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DATA-INSPIRED ADVANCES IN GEOMETRIC MEASURE THEORY: 

GENERALIZED SURFACE AND SHAPE METRICS 

Abstract 

by Sharif N. Ibrahim, Ph.D. 
Washington State University 

August 2014 

Chair: Kevin R. Vixie 

Author’s preferred version is on arXiv. Modern geometric measure theory, developed 

largely to solve the Plateau problem, has generated a great deal of technical machinery 

which is unfortunately regarded as inaccessible by outsiders. Consequently, its ideas have 

not been incorporated into other fields as effectively as possible. Some of these tools 

(e.g., distance and decompositions in generalized surface space using the flat norm) hold 

interest from a theoretical perspective but computational infeasibility prevented practical 

use. Others, like nonasymptotic densities as shape signatures, have been developed 

independently as useful data analysis tools (e.g., the integral area invariant). Here, 

geometric measure theory has promise to help close the gaps in our understanding of 

these ideas. 

The flat norm measures distance between currents (or generalized surfaces) by de-

composing them in a way that is robust to noise. One new result here is that the flat 

norm can be suitably discretized and approximated on a simplicial complex by means 

of a simplicial deformation theorem. While not surprising given the classical (cubical) 

deformation theorem or, indeed, Sullivan’s convex cellular deformation theorem (which 

includes simplicial deformation as a special case), the bounds on the deformation can 

be made smaller and more practical by focusing on the simplicial case. 

Computationally, the discretized flat norm can be expressed as a linear programming 
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problem and thus solved in polynomial time. Furthermore, the solution is guaranteed 

to be integral if the complex satisfies a simple topological condition (absence of relative 

torsion). This discretized integrality result (with some work) yields a similar statement 

for the continuous case: the flat norm decomposition of an integral 1-current in the plane 

can be taken to be integral, something previously unknown for 1-currents which are not 

boundaries of 2-currents. 

Nonasymptotic densities (integral area invariants) taken along the boundary of a 

shape are often enough to reconstruct the shape. This result is easy when the densities 

are known for arbitrarily small radii but that is not generally possible in practice. When 

only a single radius is used, variations on reconstruction results (modulo translation and 

rotation) of polygons and (a dense set of) smooth curves are presented. 
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Chapter 1 

Introduction 

1.1 Overview 

This dissertation applies and extends geometric measure theory tools used for currents 

and densities. In particular, the flat norm is used to measure currents and provides 

a useful metric in surface space. This notion is discretized to obtain the multiscale 

simplicial flat norm and a simplicial deformation theorem (Chapter 2, based on [24]) 

which approximates currents with chains on a simplicial complex via small deformations 

(as measured by the flat norm). 

The multiscale simplicial flat norm can be computed efficiently and, for integral 

inputs, has guaranteed integral minimizers in several important cases (in particular, 

for codimension 1 chains). This statement is stronger than what was known for the 

continuous case (where the statement was for codimension 1 boundaries). Bridging the 

gap between these statements and extending the discrete results to the continuous case 

is the goal of Chapter 3 (based on [25]) where it is shown for 1-currents in R2 with a 

framework for establishing the result in general assuming suitable triangulation results. 

Lastly, the notion of nonasymptotic densities (also known as the integral area invari-

ant) is developed in the plane in Chapter 4 (based on [27]) where uniqueness questions 

are addressed in light of a certain useful regularity condition (tangent cone graph-like). 

This research was supported in part by the National Science Foundation through 

grants DMS-0914809 and CCF-1064600. 
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1.2 Measure theory 

A few concepts from measure theory prove useful in our development. The Hausdorff 

measure allows us to sensibly measure m-dimensional sets in Rn . 

Definition 1.2.1 (Hausdorff measure). Given a set A ⊂ Rn , the m-dimensional Haus-

dorff measure of A is an outer measure defined by ⎛⎝ m 
⎞⎠ ��X diameter SjHm(A) = lim 

δ↓0 
inf αm 
S 2 

Sj ∈S 

where αm is the volume of the unit ball in Rm and the infimum is taken over all countable 

coverings S = {S1, S2, . . . } of A with every Sj ∈ S having diameter at most δ. 

The Hausdorff measure approximates A locally by covering it with small sets which 

in turn have their m-dimensional volumes approximated by balls of the same radius in 

Rm . This is the natural way to measure m-dimensional volume in Rn and agrees with 

intuitive notions of what this should mean, for example, for an m-dimensional manifold 

embedded in Rn . It also provides sensible results for any nonnegative real dimension 

by extending the unit ball volume via the Γ function: αm = πm/2/Γ(m/2 + 1). For any 

particular nonempty set A, there is a “correct” dimension to use when measuring it with 

the Hausdorff measure in the sense that using any other value yields a trivial result. 

Definition 1.2.2 (Hausdorff dimension). The Hausdorff dimension of a nonempty set 

A ⊆ Rn is the unique nonnegative real number m such that Hp(A) = 0 for all p > m 

and Hq(A) = ∞ whenever m > q and q ≥ 0. 

Knowing that the set A has Hausdorff dimension m places no restrictions on Hm(A). 

That is, one can construct examples with any desired measure in the interval [0, ∞]. 

2 



Definition 1.2.3 (Rectifiable sets). A set A ⊆ Rn is called an m-dimensional rectifiable 

set if Hm(A) < ∞ and there exists a set E such that Hm(A − E) = 0 and E is the union 

of the images of countably many Lipschitz functions from Rm to Rn . 

Definition 1.2.4 (Density). Given a set A ⊆ Rn and 1 ≤ m ≤ n, the m-dimensional 

density of A at a point x ∈ Rn is given by 

Hm(A ∩ B(x, r))
ϑm(A, x) = lim 

r↓0 αmrm 

where B(x, r) is the closed ball in Rn with center x and radius r and αm is the volume 

of the unit ball in Rm . 

Definition 1.2.5 (Density of measures). Given a measure µ on Rn , 1 ≤ m ≤ n, and 

x ∈ Rn , we define the m-dimensional measure of µ at x by 

µ(B(x, r)
θm(µ, x) = lim . 

r↓0 αmrm 

Density of a set in Definition 1.2.4 is a special case of density of measures using 

the Hausdorff measure restricted to A (denoted Hm ¬¬
A and defined by (Hm A)(B) = 

Hm(A ∩ B)). 

1.3 Currents 

The following is a brief introduction to currents, largely following Federer [19], Krantz 

and Parks [29], and Morgan [32] which are recommended as references for some of the 

details in descending order of difficulty. Currents are the primary objects of study in 

Chapters 2 and 3 where the definition of various types of currents (general, normal, and 

integral) and the flat norm on currents play a central role. There is significant machinery 
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⎪
⎪

to develop which can obscure the intuition which is that (suitably nice) m-currents can 

be thought of like oriented submanifolds of dimension m. 

Definition 1.3.1 (m-covectors). Given n and m, the set of m-covectors of Rn is denoted 

by ∧m(Rn) and contains all φ such that 

• φ maps a collection of m vectors in Rn to a real number: φ : (Rn)m → R. 

• φ is m-linear; that is, linear in each of its m arguments. In particular, 

φ(u1, u2, . . . , u`−1, αv + βw, u`+1, . . . , um) 

= αφ(u1, . . . , u`−1, v, u`+1, . . . , um) 

+ βφ(u1, . . . , u`−1, w, u`+1, . . . , um) 

whenever 1 ≤ ` ≤ m, α, β ∈ R, and v, w, ui ∈ Rn . 

• φ is alternating: transposing any two arguments changes the sign. If 1 ≤ i < j ≤ m 

and u1, . . . , um ∈ Rn , then we have 

φ(u1, . . . , ui−1, ui, ui+1, . . . , uj−1, uj , uj+1, . . . um) 

= −φ(u1, . . . , ui−1, uj , ui+1, . . . , uj−1, ui, uj+1, . . . um). 

The most well-known function with these properties is the determinant applied to 

n-by-n matrices. It is easy to show that the determinant is (up to multiplication) the 

only member of ∧n(Rn). 

Given the standard basis vectors ei for Rn , we define dual basis vectors dxj linearly 

by ⎧ ⎪⎨1 if i = j, 
dxj (ei) = ⎪⎩0 if i 6= j 
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and note that any 1-covector can be written in this basis. 

Definition 1.3.2 (Exterior product, simple covectors). Given a1, . . . , am ∈ ∧1(Rn), we 

denote the exterior or wedge product of these 1-covectors to be the m-covector 

a1 ∧ a2 ∧ · · · ∧ am 

which is defined by 

(a1 ∧ a2 ∧ · · · ∧ am)(u1, . . . , um) = det 

⎛ ⎜⎜⎜⎜⎜⎝ 
⎛ ⎜⎜⎜⎜⎝ a1 . . . am 

⎞ ⎟⎟⎟⎟⎠ 
T ⎛ ⎜⎜⎜⎜⎝ u1 . . . um 

⎞ ⎟⎟⎟⎟⎠ 
⎞ ⎟⎟⎟⎟⎟⎠ 

where the vector ai is the representation of the 1-covector ai in the dual basis [dx1, . . . , dxn]. 

Any element of ∧m(Rn) that can be written as a wedge product of 1-covectors ai is called 

simple and every m-covector can be expressed as the sum of simple m-covectors. The 

wedge product extends to higher degree covectors by means of this decomposition and a 

distributive law. 

The wedge product is m-linear and is negated when any two covectors are transposed 

because it relies on the determinant. For the same reason, if a particular 1-covector 

appears more than once in the wedge product, the result is 0. Working an example, we 

have 

(4 dx1 ∧ dx3 + 3dx4 ∧ dx3) ∧ (2 dx1 ∧ dx2 − dx1 ∧ dx3) 

= 8 dx1 ∧ dx3 ∧ dx1 ∧ dx2 − 4 dx1 ∧ dx3 ∧ dx1 ∧ dx3 

+ 6dx4 ∧ dx3 ∧ dx1 ∧ dx2 − 3 dx4 ∧ dx3 ∧ dx1 ∧ dx3 

= 6 dx4 ∧ dx3 ∧ dx1 ∧ dx2. 
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Definition 1.3.3 (Forms). Given open U ⊆ Rn , a differential m-form on U is a function 

φ : U → ∧m(Rn). The set of all m-forms on U is denoted by Dm(U). We say that 

φ ∈ Dm(U) is Ck if φ(x) applied to v1 ∧ v2 ∧ · · ·∧ vm is a Ck function in x for any fixed 

vectors vi ∈ Rn . 

