) © = canda = d. Consider a columr of C containing
the triple (¢, a,b)” with b # ¢, a in the rowsr, + k, ry +
k, rs+k. The 5-tuplg(a, a, ¢, ¢, a)’ is contained in a column
j corresponding to the rows, ry, r3, r1 + k, ro + k Of the
block

Chc,a
C

of E¢. This is because, ,(b) = ¢, h.q(c) = a andh.,(a) =
a.

Hencek is a 5-covering array. The proof is complete by usigg= |G| =
H| =v(v—1). [

If v = g is a prime power, thefV; = v? by Lemma5.2.1 Therefore we have

Corollary 5.4.8 For any prime power; > 3 we have

CAN(5,2k, q) < CAN(5,k,q) + (¢ — 1)CAN(4, k, q) + (8¢* — 6q)CAN(3, k, q).
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5.4.3 t-Covering Arrays for ¢t > 4
Theorem 5.4.9[109 For any integerst > 4 andv > 2 we have
CAN(t, 2k, v) < CAN(t, k,v) + (v — 1)CAN(t — 1, k,v)

t—2
+> 2CAN(, k, v)CAN(t — i, k, v).

=2
Proof: Let A;, A;_1,..., Ay be
CA(ngt, k,v), CA(ng_q;t — 1, k,v),...,CA(ng; 2, k,v),
respectively.

Let B} be thek x n;.n; array obtained from¥; by repeating each column
n; times, where, j =t —2,...,2andi+ j =t.

Let C7'" be thek x n;.n; array obtained by concatenating copies ofA;,
wherei,j =t —2,...,2andi + j = t.

Define

At
E: = A
Ao | Ao || Ava
Ein = [ = —
Atfl Atfl Atfl
Fori=t—2,...,2, define
Bnt—i Bnl ]
Ei = o rff_i
G 1 G
Construct an arrak as follows
E=|E | Es—1 | Et—2 Eo

Letry,...,r, bet rows of E. Because of the symmetry & we need to
consider the following cases.



98 CHAPTER 5. COVERING ARRAYS

1. If r,...,r; include t distinct rows ofA;, then all t-tuples occur on
these rows among the columnskgf

2. Ifrp < ... <11 <k <r, =1+ k, then t-tuples of the form
(ai,...,a;1,a;)" is covered by, and all t-tuplesa,, . . ., a;_1,a’)"
with o’ # a, appear in the columns &.

3. For the remaining cases we can assume: ... < r; < kandk <
rig1 < ... < r, wherei = ¢t —2,t —3,...,[+]. Then for each
i =t—2,t=3,...,[t] and foranyt-tuple(a,, as, . .., a;)" of symbols
there is a column irE; containing thig-tuple in the rows; < ... <
Ti§k<7"i+1<...<7’t.

The proof is complete. [ ]

Fort = 4,5 and largek the construction in Theorem.4.9yields a weaker
upper bound on covering array number than the previous constructions for 4-, 5-
covering arrays discussed in this section. But the generalization of the idea of
previous constructions seems to become more involved and difficult to describe
with growingt¢. For 5-covering arrays with not very large however, the con-
struction given in Theorerh.4.9provides a tighter upper bound. We demonstrate
an application of the Theorem4.9by an example.

Example 5.4.10LetA; be aCA(4°;5,5,4). A, be aCA(4%;4,5,4), Az be a
CA(43;3,4,4) and aA, be CA(16;2,4,4). Then applying Theorem.4.9we ob-
tain a CA(5888; 5, 10, 4).

Note that from the Corollar$.4.8we have aCA(8448;5,10,4) and from the
Equation5.2we obtain aCA(11264; 5, 10, 4).
The probabilistic bound (Theorem3.9 gives aCAN(5, 10,4) < 9426.

5.5 Summary

In this chapter we have studied covering arrays, which are generalizations of or-
thogonal arrays. These combinatorial structures have undergone an intensive sur-
vey during last few years due to their numerous practical applications. One of
main problems is to construct covering arrays with a small number of columns.
We have developed a number of explicit constructions for covering arrays. Firstly,
we show some asymptotically good classes of covering arrays based on perfect
hash families. The techniques are recursive and make use Reed-Solomon or “one-
point” AG codes to construct infinite families @fcovering arrays. We obtain
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an upper bound on covering array number, which is shown to be better than the
known probabilistic upper bound.

