38 research outputs found

    Simplicial Flat Norm with Scale

    Full text link
    We study the multiscale simplicial flat norm (MSFN) problem, which computes flat norm at various scales of sets defined as oriented subcomplexes of finite simplicial complexes in arbitrary dimensions. We show that the multiscale simplicial flat norm is NP-complete when homology is defined over integers. We cast the multiscale simplicial flat norm as an instance of integer linear optimization. Following recent results on related problems, the multiscale simplicial flat norm integer program can be solved in polynomial time by solving its linear programming relaxation, when the simplicial complex satisfies a simple topological condition (absence of relative torsion). Our most significant contribution is the simplicial deformation theorem, which states that one may approximate a general current with a simplicial current while bounding the expansion of its mass. We present explicit bounds on the quality of this approximation, which indicate that the simplicial current gets closer to the original current as we make the simplicial complex finer. The multiscale simplicial flat norm opens up the possibilities of using flat norm to denoise or extract scale information of large data sets in arbitrary dimensions. On the other hand, it allows one to employ the large body of algorithmic results on simplicial complexes to address more general problems related to currents.Comment: To appear in the Journal of Computational Geometry. Since the last version, the section comparing our bounds to Sullivan's has been expanded. In particular, we show that our bounds are uniformly better in the case of boundaries and less sensitive to simplicial irregularit

    Generalized Max-Flows and Min-Cuts in Simplicial Complexes

    Get PDF
    We consider high dimensional variants of the maximum flow and minimum cut problems in the setting of simplicial complexes and provide both algorithmic and hardness results. By viewing flows and cuts topologically in terms of the simplicial (co)boundary operator we can state these problems as linear programs and show that they are dual to one another. Unlike graphs, complexes with integral capacity constraints may have fractional max-flows. We show that computing a maximum integral flow is NP-hard. Moreover, we give a combinatorial definition of a simplicial cut that seems more natural in the context of optimization problems and show that computing such a cut is NP-hard. However, we provide conditions on the simplicial complex for when the cut found by the linear program is a combinatorial cut. For d-dimensional simplicial complexes embedded into ?^{d+1} we provide algorithms operating on the dual graph: computing a maximum flow is dual to computing a shortest path and computing a minimum cut is dual to computing a minimum cost circulation. Finally, we investigate the Ford-Fulkerson algorithm on simplicial complexes, prove its correctness, and provide a heuristic which guarantees it to halt

    Data-inspired advances in geometric measure theory: generalized surface and shape metrics

    Get PDF
    Modern geometric measure theory, developed largely to solve the Plateau problem, has generated a great deal of technical machinery which is unfortunately regarded as inaccessible by outsiders. Some of its tools (e.g., flat norm distance and decomposition in generalized surface space) hold interest from a theoretical perspective but computational infeasibility prevented practical use. Others, like nonasymptotic densities as shape signatures, have been developed independently for data analysis (e.g., the integral area invariant). The flat norm measures distance between currents (generalized surfaces) by decomposing them in a way that is robust to noise. The simplicial deformation theorem shows currents can be approximated on a simplicial complex, generalizing the classical cubical deformation theorem and proving sharper bounds than Sullivan's convex cellular deformation theorem. Computationally, the discretized flat norm can be expressed as a linear programming problem and solved in polynomial time. Furthermore, the solution is guaranteed to be integral for integral input if the complex satisfies a simple topological condition (absence of relative torsion). This discretized integrality result yields a similar statement for the continuous case: the flat norm decomposition of an integral 1-current in the plane can be taken to be integral, something previously unknown for 1-currents which are not boundaries of 2-currents. Nonasymptotic densities (integral area invariants) taken along the boundary of a shape are often enough to reconstruct the shape. This result is easy when the densities are known for arbitrarily small radii but that is not generally possible in practice. When only a single radius is used, variations on reconstruction results (modulo translation and rotation) of polygons and (a dense set of) smooth curves are presented.Comment: 123 pages, dissertation, includes chapters based on arXiv:1105.5104 and arXiv:1308.245
    corecore