Observe that any function f : U → R can be considered as a 0-form. Differential 

m-forms can be used as integrands over m-dimensional surfaces as they can vary both 

based on location of a point and its tangent plane; this serves as a useful generalization 

of integration of 1-forms over a curve. 

Definition 1.3.4 (Exterior differentiation). Suppose U ⊂ Rn is open and f : U → R is 

C1 . The exterior derivative of the 0-form f is the 1-form df defined by 

∂f ∂f ∂f 
df = dx1 + dx2 + · · · + dxn. 

∂x1 ∂x2 ∂xn 

The exterior derivative of the simple m-form φ = f dxi1 ∧ dxi2 ∧ · · · ∧ dxim (where the 

ik are integers from 1 to n) is given by the (m + 1)-form 

dφ = df ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxim . 

For all other C1 m-forms, the definition is extended by linearity. 

Theorem 1.3.5 (Properties of exterior differentiation, [29] p. 163). If φ and ψ are C1 

m-forms and θ is a C1 `-form, then we have: 

• d(φ + ψ) = dφ + dψ 

• d(φ ∧ θ) = (dφ) ∧ θ + (−1)mφ ∧ (dθ) 

• If φ is C2 , then ddφ = 0. 
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Definition 1.3.6 (Currents). The space of m-currents in Rn is denoted by Dm(Rn) and 

is dual to the set of C∞ differential forms of compact support. The mass of a current 

T ∈ Dm(Rn) is given by 

M(T ) = sup{T (φ) | φ ∈ Dm(R), φ has compact support, kφk ≤ 1}. 

Whereas differential forms correspond to integrands, (suitably nice) currents can be 

intuitively thought of as the linear integration operator itself, representing and gener-

alizing the oriented submanifolds over which we can integrate differential forms. When 

T ∈ Dm(Rn) represents an oriented submanifold, the mass is simply its m-dimensional 

volume, counting multiplicities (this is the intuition take take away from this definition). 

Definition 1.3.7 (Boundary of a current). The boundary of an m-current T ∈ Dm(U) 

is defined in terms of the exterior derivative on differential forms. Namely, for m > 0, 

we let ∂T ∈ Dm−1(U) be the linear operator on (m − 1)-forms defined by ∂T (φ) = T (dφ) 

for all φ ∈ Dm−1(U). For m = 0, we let ∂T = 0 as a 0-current. 

This definition along with facts about exterior differentiation immediately provides 

us with some useful properties: 

∂∂T = 0, (1.1a) 

∂(αT1 + βT2) = α∂T1 + β∂T2. (1.1b) 

Defining ∂T for 0-currents is not universal, but doing so allows us to simplify various 

statements slightly by omitting special cases (Equation (1.1a), for example). 

Definition 1.3.8 (Support of a current). The support of a current T in Dm is the 

complement of the largest open set U such that T (φ) = 0 whenever φ ∈ Dm(U). 

Currents can be created from any oriented m-dimensional rectifiable set R. Define S 
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as the map from points x ∈ R to unit m-vectors corresponding to the oriented tangent 

plane to R at x. By this, we mean that S(x) is the wedge product of m orthonormal 

tangent vectors to R at x. Then for any differential form φ ∈ Dm(Rn), define an m-

current T by Z 
T (φ) = hφ(x), S(x)i dHm . 

R 

We allow T to carry integer multiplicities by introducing a function η : R → Z with R 
R η(x) dHm < ∞ to obtain Z 

T (φ) = hφ(x), S(x)iη(x) dHm . 
R 

The currents which can be constructed via this procedure are called rectifiable currents 

and their existence justifies the statement that currents generalize oriented submanifolds. 

Definition 1.3.9 (Rectifiable currents). A rectifiable current is a current with compact 

support associated with a rectifiable set with integer multiplicities and finite total measure 

(counting multiplicities). 

Definition 1.3.10 (Normal currents). An m-current T is normal if and only if M(T )+ 

M(∂T ) < ∞ and the support of T is compact. 

Note that nothing prevents normal currents from being “smeared” out in space. 

Morgan [32, p. 48] gives an example of a normal 1-current S2 which covers the unit 

square in R2 but with the concentration of mass of the 2-dimensional Hausdorff measure 

so it has finite mass and boundary. 

Definition 1.3.11 (Integral currents). A current T is an integral current if T and ∂T 

are rectifiable. 

As an aid to understanding the various classes of currents, note that all integral 

currents are both normal and rectifiable (in fact, this can be taken as the definition of 
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integral current by the closure theorem [19, 4.2.16]). Furthermore, integral and rectifiable 

currents have integer multiplicities while normal and general currents need not. 

S

T
T − ∂S

Figure 1.1: The flat norm decomposes the 1D current T into (the boundary of) a 2D 
piece S and the 1D piece X = T − ∂S. The resulting current is shown slightly separated 
from the input current for clearer visualization. 

Suppose T is the current representing the unit circle in R2 and Tn is an inscribed 

regular n-gon, both oriented clockwise (see Figure 1.2(a)). As n gets large, it is clear 

that Tn intuitively approximates T arbitrarily well. Thus it would be desirable to have 

a notion of convergence for which Tn → T . In particular, the mass norm is not useful 

on its own here: the current Tn − T has mass M(Tn) + M(T ) → 4π since Tn and T do 

not exactly coincide (so there is no cancellation) except on a measure 0 subset. 

Definition 1.3.12 (Flat norm). Given an m-current T ∈ Dm(Rn), we define its flat 

norm F(T ) to be the least cost decomposition of T into two pieces: the boundary of an 

(m + 1)-current S and the m-current X = T − ∂S (see Figure 1.1). The cost of a 

particular decomposition T = X + ∂S is given by M(X) + M(S). Formally, 

F(T ) = min{M(X) + M(S) | T = X + ∂S, X ∈ Em, S ∈ Em+1} 

where Em ⊂ Dm is the set of m-currents with compact support. 

The flat norm is usually defined as a supremum over forms but this definition is 

equivalent and more immediately useful for our purposes. Of note is that the minimum 

exists and is attained whenever F(T ) < ∞. This is proved using the Hahn-Banach 
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T 

1 

T8 

T 

1 

T8 

T 

1 

T8 

(a) T and T8 (b) T − T8 (c) F(T − T8) ≤ M(S) where 
∂S = T − T8 

Figure 1.2: The flat norm indicates the unit circle T and inscribed n-gon Tn are close 
because the region they bound has small area. 

theorem [19, p. 367]. If M(T ) < ∞, then M(S) + M(∂S) < ∞ so S is normal by 

Definition 1.3.10. 
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Chapter 2 

1Multiscale simplicial flat norm 

2.1 Introduction 

Currents are standard objects studied in geometric measure theory, and are named so 

by analogy with electrical currents that have a kind of magnitude and direction at every 

point. Intuitively, one could think of currents as generalized surfaces with orientations 

and multiplicities. The mathematical machinery of currents has been used to tackle 

many fundamental questions in geometric analysis, such as the ones related to area 

minimizing surfaces, isoperimetric problems, and soap-bubble conjectures [32]. 

To formally define d-currents in Rn , we first let Dd be the set of C∞ differentiable 

d-forms with compact support. Then the set of d-currents is given by the dual space 

of Dd (denoted Dd) with the weak topology. We denote by Rm the set of rectifiable 

currents, which contains all currents that represent oriented rectifiable sets (i.e., sets 

which are almost everywhere the countable union of images of Lipschitz maps from Rm 

to Rn) with integer multiplicities and finite total mass (with multiplicities). 

The mass M(T ) of a d-dimensional current T can be thought of intuitively as the 

weighted d-dimensional volume of the generalized object represented by T . For instance, 

the mass of a 2-dimensional current can be taken as the area of the surface it represents. 

Formally, the mass of T is given by M(T ) = supφ∈Dd {T (φ) | sup kφ(x)k ≤ 1}. 

The boundary ∂T of a current T is defined by duality with forms. That is, we 

1Previously published as [24] 
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have ∂T (φ) = T (dφ) for every differential form φ ∈ Dd . Note that when T represents 

a smooth oriented manifold with boundary, this corresponds to the usual definition of 

boundary. We restrict our attention to integral currents T that are rectifiable currents 

with a rectifiable boundary (i.e., T ∈ Rm and ∂T ∈ Rm−1). The flat norm of a d-

dimensional current T is given by 

F(T ) = min{M(T − ∂S) + M(S) T − ∂S ∈ Ed, S ∈ Ed+1}, (2.1)
S 

where Ed is the set of d-dimensional currents with compact support. One also uses flat 

norm to measure the “distance” between two d-currents. More precisely, the flat norm 

distance between two d-currents T and P is given by 

F(T, P ) = inf{M(Q) + M(R) T − P = Q + ∂R, Q ∈ Ed, R ∈ Ed+1}. (2.2) 

Morgan and Vixie [34] showed that the L1 total variation functional (L1TV) introduced 

by Chan and Esedoḡlu [9] computes the flat norm for boundaries T with integer mul-

tiplicity. Given this correspondence, and the use of scale in L1TV, Morgan and Vixie 

defined [34] the flat norm with scale λ ∈ [0, ∞) of an oriented d-dimensional set T as 

Fλ(T ) ≡ min{Vd(T − ∂S) + λ Vd+1(S)}, (2.3)
S 

where S varies over oriented (d+1)-dimensional sets, and Vd is the d-dimensional volume, 

used in place of mass. Figure 2.1 illustrates this definition. Flat norm of the 1D current 

T is given by the sum of the length of the resulting oriented curve T − ∂S (shown 

separated from the input curve for clarity) and the area of the 2D patch S shown in 

red. Large values of λ, above the curvature of both humps in the curve T , preserve both 

humps. Values of λ between the two curvatures eliminate the hump on the right. Even 

smaller values “smooth out” both humps as illustrated here, giving a more “flat” curve, 
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as S can now be comprised of much bigger 2D patches. 

S

T
T − ∂S

Figure 2.1: 1D current T , and flat norm decomposition T − ∂S at appropriate scale 
λ. The resulting current is shown slightly separated from the input current for clearer 
visualization. 