Secondly, we give some constructionstafovering arrays withh > 4. The
structure of covering arrays becomes more involved when its strength grows. This
might be one of the reasons that very little is known alberdgvering arrays fot >
4 in comparison with 2-, 3- covering arrays. Inspired from a result of Roux and
also from a recent result of Chateauneuf and Kreher for 3-covering arrays, several
constructions were provided for the arrays of strength 4 which make use
covering arrays with lower strength and recursive techniques. These constructions
provide better covering arrays than the other known in the literature constructions
for certain parameter ranges.
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Appendix A

Notation

ab
(A,B)
A(C)
C

C

T

|
C
CA(N;t, k,v)

CAN(t, &, v)

deSC(CQ)
desc,(C)
d(z,y)

F,

q

RS, k(v v)
H
I(z,y)
I(A)

*

log

[Tiz (a— ).

join of arraysA andB [pagel6]
M x n array ongq symbols corresponding to an
(n, M, q;d) codeC [pagel3].

ag-ary code. [pageé].

transpose matrix of.

size ofC.

matrix representation of the codgpage5].
covering arraywith k£ constrains (or of degreke, or
with k& rows), of v levels (or of degree, alphabet

size), strengthh and N columns [page(].

for fixed ¢, k andv the minimum numbe/N such that
aCA(N;t, k,v) exists.

the set of descendants @f [page55].
w-descendant code 6f[page55).

Hamming distance between the codewordand y
[paged].

finite field of ¢ elements [pag#é].

Reed-Solomon code of lengthand dimensiort on

a andv.

hash family [pagel].

{Z LT = yz}1 wherer = {1’1, Loy« :Bn}1 Yy =
{ylay27"'yn} andi = 1727“' , .

maximal intersection of any two columns of arrAy
[page8d].

see definition [pagé5].
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L(mP)

m;(a)
M(n,m,w)

n(M,m, w)

(n7M7Qaw17w2)_SSHF

(n,M,m)— HF
(n, M,m,w) — PHF

(n,b,q,w)-TA
n, k, q|

[, k, q; d]
(n, M, q) code

(n7M7Q) — RS
(n,M,q,t,u) — PAHF

(n, M, q, wy,ws) — SHF
(n,M,q,w) —IPP
(n, M, q;d)

OA)\<t,7’L,U)

OA(t,n,v)
P = {Pl,...
<

, P, P}

APPENDIX A. NOTATION

[F 2-vector space consisting of all functions defined
on the curve such that the only pole of afiy €
L(mP) is P and the pole order is at most [page
17].

fre]quency ofz on the;*" column of A(C) [pagel3].
for fixed n, m andw the maximal value of\/ for
which an(n, M, m,w) — PHF exists.

for fixed n, m andw the minimal number of hash
functionsn for which an(n, M, m,w)— PH F exists.
strong separatingn, M, q) hash family of strengths
wy andw, [page58).

family of n hash functions : A — B, whereg|A| =
M > |B| =m.

perfect(n, M, m) hash family of strengthv [page
21].

tra]ceability(n, b, q) code of strengtlw [page56]
linear (n, M, q) code of dimensiork, £k = log M
[paged]. —— |

[n, M, q| linear code with minimum distancé[page
6].
c]ode of lengtm, size M over an alphabet of sizg
[pages].

Reed Solomorin, M, q) code.

partially (n, M, q) hashing family of strength, and
u [page5§].

separatingn, M, ¢) hash family of strengths; and
wo [pagesq].

identifiable parent property(n, M,q) code of
strengthw [page55).

(n, M, q) code with minimum distancé.

orthogonal arraywith n constrains (or of degree,
or with n rows), ofwv levels (or of degree, alphabet
size), strength and index\ [page9].

OA,(t,n,v) where\ = 1.

n + 1 distinctlF 2-rational points [pagé?].

for any functionsf(z) andg(z), f(z) =X g(z) de-
notes thatf(z) < (1 + 0(1))g(x), where 0(1) tends
to zero whenr tends to infinite.
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Acronyms
AG algebraic geometry code
CA covering array
CAN covering array number
ERS  extended Reed-Solomon code
G-S Garcia-Stichtenoth
RS Reed-Solomon code
HF hash family
IPP identifiable parent property code
MDS  maximum distance separable
MOLS mutually orthogonal Latin squares
OA orthogonal arrays
PAHF partially hashing family
PHF perfect hash function
R-S Reed-Solomon code
SHF  separating hash family
SSHF strong separating hashing family
TA traceability code
TTA traitor tracing algorithm
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