6,267 research outputs found

    Hybrid Radio/Free-Space Optical Design for Next Generation Backhaul Systems

    Get PDF
    The deluge of date rate in today's networks imposes a cost burden on the backhaul network design. Developing cost efficient backhaul solutions becomes an exciting, yet challenging, problem. Traditional technologies for backhaul networks include either radio-frequency backhauls (RF) or optical fibers (OF). While RF is a cost-effective solution as compared to OF, it supports lower data rate requirements. Another promising backhaul solution is the free-space optics (FSO) as it offers both a high data rate and a relatively low cost. FSO, however, is sensitive to nature conditions, e.g., rain, fog, line-of-sight. This paper combines both RF and FSO advantages and proposes a hybrid RF/FSO backhaul solution. It considers the problem of minimizing the cost of the backhaul network by choosing either OF or hybrid RF/FSO backhaul links between the base-stations (BS) so as to satisfy data rate, connectivity, and reliability constraints. It shows that under a specified realistic assumption about the cost of OF and hybrid RF/FSO links, the problem is equivalent to a maximum weight clique problem, which can be solved with moderate complexity. Simulation results show that the proposed solution shows a close-to-optimal performance, especially for practical prices of the hybrid RF/FSO links

    Non-Orthogonal Multiple Access for Hybrid VLC-RF Networks with Imperfect Channel State Information

    Get PDF
    The present contribution proposes a general framework for the energy efficiency analysis of a hybrid visible light communication (VLC) and Radio Frequency (RF) wireless system, in which both VLC and RF subsystems utilize nonorthogonal multiple access (NOMA) technology. The proposed framework is based on realistic communication scenarios as it takes into account the mobility of users, and assumes imperfect channel-state information (CSI). In this context, tractable closed-form expressions are derived for the corresponding average sum rate of NOMA-VLC and its orthogonal frequency division multiple access (OFDMA)-VLC counterparts. It is shown extensively that incurred CSI errors have a considerable impact on the average energy efficiency of both NOMA-VLC and OFDMAVLC systems and hence, they should not be neglected in practical designs and deployments. Interestingly, we further demonstrate that the average energy efficiency of the hybrid NOMA-VLCRF system outperforms NOMA-VLC system under imperfect CSI. Respective computer simulations corroborate the derived analytic results and interesting theoretical and practical insights are provided, which will be useful in the effective design and deployment of conventional VLC and hybrid VLC-RF systems

    Optical Non-Orthogonal Multiple Access for Visible Light Communication

    Get PDF
    The proliferation of mobile Internet and connected devices, offering a variety of services at different levels of performance, represents a major challenge for the fifth generation wireless networks and beyond. This requires a paradigm shift towards the development of key enabling techniques for the next generation wireless networks. In this respect, visible light communication (VLC) has recently emerged as a new communication paradigm that is capable of providing ubiquitous connectivity by complementing radio frequency communications. One of the main challenges of VLC systems, however, is the low modulation bandwidth of the light-emitting-diodes, which is in the megahertz range. This article presents a promising technology, referred to as "optical- non-orthogonal multiple access (O-NOMA)", which is envisioned to address the key challenges in the next generation of wireless networks. We provide a detailed overview and analysis of the state-of-the-art integration of O-NOMA in VLC networks. Furthermore, we provide insights on the potential opportunities and challenges as well as some open research problems that are envisioned to pave the way for the future design and implementation of O-NOMA in VLC systems
    • …
    corecore