Figure 2.1 illustrates the utility of flat norm for deblurring or smoothing applications, 

e.g., in 3D terrain maps or 3D image denoising. But efficient methods for computing flat 

norm are known only for certain types of currents in two dimensions. For d = 1, Under 

the setting where T is a boundary, i.e., a loop, embedded in R2 and the minimizing 

surface S ∈ R2 as well, the flat norm could be calculated efficiently, for instance, using 

graph cut methods [28] – see the work of Goldfarb and Yin [22] and Vixie et al. [45], 

and references therein. Motivated by applications in image analysis, these approaches 

usually worked with a grid representation of the underlying space (R2). Pixels in the 

image readily provide such a representation. 

While it is computationally convenient that L1TV minimizers give us the scaled flat 

norm for the input images, this approach restricts us to currents that are boundaries of 

codimension 1. Correspondingly, the calculation of flat norm for 1-boundaries embed-

ded in higher dimensional spaces, e.g., R3 , or for input curves that are not necessarily 

boundaries has not received much attention so far. Similarly, flat norm calculations for 

higher dimensional input sets have also not been well-studied. Such situations often ap-

pear in practice – for instance, consider the case of an input set T that is a curve sitting 

on a manifold embedded in R3 , with choices for S restricted to this manifold as well. 
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Further, computational complexity of calculating flat norm in arbitrary dimensions has 

not been studied. But this is not a surprising observation, given the continuous, rather 

than combinatorial, setting in which flat norm computation has been posed so far. 

Simplicial complexes that triangulate the input space are often used as representa-

tions of manifolds. Such representations use triangular or tetrahedral meshes [17] as 

opposed to the uniform square or cubical grid meshes in R2 and R3 . Various simplicial 

complexes are often used to represent data (in any dimension) that captures interactions 

in a broad sense, e.g., the Vietoris–Rips complex to capture coverage of coordinate-free 

sensor networks [12,13]. It is natural to consider flat norm calculations in such settings of 

simplicial complexes for denoising or regularizing sets, or for other similar tasks. At the 

same time, requiring that the simplicial complex be embedded in high dimensional space 

modeled by regular square grids may be cumbersome, and computationally prohibitive 

in many cases. 

2.1.1 Contributions 

We define a simplicial flat norm (SFN) for an input set T given as a subcomplex of 

the finite oriented simplicial complex K triangulating the set, or underlying space Ω. 

More generally, T is the simplicial representation of a rectifiable current with integer 

multiplicities. The choices of the higher dimensional sets S are restricted to K as well. 

We extend this definition to the multiscale simplicial flat norm (MSFN) by including 

a scale parameter λ. The simplicial flat norm is thus a special case of the multiscale 

simplicial flat norm with the default value of λ = 1. 

This discrete setting lets us address the worst case complexity of computing flat norm. 

Given its combinatorial nature, one would expect the problem to be difficult in arbitrary 

dimensions. Indeed, we show the problem of computing the multiscale simplicial flat 
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norm is NP-complete by reducing the optimal bounding chain problem (OBCP), which 

was recently shown to be NP-complete [16], to a special case of the multiscale simplicial 

flat norm problem. We cast the problem of finding the optimal S, and thus calculating 

the multiscale simplicial flat norm, as an integer linear programming (ILP) problem. 

Given that the original problem is NP-complete, instances of this ILP could be hard 

to solve. Utilizing recent work [14] on the related optimal homologous chain problem 

(OHCP), we provide conditions on K under which this ILP problem can in fact be solved 

in polynomial time. In particular, the multiscale simplicial flat norm can be computed in 

polynomial time when T is d-dimensional, and K is (d + 1)-dimensional and orientable, 

for all d ≥ 0. A similar result holds for the case when T is d-dimensional, and K is 

(d + 1)-dimensional and embedded in Rd+1 , for all d ≥ 0. 

Our most significant contribution is the simplicial deformation theorem (Theorem 

2.5.1), which states that given an arbitrary d-current in |K| (underlying space), we are 

assured of an approximating current in the d-skeleton of K. This result is a substantial 

modification and generalization of the classical deformation theorem for currents on to 

square grids. Our deformation theorem explicitly specifies the dependence of the bounds 

of approximation on the regularity and size of the simplices in the simplicial complex. 

Hence it is immediate from the theorem that as we refine the simplicial complex K 

while preserving the bounds on simplicial regularity, the flat norm distance between 

an arbitrary d-current in |K| and its deformation onto the d-skeleton of K vanishes. 

More importantly, such refinement of K does not affect the efficient computability of 

the multiscale simplicial flat norm by solving the associated ILP in many cases, e.g., 

when K is orientable or when it is full-dimensional. 
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2.1.2 Work on Related Problems 

The problem of computing multiscale simplicial flat norm is closely related to two other 

problems on chains defined on simplicial complexes – the optimal homologous chain 

problem (OHCP) and the optimal bounding chain problem (OBCP). Given a d-chain 

t of the simplicial complex K, the optimal homologous chain problem is to find a d-

chain x that is homologous to t such that kxk1 is minimal. In the optimal bounding 

chain problem, we are given a d-chain t of K, and the goal is to find a (d + 1)-chain s 

of K whose boundary is t and ksk1 is minimal. The optimal bounding chain problem 

is closely related to the problem of finding an area-minimizing surface with a given 

boundary [32]. Computing the multiscale simplicial flat norm could be viewed, in a 

simple sense, as combining the objectives of the corresponding optimal homologous 

chain and optimal bounding chain problem instances, with the scale factor determining 

the relative importance of one objective over the other. 

When t is a cycle and the homology is defined over Z2, Chen and Freedman showed 

that the optimal homologous chain problem is NP-hard [10]. Dey, Hirani, and Krish-

namoorthy [14] studied the original version of the optimal homologous chain problem 

with homology defined over Z, and showed that the problem is in fact solvable in polyno-

mial time when K satisfies certain conditions (when it has no relative torsion). Recently, 

Dunfield and Hirani [16] have shown that the optimal homologous chain problem with 

homology defined over Z is NP-complete. We will use their results to show that the 

problem of computing the multiscale simplicial flat norm is NP-complete (see Section 

2.2.1). These authors also showed that the optimal bounding chain problem with homol-

ogy defined over Z is NP-complete as well. Their result builds on the previous work of 

Agol, Hass, and Thurston [3], who showed that the knot genus problem is NP-complete, 

and a slightly different version of the least area surface problem is NP-hard. 
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The standard simplicial approximation theorem from algebraic topology describes 

how continuous maps are approximated by simplicial maps that satisfy the star condi-

tion [35, §14]. Our simplicial deformation theorem applies to currents, which are more 

general objects than continuous maps. More importantly, we present explicit bounds 

on the expansion of mass of the current resulting from simplicial approximation. In his 

PhD thesis, Sullivan [42] considered deforming currents on to the boundary of convex 

sets in a cell complex, which are more general than the simplices we work with. But 

simplicial complexes admit efficient algorithms more naturally than cell complexes. We 

adopt a different approach for deformation from Sullivan and obtain new bounds on 

the approximations (see Section 2.5.2). Along with the multiscale simplicial flat norm, 

our deformation theorem also establishes how the optimal homologous chain problem 

and optimal bounding chain problem could be used on general continuous inputs by 

taking simplicial approximations, thus expanding widely the applicability of this family 

of techniques. 

2.2 Definition of Simplicial Flat Norm 

Consider a finite p-dimensional simplicial complex K triangulating the set Ω, where the 

simplices are oriented, with p ≥ d + 1. The set T is defined as the integer multiple 

of an oriented d-dimensional subcomplex of K, representing a rectifiable d-current with 

integer multiplicity. Let m and n be the number of d- and (d + 1)-dimensional simplices P 
in K, respectively. The set T is then represented by the d-chain m

i=1 tiσi, where σi are 

all d-simplices in K and ti are the corresponding weights. We will represent this chain by 

the vector of weights t ∈ Zm . We use bold lower case letters to denote vectors, and the 

corresponding letter with subscript to denote components of the vector, e.g., x = [xj ]. 

17 



�� �� ��

For t representing the set T with integer multiplicity of one, ti ∈ {−1, 0, 1} with −1 

indicating that the orientations of σi and T are opposite. But ti can take any integer 

value in general. Thus, t is the representation of T in the elementary d-chain basis of K. 

We consider (d + 1)-chains in K modeling sets S representing rectifiable (d + 1)-currents P 
with integer multiplicities, and denote them similarly by j

n 
=1 sj τj in the elementary 

(d + 1)-chain basis of K consisting of the individual simplices τj . We denote the chain 

modeling such a set S using the corresponding vector of weights s ∈ Zn . 

Relationships between the d- and (d + 1)-chains of K are captured by its (d + 1)-

boundary matrix [∂d+1], which is an m × n matrix with entries in {−1, 0, 1}. If the 

d-simplex σi is a face of the (d + 1)-simplex τj , then the (i, j) entry of [∂d+1] is nonzero, 

otherwise it is zero. This nonzero value is +1 if the orientations of σi and τj agree, and 

is −1 when their orientations are opposite. The d-chain representing the set T − ∂d+1S 

is then given as 

x = t − [∂d+1]s. 

Notice that x ∈ Zm . We define the simplicial flat norm (SFN) of T represented by the 

d-chain t in the (d + 1)-dimensional simplicial complex K as ⎧⎨ ⎩ 
⎫⎬ ⎭ XXm n 

i=1 j=1 

Since x and s are chains in a simplicial complex, the masses of the currents they represent 

(as given in Equation 2.1) are indeed given by the weighted sums of the volumes of the 

corresponding simplices. The integer restrictions x ∈ Zm and s ∈ Zn are important in 

this definition as we are studying currents with integer multiplicities. The simplicial flat 

norm is intuitively the problem of deforming an input chain to another chain of least 

cost, where cost is determined both by the mass of the resulting chain and the size of the 

FS (T ) = min 
s∈Zn 

Vd(σi)|xi| + Vd+1(τj ) sj x = t − [∂d+1]s, x ∈ Zm . (2.4) 
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deformation (constrained to the complex) used to get it. For instance, in a triangulation 

of a manifold, we constrain ourselves to only use deformations on the manifold. We 

generalize the definition of SFN to define a multiscale simplicial flat norm (MSFN) of T 

in the simplicial complex K by including a scale parameter λ ∈ [0, ∞). ⎧⎨ ⎩ 
⎛⎝ ⎞⎠ ⎫⎬ ⎭ 

m n 

i=1 j=1 

(2.5) 

This definition is the simplicial version of the multiscale flat norm defined in Equation 

(2.3). The default, or nonscale, simplicial flat norm in Equation (2.4) is a special case 

X 

of the multiscale simplicial flat norm with the default value of λ = 1. 

The (non-simplicial) flat norm with scale λ > 0 of a d-dimensional current T can be 

rewritten as Fλ(T ) = λd · F1(T/λ). Thus the flat norm with scale can be thought of as 

the traditional flat norm applied to a scaled copy of the input current. An equivalent 

X 

statement can be made for the simplicial flat norm, but crucially requires that the 

simplicial complex be similarly scaled. To avoid this complex scaling issue especially 

when considering all possible scales, and to simplify our notation, we henceforth study 

the more general multiscale simplicial flat norm (which also allows us to consider the 

λ = 0 case). 

We assume the d- and (d+1)-dimensional volumes of simplices to be any nonnegative 

values. For example, when σi is a 1-simplex, i.e., edge, V1(σi) could be taken as its 

Euclidean length. Similarly, V2(τj ) for a triangle τj could be its area. For ease of 

notation, we denote Vd(σi) by wi and Vd+1(τj ) by vj , with the dimensions d and d + 1 

evident from the context. 

Remark 2.2.1. The minimum in the definition of the multiscale simplicial flat norm 

F λ 
S x = t − [∂d+1]s, x ∈ Zm(T ) = min 

s∈Zn 
Vd(σi)|xi| + λ Vd+1(τj ) sj . 
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(Equation 2.5) indeed exists. The function 

m nX X 
fλ(T, S) = wi|xi| + λ ( vj sj ) with x = t − [∂d+1]s (2.6) 

i=1 j=1 

is lower bounded by zero, as it is the sum of nonnegative entries (we have λ ≥ 0). Notice 

that FS
λ(T ) = minS f

λ(T, S). Further, we only consider integral s defined on the finite 

simplicial complex K, and hence there are only a finite number of values for this function. 

Hence its minimum indeed exists, which defines the multiscale simplicial flat norm of t. 

On the other hand, the proof of existence of minimum in the original definition of flat 

norm for rectifiable currents employs the Hahn–Banach theorem [19, pg. 367]. 

We illustrate the optimal decompositions to compute the multiscale simplicial flat 

norm for two different scales (λ = 1 and λ � 1) in Figure 2.2. Notice that the input 

set T , shown in blue, is not a closed loop here. It is a subcomplex of the simplicial 

complex triangulating Ω. The underlying set Ω need not be embedded in R2 – it could 

be sitting in R3 or any higher dimension. We do not show the orientations of individual 

simplices and chains so as not to clutter the figure. We could take each triangle to be 

oriented counterclockwise (CCW), with T oriented CCW as well, and each edge oriented 

arbitrarily. When scale λ = 1, we get the default SFN of T , where the S chosen (shown 

in light pink) is such that the resulting optimal T − ∂S (indicated by the thin curve in 

dark green) is devoid of all the “kinks”, but is similar to T in overall form. This removal 

of the tightest “kinks” is a discrete analogue of how the λ in the flat norm relates to 

the curvature in the continuous case. For λ � 1, the second term in the definition 

(Equation 2.5) contributes much less to the multiscale simplicial flat norm. As such, the 

optimal T −∂S consists of a short chain of two edges (shown in light green), which closes 

the original T curve to form a loop. S in this case includes the triangles in the former 

choice of S, and all other triangles enclosed by the original curve T and the resulting 
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T − ∂S. 

S

∂S

T − ∂S for λ� 1

T − ∂S

T

Ω

Figure 2.2: The multiscale simplicial flat norm illustrated for two different scales λ = 1 
and λ � 1. See text for explanation. 

2.2.1 Complexity of multiscale simplicial flat norm 

To study the complexity of computing the multiscale simplicial flat norm, we consider 

a decision version of the problem, termed decision-MSFN or DMSFN. The function 

fλ(T, S) used here is defined in Equation 2.6, with the modification that wi and vj are 

assumed to be rational for purposes of analyses of complexity. 

Definition 2.2.2 (DMSFN). Given a p-dimensional finite simplicial complex K with 

p ≥ d + 1, a set T defined as a d-subcomplex of K, a scale λ ∈ [0, ∞), and a rational 

number f0 ≥ 0, does there exist a (d + 1)-dimensional subcomplex S of K such that 

fλ(T, S) ≤ f0? 

The related optimal homologous chain problem (OHCP) was recently shown to be 

NP-complete [16, Theorem 1.4]. We reduce OHCP to a special case of DMSFN, thus 
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showing that DMSFN is NP-complete as well. The default optimization version of 

MSFN consequently turns out to be NP-hard. 

Theorem 2.2.3. DMSFN is NP-complete, and MSFN is NP-hard. 

Proof. DMSFN lies in NP as we can calculate fλ(T, S) in polynomial time when given 

a pair of d- and (d + 1)-chains t and s, respectively, of the simplicial complex K. On 

the other hand, given an instance of the optimal homologous chain decision problem, 

we can reduce it to the DMSFN by taking λ = 0 and wi = 1 for 1 ≤ i ≤ m. Since the 

optimal homologous chain problem was recently shown to be NP-complete [16, Theorem 

1.4], the result follows. 

Remark 2.2.4. Although we showed MSFN is NP-hard in general, the case for any 

particular λ > 0 is not known. For λ large enough, the problem in fact becomes easy– P 
when the (d+1)-simplices have positive volumes and λ > ( wi)/ min vj , then optimality 

occurs when s is the empty (d + 1)-chain. 

We now consider attacking the multiscale simplicial flat norm problem using tech-

niques from the area of discrete optimization. Even though the problem is NP-hard, 

this approach helps us to identify special cases in which we can compute the multiscale 

simplicial flat norm in polynomial time. 
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2.3 Multiscale Simplicial Flat Norm and Integer Lin-

ear Programming 

The problem of finding the multiscale simplicial flat norm of the d-chain t (Equation 2.5) 

can be cast formally as the following optimization problem. 

P m P nminimize wi|xi| + λ( j=1 vj sj )i=1 

(2.7)
subject to x = t − [∂d+1]s, 

x ∈ Zm , s ∈ Zn . 

The objective function is piecewise linear in the integer variables x and s. Using standard 

modeling techniques from linear optimization [7, pg. 18], we can reformulate the problem 

as the following integer linear program (ILP). �P �P m + − n + −min wi(xi + x ) + λ + sj )i=1 i j=1 vj(sj 

s.t. x+ − x− = t − [∂d+1](s+ − s−) (2.8) 

+ +x , x− ≥ 0, s , s− ≥ 0 

x+ , x− ∈ Zm , s+ , s− ∈ Zn . 

The objective function coefficients need to be nonnegative for this formulation to work – 

indeed, we have wi, vj , and λ nonnegative. Integer linear programming is NP-complete 

[37]. The linear programming relaxation of the ILP above is obtained by ignoring the 

integer restrictions on the variables. �P �P m + − n + −min wi(x + x ) + λ vj(s + s )i=1 i i j=1 j j 

(2.9) 
s.t. x+ − x− = t − [∂d+1](s+ − s−) 

x+ , x− ≥ 0, s+ , s− ≥ 0 
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We are interested in instances of this linear program (LP) that have integer optimal 

solutions, which hence are optimal solutions for the original ILP (Equation 2.8) as well. 

Totally unimodular matrices yield a prime class of linear programming problems with 

integral solutions. Recall that a matrix is totally unimodular if all its subdeterminants 

equal −1, 0, or 1; in particular, each entry is −1, 0, or 1. The connection between total 

unimodularity and linear programming is specified by the following theorem. 

Theorem 2.3.1. [44] Let A be an m × n totally unimodular matrix, and b ∈ Zm . Then 

the polyhedron P = {x ∈ Rn | Ax = b, x ≥ 0} has integral vertices. 

Notice that the feasible set of the multiscale simplicial flat norm LP (Equation 2.9) 

+ − +has the form specified in the theorem above, with the variable vector (x , x , s , s−) in� � 
place of x. The corresponding equality constraint matrix A has the form I −I B −B , 

where I is the identity matrix and B = [∂d+1]. The input d-chain t is in place of the 

right-hand side vector b. In order to use Theorem 2.3.1 for computing the multiscale 

simplicial flat norm, we connect the total unimodularity of constraint matrix A and that 

of boundary matrix B. � � 
Lemma 2.3.2. If B = [∂d+1] is totally unimodular, then so is the matrix A = I −I B −B . 

Proof. Starting with B, we get the matrix A by appending columns of B scaled by −1 

to its right, and appending columns with a single nonzero entry of ±1 to its left. Both 

these classes of operations preserve total unimodularity [37, pg. 280]. 

Consequently, we get the following result on polynomial time computability of the mul-

tiscale simplicial flat norm. 

Theorem 2.3.3. If the boundary matrix [∂d+1] of the finite oriented simplicial complex 

K is totally unimodular, then the multiscale simplicial flat norm of the set T specified 

as a d-chain t ∈ Zm of K can be computed in polynomial time. 
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Proof. The problem of computing the multiscale simplicial flat norm of T (Equation 2.5) 

is cast as the optimization problem given in Equation (2.7). This problem is reformu-

lated as an instance of ILP (Equation 2.8). We get the multiscale simplicial flat norm LP 

(Equation 2.9) by relaxing the integrality constraints of this ILP. As noted in Remark 

2.2.1, the optimal cost of this LP is finite. The polyhedron of this LP has at least one 

vertex, given that all variables are nonnegative [7, Cor. 2.2]. By Lemma 2.3.2, the con-

straint matrix of this LP is totally unimodular, as [∂d+1] is so. Hence by Theorem 2.3.1, 

all vertices of the feasible region of the multiscale simplicial flat norm LP are integral, 

since t ∈ Zm . 

+ − + −An optimal solution (x∗ , x∗ , s∗ , s∗ ) of the multiscale simplicial flat norm LP can 

be found in polynomial time using an interior point method [7, Chap. 9]. If it happens 

to be a unique optimal solution, then it will be a vertex, and hence will be integral by 

Theorem 2.3.1. Hence it is an optimal solution to the ILP (Equation 2.8). 

+ − + −If the optimal solution is not unique, then (x∗ , x∗ , s∗ , s∗ ) may be nonintegral. But 

since the optimal cost is finite, there must exist a vertex in its polyhedron that has 

this minimum cost. Given a nonintegral optimal solution obtained by an interior point 

method, one can find such an integral optimal solution at a vertex in polynomial time 

[23]. Hence the multiscale simplicial flat norm ILP can be solved in polynomial time in 

this case as well. 

Remark 2.3.4. We point out that since the boundary matrix B = [∂d+1] has entries 

only in {−1, 0, 1}, the constraint matrix of the multiscale simplicial flat norm LP (Equa-

tion 2.9) also has entries only in {−1, 0, 1}. Hence the multiscale simplicial flat norm 

LP can be solved in strongly polynomial time [43], i.e., the time complexity is indepen-

dent of the objective function and right-hand side coefficients, and depends only on the 

dimensions of the problem. 
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+ − + −Remark 2.3.5. Components of variables x , x , s , s in the multiscale simplicial flat 

norm ILP (Equation 2.8) could assume values other than {−1, 0, 1}, indicating integer 

multiplicities higher than 1 for the corresponding simplices in the optimal decomposition. 

The definition of multiscale simplicial flat norm (Equation 2.5) does allow such larger 

multiplicities. At the same time, if one insists on using each (d+1)-simplex at most once 

when calculating the multiscale simplicial flat norm, and insists on similar restrictions 

on d-simplices in the optimal decomposition, we can modify the ILP such that Theorem 

2.3.3 still holds. 

+ − + −) ∈ Z2m+2nDenoting the entire variable vector by x = (x , x , s , s , we add the up-

per bound constraints x ≤ 1, where 1 is the (2m +2n)-vector of ones. These inequalities 

could be converted to the set of equations x + y = 1, where y is the (2m + 2n)-vector 

of slack variables that are nonnegative. These modifications give an ILP whose polyhe-

dron is in the same form as described in Theorem 2.3.1, with the equations denoted as 

A0 0 b0 0x = for the variable vector x = (x, y). The new constraint matrix A0 is related 

to the constraint matrix A of the original multiscale simplicial flat norm ILP given in 

Lemma 2.3.2 as 

A0 = 

⎡ ⎢⎣ A O 

⎤ ⎥⎦ , 
I I 

where I is the 2m +2n identity matrix, and O is the m × (2m +2n) zero matrix. Hence 

A0 is obtained from A by first adding 2m + 2n rows with a single nonzero entry of +1, 

and then adding to the resulting matrix 2n + 2m more columns with a single nonzero 

entry of +1. These operations preserve total unimodularity [37, pg. 280], and hence the 

new constraint matrix A0 is totally unimodular when [∂d+1] is so. The new right-hand 

∈ Z3m+2nside vector b0 consists of the input chain t and the vector of ones from the 

new upper bound constraints. 
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Since the efficient computability of the multiscale simplicial flat norm depends on 

the total unimodularity of the boundary matrix, we study the conditions under which 

total unimodularity of boundary matrices can be guaranteed. 

2.4 Simplicial Complexes and Relative Torsion 

Dey, Hirani, and Krishnamoorthy [14] have given a simple characterization of the sim-

plicial complex whose boundary matrix is totally unimodular. In short, if the simplicial 

complex does not have relative torsion then its boundary matrix is totally unimodular. 

We state this and other related results here for the sake of completeness, and refer the 

reader to the original paper [14] for details and proofs. The simplicial complex K in these 

results has dimension d + 1 or higher. Recall that a d-dimensional simplicial complex 

is pure if it consists of d-simplices and their faces, i.e., there are no lower dimensional 

simplices that are not part of some d-simplex in the complex. 

Theorem 2.4.1. [14, Theorem 5.2] The boundary matrix [∂d+1] of a finite simplicial 

complex K is totally unimodular if and only if Hd(L, L0) is torsion-free for all pure 

subcomplexes L0, L of K, with L0 ⊂ L. 

These authors further describe situations in which the absence of relative torsion is 

guaranteed. The following two special cases describe simplicial complexes for which the 

boundary matrix is always totally unimodular. 

Theorem 2.4.2. [14, Theorem 4.1] The boundary matrix [∂d+1] of a finite simplicial 

complex triangulating a compact orientable (d + 1)-dimensional manifold is totally uni-

modular. 

Theorem 2.4.3. [14, Theorem 5.7] The boundary matrix [∂d+1] of a finite simplicial 

complex embedded in Rd+1 is totally unimodular. 
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For simplicial complexes of dimension 2 or lower, the boundary matrix is totally uni-

modular when the complex does not have a Möbius subcomplex. 

Theorem 2.4.4. [14, Theorem 5.13] For d ≤ 1, the boundary matrix [∂d+1] is totally 

unimodular if and only if the finite simplicial complex has no (d+1)-dimensional Möbius 

subcomplex. 

It is appropriate to mention here that the connection between total unimodularity 

of boundary matrices and torsion in the complex has been observed as early as in 1895 

by Poincaré [36]. However, the result in [14] connecting the total unimodularity with 

relative torsion is different and has led to a polynomial time algorithm for the OHCP 

problem. Notice that a complex can be torsion-free, but have non-trivial relative torsion. 

The Möbius strip is such an example. 

We illustrate the implications of the results above for the efficient computation of 

the multiscale simplicial flat norm by considering certain sets. When the input set T 

is of dimension 1, and is described on an orientable 2-manifold to which the choices of 

2-dimensional set S are also restricted, we can always compute its multiscale simplicial 

flat norm by solving the multiscale simplicial flat norm LP (Equation 2.9) in polynomial 

time. A similar result holds when T is a set of dimension 2 described as a subcomplex 

of a 3-complex sitting in R3 . For a 1-dimensional set T with choices of S restricted to a 

2-complex K, we can always compute the multiscale simplicial flat norm of T efficiently 

as long as K does not have a 2-dimensional Möbius subcomplex. Notice that K itself 

need not be embedded in R3 for this result to work – it could be sitting in some higher 

dimensional space. 
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2.5 Simplicial Deformation Theorem 

When can we use the multiscale simplicial flat norm as a discrete surrogate for the 

traditional flat norm? That is, if we wish to solve a flat norm problem (for which there 

are no practical algorithms in general), can we discretize the problem and find a problem 

close enough to the original one which we can solve? 

The deformation theorem [19, Sections 4.2.7–9] is one of the fundamental results of 

geometric measure theory, and more particularly of the theory of currents. It approxi-

mates an integral current by deforming it onto a cubical grid of appropriate mesh size. 

On the other hand, we have been studying currents or sets in the setting of simplicial 

complexes, rather than on square grids. Our proof is a substantial modification of the 

classical proof of the deformation theorem. We found the presentation of the latter proof 

by Krantz and Parks [29, Section 7.7] especially helpful. Our proof mimics their proof 

when possible. The gist of this theorem is the assertion that we may approximate a 

current with a simplicial current. 

Recall that Vd(σ) denotes the d-dimensional volume of a d-simplex σ. The perime-

ter of σ is the set of all its (d − 1)-dimensional faces, denoted as perimeter(σ) = 

{∪j τj | τj ∈ σ, dim(τj ) = d − 1}. We will also refer to the (d − 1)-dimensional volume of P 
perimeter(σ) as the perimeter of σ, but denote it as P(σ) = Vd−1(τj ). We τj ∈perimeter(σ) 

let diameter(σ) be the diameter of σ, which is the largest Euclidean distance between 

any two points in σ. 

Theorem 2.5.1 (Simplicial Deformation Theorem). Let K be a p-dimensional 

simplicial complex embedded in Rq, with p = d + k for k ≥ 1 and q ≥ p. Suppose that 

for every simplex σ ∈ K 
diameter(σ) P(σ) ≤ κ1 < ∞,

Vd(Bσ) 
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diameter(σ) ≤ κ2 < ∞, 
rσ 

and 

diameter(σ) ≤ Δ 

ˆhold, where Bσ is the largest ball inscribed in σ, Bσ is the ball with half the radius and 

ˆsame center as Bσ, and rσ is the radius of Bσ. Let T be a d-dimensional current in Rq 

such that the support of T is a subset of the underlying space of K. Suppose that T 

satisfies 

M(T ) + M(∂T ) < ∞. 

Then there exists a simplicial d-current P supported in the d-skeleton of K whose bound-

ary ∂P is supported in the (d − 1)-skeleton of K such that 

T − P = Q + ∂R, 

and the following controls on mass M hold: 

M(P ) ≤ (4ϑK )
k M(T ) + Δ(4ϑK )

k+1 M(∂T ), (2.10) 

M(∂P ) ≤ (4ϑK )
k+1 M(∂T ), (2.11) 

M(R) ≤ Δ(4ϑK )
k M(T ), and (2.12) 

M(Q) ≤ Δ(4ϑK )
k(1 + 4ϑK ) M(∂T ), (2.13) 

where ϑK = κ1 + κ2. 

Remark 2.5.2. It is immediate that the flat norm distance between T and P can be 

made arbitrarily small by subdividing the simplicial complex to reduce Δ while preserving 

the regularity of the refinement as measured by κ1 and κ2. 

Remark 2.5.3. Note that this theorem combines the unscaled and scaled versions of the 
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original deformation theorem [29, Theorems 7.7.1 and 7.7.2] into one theorem through 

the explicit form of the constraints. In our proof of Theorem 2.5.1, we replace certain 

pieces of the original proof as presented by Krantz and Parks [29, Pages 211–222] without 

reproducing all the other details of their proof. We found their exposition quite well-

structured, making it easier to identify the modifications needed to get our theorem. 

Remark 2.5.4. The bound for M(P ) in Theorem 2.5.1 is larger than the classical bound. 

We get this large bound because we generate P through retractions alone, and not using 

the usual Sobolev-type estimates [29, Pages 220–222]. And of course, the Δ in the coef-

ficient of the extra term means that it becomes unimportant as the simplicial complex is 

appropriately subdivided. 

2.5.1 Proof of the Simplicial Deformation Theorem 

At the heart of the modification of the deformation theorem (from cubical grid to sim-

plicial complex settings) is the recalculation of an integral over the current and its 

boundary. This integral appears in a bound on the Jacobian of the retraction, which 

measures the expansion in mass of the current resulting from the process of retracting 

it on to the simplices of the simplicial complex. To do this recalculation, we consider 

the retraction φ one step at a time, building it through independent choices of centers 

to project from in every simplex and its every face. 

We first describe the general set up of retraction within a simplex. We then present 

certain bounds on the mass expansion resulting from the retraction in Lemmas 2.5.6, 

2.5.7, and 2.5.8. In particular, we obtain bounds on the expansion that are independent 

of the choice of points from which we project. These bounds are independent of the 

particular current that we retract on to the simplicial complex. But we employ these 

bounds to subsequently bound the overall expansion of mass of the current resulting 
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from the retraction. 

Retracting from a center inside a simplex 

We describe the details of retraction for an `-simplex σ in the p-dimensional simplicial 

complex K. This set up is valid for any `, but in particular, we will use the bounds thus 

obtained for d ≤ ` ≤ p when retracting a d-current onto K. We pick a center a ∈ Int(σ), 

the interior of σ, and project every x ∈ Int(σ) \ {a} along the ray (x − a)/kx − ak to 

perimeter(σ). Denoting this map as φ(x, a), we get 

φ(x, a) = (φπ ◦ φδ)(x, a), (2.14) 

where φδ(x, a) is a dilation of R` by the factor φ(x, a) − a /kx − ak and φπ(x, a) is 

a nonorthogonal projection along (x − a)/kx − ak onto τx, the (` − 1)-dimensional face 

of σ containing φ(x, a). We denote r̂ = φ(x, a) − a and r = kx − ak. Let E` be the 

`-hyperplane that contains σ and E`−1 the (` − 1)-hyperplane that contains τx. Denote 

the orthogonal projection of a onto E`−1 by b, and let ĥ = kb − ak. For any point 

y = a + (b − a)γ with 0 < γ < 1, we get φ(y, a) = b. In particular, we consider the 

point of intersection of line connecting a and b with the (` − 1)-hyperplane parallel to τx 

that contains x. Naming this point y, we define h = ky − ak. Let z ∈ E` denote either 

normal to τx at φ(x, a) (either of the two possibilities work). Let v2 = (x − a)/kx − ak, 

and let v1 be the vector in span(z, v2) that is normal to v2 and points into σ. We 

illustrate this construction on a 3-simplex in Figure 2.3, where the cone of a with face 

τ is shown in red and the other points and vectors are labeled. We also illustrate the 

corresponding slice spanned by v1 and v2 in Figure 2.4. 

Choose an orthogonal basis {w1, ..., w`−2} for span(v1, v2)⊥ . Note that span(w1, ..., 

w`−2) ⊂ E`−1. Let w0 be a unit vector in span(w1, ..., w`−2)
⊥ ∩E`−1 parallel to φ(x)−b. 
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x

φ(x)
v1 and v2

Dφ(φ(x))(v1)

space normal to

v2

v1

b θ

Figure 2.3: Illustration of the dilation and nonorthogonal projection involved in retrac-
tion for a 3-simplex. 

a

v1
b

Dφ(φ(x))(v1)
v2

θ

xy

φ(x)

h

ĥ

Figure 2.4: A 2-dimensional illustration of the dilation calculation. 

Then {v1, w1, ..., w`−2, v2} is an orthogonal basis for R` , and φπ is given by 

φπ(v1) = αw0 , 

φπ(wi) = wi, i ∈ {1, ..., ̀  − 2}, and (2.15) 

φπ(v2) = 0, 
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where α = r/ˆ ĥ. Notice that the above set up works everywhere except when φ(x) = b, 

in which case we obtain an orthogonal projection for φπ(x) along b − a. Choosing 

coordinates for the tangent spaces of σ and τx to be {v1, w1, ..., w`−2, v2} and {w0 , w1, ..., 

w`−2}, respectively, we get from Equation (2.15) that Dφπ(x, a) is the (` − 1) × ̀  matrix 

given as 

Dφπ(x, a) = 

⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

α 0 0 ... 0 0 

0 1 0 ... 0 0 
. . ... . . ... . . 

0 . . . 1 0 

⎤ ⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
. (2.16) 

Bounding the Integral of the Jacobian 

We now present a series of bounds on integrals of the dilation of d-volumes induced by 

the retraction. Since ` = d implies we are already in the d-skeleton and no retraction is 

needed, we can assume that ` > d. We start with a bound on the maximum dilation of 

d-volumes under the retraction φ. Dφ will denote the tangent map or Jacobian map of 

φ. 

Definition 2.5.5. Let Jdφ(x, a) be the maximum dilation of d-volumes induced by 

Dφ(x, a) at x. 

We will use the definitions and results on Dφπ(x, a) in `-dimension given above. In 

ˆparticular, recall that diameter(σ) is the diameter of σ, h = kb − ak and h = ky − ak. 

Lemma 2.5.6. For any center a and any point x 6= a in the `-simplex σ with d < ` ≤ 

p = d + k, !d
ĥ diameter(σ)

Jdφ(x, a) ≤ . 
h ĥ 
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Proof. Following Equation (2.14), we seek bounds on Dφδ(x, a) and Dφπ(x, a). Since 

ˆDφδ(x, a) simply scales by r/rˆ = h/h, the expansion of d-volume of any d-hyperplane 

by Dφδ(x, a) is by a factor of (h/hˆ )d . On the other hand, bounding the dilation that 

Dφπ(x, a) can cause in d-hyperplanes is a little more involved. We seek a bound on p
det( (Dφπ(x, a)U)T (Dφπ(x, a)U) ) p (2.17) 

det(UT U) 

for all ` × d matrices U . Using the generalized Pythagorean theorem [29, Section 1.5], 

we get X 
det(UT U) = (det(Uλ))

2 

λ∈Λ 

where submatrix Uλ consists of the d rows of U specified by the set of index maps Λ 

given as 

λ ∈ Λ ≡ {f |f : [1, ..., d] → [1, ..., ̀ ], f is one to one and increasing}. 

A similar result holds for det((Dφπ(x, a)U)T (Dφπ(x, a)U)), with the functions f con-

sidered mapping [1, ..., d] to [1, ..., ̀  − 1]. 

Observe that multiplying by Dφπ(x, a) (Equation 2.16) just scales the first row of 

U by α and removes the last row. Thus α det(Uλ) ≥ det((Dφπ(x, a)U)λ), which implies 

that α is a bound on the ratio in Equation (2.17). Thus we have that 

� !d !d 
r̂  
�d φ(x, a) − a ĥ φ(x, a) − a ĥ diameter(σ)

Jdφ(x, a) = = ≤ 
r kb − ak h kb − ak h ĥ 

holds for all x and a in σ, where diameter(σ) is the diameter of the `-simplex σ. 

Next we describe a bound on the integral of Jdφ(x, a) over the entire `-simplex, 

for a fixed center a. We will find that this bound is independent of the position of 

a. Recall that perimeter(σ) and P(σ) denote the perimeter of `-simplex σ and the 
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(` − 1)-dimensional volume of the perimeter, respectively, and Int(σ) its interior. 

Lemma 2.5.7. For any fixed center a in the `-simplex σ with d < ` ≤ p = d + k, Z 
Jdφ(x, a) dL ` (x) ≤ diameter(σ) P(σ). 

Int(σ) 

Proof. Consider the (` − 1)-dimensional faces τj of σ, with perimeter(σ) = {∪j τj | τj ∈ 

σ, dim(τj ) = ` − 1}. Let σj denote the `-simplex generated by a and τj . Then Z ZX 
Jdφ(x, a) dL ` (x) = Jdφ(x, a) dL ` (x). 

Int(σ) Int(σj )j 

Let τj(h) denote the (` − 1)-simplex formed by the intersection of σj and the (` − 1)-

hyperplane parallel to τj at a distance h from a. Thus, τj (ĥ) is τ itself. We observe that 

our bound on Jdφ(x, a) is constant in τj (h) for any h. The (` − 1)-dimensional volume 

of τj (h) is given by � �`−1
h 

V`−1(τj (h)) = V`−1(τj ). 
ĥ 

Using the bound on Jdφ(x, a) from Lemma 2.5.6, and noting that diameter(σj ) ≤ 

diameter(σ) ∀ j, we get 

Z Z ̂h � �`−1 
!d
ˆh h diameter(σ)

Jdφ(x, a) dL ` (x) ≤ V`−1(τj ) dh 
ˆ h ˆInt(σj ) 0 h h 

V`−1(τj ) diameter(σ) 
= . 

` − d 

Summing this quantity over all τj ∈ perimeter(σ) and replacing ` − d ≥ 1 with 1 gives 

the overall bound. 

We now bound the integral of Jdφ(x, a) over centers a with a fixed x that we are 

retracting onto perimeter(σ). Examination of the corresponding proof for the original 

deformation theorem [29, Section 7.7] shows that symmetry of the cubical mesh plays 

a very special role, which cannot be duplicated in the case of simplicial complex. In 
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particular, we must avoid integrating over a close to the perimeter of σ. Hence we 

integrate over as big a region as we can while still avoiding a neighborhood of the 

ˆperimeter. As in the statement of the main Theorem 2.5.1, let Bσ be the largest ball 

ˆinscribed in σ, Bσ be the ball with half the radius and same center as Bσ, and rσ be the 

radius of Bσ. 

Lemma 2.5.8. For any point x in the `-simplex σ with d < ` ≤ p = d + k, Z 
diameter(σ)

Jdφ(x, a) dL ` (a) ≤ diameter(σ) P(σ) + V`(Bσ) . 
rσBσ 

Proof. Similar to the subsimplices of σ considered in the Proof of Lemma 2.5.7, let σj 

now denote the `-simplex formed by x and τj ∈ perimeter(σ). In order to derive an 

upper bound, we integrate instead over regions that are by construction bigger than 

these subsimplices of σ. Denoting the simplex σj as Region 1, we define Regions 2 and 

3 as follows. We refer the reader to Figure 2.5 for an illustration of this construction. 

Let σj 
0 be the reflection of σj through x, and similarly, let τj 

0 be the reflection through 

x of τj . We define σj 
0 as Region 2. Notice that unlike Region 1, Region 2 need not be 

contained fully in σ. As defined in Section 2.5.1, let z be the unit vector normal to the 

(`−1)-hyperplane containing τj pointing into σ. We define Region 3 as the `-dimensional 

set τ 0 + [0, diameter(σ)]z, as illustrated in Figure 2.5.j 

Note that the union of all Region 2’s and Region 3’s cover σ. By an argument almost 

identical to that above, we have the following upper bound on the integrand in question. � �d � �d
h0 φ(x, a) − a h0 diameter(σ)≤ . 
h ˆ h ˆh h 

Integrating the second of these two terms over Region 2 and summing the integral over 

all such Regions 2 for all faces τj , we get the upper bound of diameter(σ) P(σ). Here we 

use the same arguments as the ones employed in Lemma 2.5.7. Region 2 alone is not 
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Region
1

φ(x)

h

h′

ĥ

D(σ)

Figure 2.5: Illustration for integration of Jacobian bound over centers a instead of x’s. 
For the case of the triangle shown, there will be 3 sets of 3 regions. In general there will 
be 3 regions for every face of the simplex. 

guaranteed to cover Bσ as some of Bσ may occupy parts of Region 3. Since a ∈ Bσ, we 

have ĥ > rσ, and h0 ≤ h when a ∈Region 3, so that � �d
h0 diameter(σ) diameter(σ)≤ . 
h ĥ rσ 

Combining the above estimates while integrating over all such Regions 2 and 3 gives us 

the bound specified in the Lemma. 

Bounding the pushforwards of the current 

We consider the d-current T , and employ the bounds on the Jacobian of retraction 

described above to the pushforwards of T and its boundary ∂T on to the simplicial 
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complex K. Our treatment of the pushforwards essentially follows the corresponding 

results of Krantz and Parks for the case of square grid [29, Pages 218–219]. We denote 

by kT k the total variation measure of the current T , which is determined by the identity 

kT k (W ) = sup T (ω). 
ω ∈ Dd , kωk = 1, 

spt ω ⊂ W 

Lemma 2.5.9. Suppose K is a p-dimensional simplicial complex with p = d + k for 

k ≥ 1. Consider the stepwise retraction of the d-current T ⊂ K (the (d − 1)-current 

∂T ⊂ K) onto the d-skeleton of K (respectively, the (d − 1)-skeleton of K). Each step 

of the retraction on to the perimeter of an `-simplex σ for d < ` ≤ p (respectively, 

d ≤ ` ≤ p) increases the mass of T or ∂T by at most a factor of � � 
diameter(σ) P(σ) diameter(σ)

4ϑK = 4(κ1 + κ2) = 4max + . 
σ∈K V`(Bσ) rσ 

Proof. Using Fubini’s theorem [29, Page 26] and applying the bound in Lemma 2.5.8, 

we get Z Z Z Z 
Jdφ(x, a) dkT k (x) dL ` (a) = Jdφ(x, a) dL ` (a) dkT k (x) ≤ ϑσ M(T |σ), 

Bσ σ σ Bσ 

where ϑσ = diameter(σ) P(σ) + Vd(Bσ)(diameter(σ)/rσ) and T |σ is the portion of the 

current T restricted to the simplex σ. Consider the subset of Bσ defined as � Z � 
4ϑσ M(T |σ)

HT = a ∈ Bσ Jdφ(x, a) dkT k (x) > . 
σ V`(Bσ) 

Then V`(HT ) ≤ (1/3) V`(Bσ). Similarly we define H∂T for the pushforward of ∂T and 

get V`(H∂T ) ≤ (1/3) V`(Bσ). Then the set Bσ \ {HT ∪ H∂T } defines a subset of Bσ with R 
positive measure, with the centers a in this subset satisfying 

σ Jdφ(x, a) dkT k (x) ≤ R 
4ϑσ M(T |σ)/ V`(Bσ) and 

σ Jdφ(x, a) dk∂T k (x) ≤ 4ϑσ M(T |σ)/ V`(Bσ). Hence we can 
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choose centers to retract from in each simplex σ such that the expansion of mass of the 

current restricted to that simplex is bounded by 4ϑσ/ V`(Bσ). The bound specified in the 

Lemma follows when we consider retracting the entire current over multiple simplices in 

K, and set ϑK = maxσ∈K ϑσ as the generic upper bound that holds for all simplices in 

K. 

Bound on complete sequence of retractions. We can apply the bound specified 

in Lemma 2.5.9 over multiple levels `. Pushing T onto the d-skeleton of p-complex K 

multiplies the mass of T by a factor of at most (4ϑK )
k . Likewise, pushing ∂T on to the 

(d − 1)-skeleton multiplies the mass of ∂T by a factor of at most (4ϑK )
k+1 . 

Bounding the distance between the current and its simplicial approximation 

In the final step, we construct the simplicial current P approximating the original cur-

rent T , and bound the flat norm distance between the two. Since we are now considering 

retraction maps over many simplices simultaneously, we let φi denote the global projec-

tion from the (p − i + 1)−skeleton to the (p − i)−skeleton, suppressing the particular x 

and a. We denote the composition of all these steps as ψ1 ≡ φk ◦ · · · ◦ φ1 and hence we 

map T forward by ψ1 , picking centers (see Lemma 2.5.8) to project from in each step 

and in each simplex. We pick each of these centers such that the retractions map ∂T 

with bounded amplification of mass as well (see Lemma 2.5.9). 

The homotopy formula [29, Section 7.4.3] states that given a smooth homotopy g 

from f0 to f1 where f0, f1 : U ⊆ Rn0 → Rn1 are smooth functions with g(0, x) = f0(x) 

and g(1, x) = f1(x), if T is a d-current and f−1(F ) ∩ spt f is compact for every compact 

set F ⊆ Rn1 , we have that the difference in pushforwards of T under f1 and f0 is given 
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by 

f1#(T ) − f0#(T ) = ∂g#([0, 1] × T ) + g#([0, 1] × ∂T ). 

Define the homotopy g(γ, x) = γx + (1 − γ)ψ1(x) for γ ∈ [0, 1]. Then the homotopy 

formula gives 

T − ψ#
1 (T ) = ∂g#([0, 1] × T ) + g#([0, 1] × ∂T ). 

We define R = g#([0, 1] × T ) and Q1 = g#([0, 1] × ∂T ). Then we get 

T − ψ#
1 (T ) = ∂R + Q1. (2.18) 

Finally, we map ψ#
1 (∂T ) forward to the (d − 1)-skeleton of simplicial complex K with 

φ = φk+1 to get ψ#
2 (∂T ) = φ#(ψ#

1 (∂T )). For this purpose, consider the homotopy 

h(γ, x) from ψ#
1 (∂T ) to ψ#

2 (∂T ), i.e., 

h(γ, x) = γψ#
1 (x) + (1 − γ)ψ#

2 (x) for γ ∈ [0, 1]. 

We define 

P = ψ#
1 (T ) − h#([0, 1] × ψ#

1 (∂T )). (2.19) 

P is a d-current whose boundary ∂P is contained in the (d − 1)-skeleton of K. Define 

Q2 = h#([0, 1] × ψ#
1 (∂T )). Using the homotopy formula, we get 

� � 
∂P = ∂ ψ#

1 (T ) − h#([0, 1] × ψ#
1 (∂T )) 

= ψ#
1 (∂T ) − ∂h#([0, 1] × ψ#

1 (∂T )) 

= ψ#
2 (∂T ) ⊂ (d − 1)-skeleton of K. 

41 



Equation (2.19) gives ψ#
1 (T ) = P + Q2. Defining Q = Q1 + Q2, Equation (2.18) gives 

T − (P + Q2) = ∂R + Q1, hence 

T − P = ∂R + Q. 

Finally, we apply the bounds on the retraction described in Lemma 2.5.9 and the 

paragraph following this Lemma to the masses of the pushforwards. Noticing that 

diameter(σ) ≤ Δ for all σ ∈ K, we get the following bounds, which finish the proof of 

our simplicial deformation theorem (Theorem 2.5.1). 

M(P ) ≤ (4ϑK )
k M(T ) + Δ(4ϑK )

k+1 M(∂T ) � � 
= (4ϑK )

k M(T ) + Δ(4ϑK ) M(∂T ) , 

M(∂P ) ≤ (4ϑK )
k+1 M(∂T ), 

M(R) ≤ Δ M(ψ#
1 (T )) 

≤ Δ(4ϑK )
k M(T ), and 

M(Q) ≤ Δ(4ϑK )
k M(∂T ) + Δ(4ϑK )

k+1 M(∂T ) 

= Δ(4ϑK )
k(1 + 4ϑK ) M(∂T ). 

Remark 2.5.10. The influence of Simplicial regularity as measured by κ1 and κ2 is 

clearly revealed by the statement of our deformation theorem (Theorem 2.5.1). Explicit 

constants are a simple yet useful part of the result; as observed above in Remark 2.5.2, 

the statement of this theorem leads to an easy observation that the flat norm distance 

between T and P can be made a small as desired by subdividing the simplicial complex 

in a manner that keeps the regularity constants bounded. This can be done, for example, 

by using the subdivision algorithm of Edelsbrunner and Grayson [18]. 
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Remark 2.5.11. We did not explicitly discuss the case of 0-dimensional currents. In 

this case, the bounds on mass expansion are all equal to one. 

2.5.2 Comparison of Bounds of Approximation 

Sullivan studied the deformation of integral currents on to the skeleton of a cell complex, 

which is composed of compact convex sets. He presented a deformation theorem for 

deforming integral currents on to the boundary of a cell complex [42, Theorem 4.5]. For 

ease of comparison, we use our notation to restate the bounds given by Sullivan for 

deforming a d-current T to a polyhedral current P in the boundary of a cell complex in 

Rq. Recall that in our simplicial deformation theorem (Theorem 2.5.1), the simplicial 

complex considered has dimension p and is embedded in Rq for q ≥ p. Furthermore, 

κ1, κ2, Δ, and ϑK are simplicial regularity constants. We also note that even though 

Sullivan stated his results for full-dimensional complexes and the standard flat norm, 

it is straightforward to extend them to lower dimensional complexes and the flat norm 
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with scale: !� � � �d+1 p−d+1 
p d + 1 

M(P ) ≤ 2d κ2 M(T ), (2.20)
d 2d 

!� � � �d p−d+1 
p d + 1 

M(∂P ) ≤ 2d κ2 M(∂T ), and (2.21)
d − 1 2d 

Fλ(T, P ) = λd · F1(T/λ, P/λ) 

≤ λd · (p − d + 1)Δ ( M(P/λ) + M(∂P/λ) ) 

= λd · (p − d + 1)Δ ( λ−d · M(P ) + λ1−d · M(∂P ) ) 

= (p − d + 1)Δ ( M(P ) + λ M(∂P ) ). (2.22) 

Our results corresponding to the first two bounds in Equations (2.20) and (2.21) are 

presented in Equations (2.10) and (2.11) in Theorem 2.5.1, which we repeat here with 

the substitution k = p − d. 

M(P ) ≤ (4ϑK )
p−d M(T ) + Δ(4ϑK )

p−d+1 M(∂T ), (2.10 revisited) 

M(∂P ) ≤ (4ϑK )
p−d+1 M(∂T ), (2.11 revisited) 

M(R) ≤ Δ(4ϑK )
p−d M(T ), and (2.12 revisited) 

M(Q) ≤ Δ(4ϑK )
p−d(1 + 4ϑK ) M(∂T ). (2.13 revisited) 

To obtain the flat norm distance corresponding to the third bound given by Sullivan 

in Equation (2.22), we use the definition of flat norm distance between two currents 

specified in Equation (2.2). Using T − P = ∂Q + R, we combine two of our bounds 
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specified in Equations (2.12) and (2.13) to get 

� � 
Fλ(T, P ) ≤ Δ(4ϑK )

p−d M(T ) + λ(1 + 4ϑK ) M(∂T ) . 

To gain a better understanding of how the two sets of bounds compare, we compute 

these bounds explicitly for the case of a 2-current in a regular tetrahedral complex (thus, 

p = 3 and d = 2). Notice that this instance is close to a best case for Sullivan’s bounds, 

as less regular complexes affect them more severely. With this point in mind, we present 

in Table 2.1 our bounds and Sullivan’s bounds on both a regular tetrahedral complex 

and one on which we stretch the regular tetrahedra by a factor of 10 in a direction 

normal to one of their faces (i.e., turn them into skinny, spike-like simplices). 

Quantity Sullivan’s bound Our bound 

Regular tetrahedra 

M(P ) (1.2 × 105) M(T ) (1.6 × 103) M(T ) 

+ (2.5 × 106) Δ M(∂T ) 

M(∂P ) (8.7 × 103) M(∂T ) (2.5 × 106) M(∂T ) 

Fλ(T, P ) (2.4 × 105) Δ M(T ) 

+ (1.7 × 103) Δλ M(∂T ) 

(1.6 × 103) Δ M(T ) 

+ (2.5 × 106) Δλ M(∂T ) 

Stretched tetrahedra 

M(P ) (5.5 × 109) M(T ) (3.7 × 104) M(T ) 

+ (1.4 × 109) Δ M(∂T ) 

M(∂P ) (1.1 × 107) M(∂T ) (1.4 × 109) M(∂T ) 

Fλ(T, P ) (1.1 × 1010)Δ M(T ) 

+ (2.3 × 107)Δλ M(∂T ) 

(3.7 × 104) Δ M(T ) 

+ (1.4 × 109)Δλ M(∂T ) 

Table 2.1: Comparison of our bounds with those obtained by Sullivan for a 2-current 
in a (1) 3-complex of congruent regular tetrahedra and (2) a 3-complex of congruent 
stretched tetrahedra which are created by taking regular tetrahedra and multiplying 
their height by a factor of 10. 
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For the regular tetrahedral complex and the M(P ) bound, our coefficient of M(T ) is 

more than 74 times better, but we do have a second term that can be quite large, but 

diminishes in importance if the complex is subdivided appropriately (see Remark 2.5.10). 

In the stretched complex, our coefficient on M(T ) is 1.5 × 105 times better, indicating 

that our bound is better behaved for irregular complexes. Our bound on M(∂P ) is 

about 290 times worse than Sullivan’s for the regular tetrahedra, and about 120 times 

worse for the stretched complex. For the flat norm bound in the regular complex, we 

are about 148 times better on the M(T ) term and about 145 times worse on the M(∂T ) 

term. On the stretched complex, our M(T ) coefficient is about 3 × 105 times better, and 

our M(∂T ) coefficient is about 60 times worse. We also note that in the case of the flat 

norm with scale, our larger M(∂T ) coefficient becomes less important for small λ. 

Remark 2.5.12. For the important case where ∂T is empty, i.e., when T is a cycle, we 

have M(∂T ) = 0, and hence our bounds are uniformly better than Sullivan’s. 

As compared to Sullivan, we are able to take advantage of our simplicial setting to get 

better bounds on the mass expansion of T . While our mass expansion bounds involving 

∂T are currently inferior to Sullivan’s, we suspect our arguments can be tightened and 

modified to obtain bounds that are better in all cases. More importantly, our bounds are 

less sensitive to simplicial irregularity. Given the challenges inherent in creating meshes 

without slivers even in three dimensions [11], bounds that behave well in their presence 

are highly desirable. 

2.6 Computational Results 

We illustrate computations of the multiscale simplicial flat norm by describing the flat 

norm decompositions of a 2-manifold with boundary embedded in R3 (see Figure 2.6). 
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The input set has the underlying shape of a pyramid, to which several peaks and troughs 

of varying scale, as well as random noise, have been added. We model this set as a 

piecewise linear 2-manifold with boundary, and find a triangulation of the same as a 

subcomplex of a tetrahedralization of the 2 × 2 × 2 cube centered at the origin, within 

which the set is located. We use the method of constrained Delaunay tetrahedralization 

[41] implemented in the package TetGen [39] for this purpose. We then compute the 

multiscale simplicial flat norm decomposition of the input set at various scale (λ) values. 

At high values, e.g., when λ = 6, the optimal decomposition resembles the input set with 

the small kinks due to random noise smoothed out. At the other end, for λ = 0.01, the 

optimal decomposition resembles a flat “sheet”. For intermediate values of λ, the optimal 

decomposition captures features of the input set at varying scales. 

The entire 3-complex mesh modeling the cube in question consisted of 14,002 tetra-

hedra and 28,844 triangles. For each λ, computation of the multiscale simplicial flat 

norm described above took only a few minutes on a regular PC using standard functions 

from MATLAB. This example demonstrates the feasibility of efficiently computing flat 

norm decompositions of large datasets in high dimensions, for the purposes of denoising 

or to recover scale information of the data. 
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Figure 2.6: Top left: A view of original pyramidal surface in three dimensions. The 
remaining three figures show the flat norm decomposition for scales λ = 6 (top right), 
λ = 2 (bottom left), and λ = 0.01 (bottom right). See text for further explanation. The 
images were generated using the package TetView [40]. 
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2.7 Discussion 

Our result on simplicial deformation (Theorem 2.5.1) places the definition of the mul-

tiscale simplicial flat norm into clear context. If a current lives in the underlying space 

of a simplicial complex, we can deform it to be a simplicial current on the simplicial 

complex, and do so with controlled error. In fact, by subdividing the simplicial complex 

carefully, we can move this error as close to zero as we like. Since the multiscale simpli-

cial flat norm could be computed efficiently when the simplicial complex does not have 

relative torsion, one could naturally use our approach to compute the flat norm of a large 

majority of currents in arbitrarily large dimensions. An important open question in this 

context is whether the multiscale simplicial flat norm of a current on a simplicial com-

plex with relative torsion could be approximated efficiently by coarsening the complex 

so that the relative torsion is removed. For instance, it has been observed recently that 

edge contractions could remove existing relative torsion while preserving the homology 

groups of the simplicial complex in certain cases [15]. 

The multiscale simplicial flat norm problem, similar to the recent results on the 

optimal bounding chain problem [16], apply notions from algebraic topology and discrete 

optimization to problems from geometric measure theory such as flat norm of currents 

and area-minimizing hypersurfaces. What other classes of problems from the broader 

area of geometric analysis could we tackle using similar approaches? One such question 

appears to be the following: under what conditions is the flat norm decomposition of an 

integral current guaranteed to be another integral current? Working in the setting of 

simplicial complexes, results on the existence of integral optimal solutions for instances 

of ILPs with integer right-hand side vectors may prove useful in answering this question. 

While L1TV and flat norm computations have been used widely on data in two 

dimensions, such as images, the multiscale simplicial flat norm opens up the possibility 
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of utilizing flat norm computations for higher dimensional data. Similar to the flat 

norm-based signatures for distinguishing shapes in two dimensions [45], could we define 

shape signatures using multiscale simplicial flat norm computations to characterize the 

geometry of sets in arbitrary dimensions? The sequence of optimal multiscale simplicial 

flat norm decompositions of a given set for varying values of the scale parameter λ 

captures all the scale information of its geometry. Could we represent all this information 

in a compact manner, for instance, in the form of a barcode? 
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Chapter 3 

Flat norm decomposition of integral currents 

3.1 Introduction 

In geometric measure theory, currents represent a generalization of oriented surfaces 

with multiplicities. Currents were developed in the context of Plateau’s problem and 

have also found application in isoperimetric problems and soap bubble conjectures [32]. 

Given a d-dimensional current T , we can consider decompositions T = X + ∂S 

where X is a d-dimensional current and S is a (d+1)-dimensional current. Over all such 

decompositions, the minimum total mass (volume) of the two pieces (i.e., M(X)+M(S)) 

is the flat norm F(T ). More recently, the L1TV functional (introduced in the form 

most relevant to us by Chan and Esedoḡlu [9]) was shown to be related to the flat 

norm [34]. This connection suggested the flat norm with scale (yielding the objective 

M(X) + λ M(S) for any fixed scale λ) and a geometric interpretation for the optimal 

decompositions: varying λ controls the scale of features isolated in the decomposition. 

One natural question: must currents in a particular regularity class (in this paper, 

integral currents) have an optimal flat norm decomposition in the same class? The 

L1TV connection shows this is true for boundaries of codimension 1 (i.e., boundaries of 

(d + 1)-currents in Rd+1) since the L1TV functional applied to binary (or step function) 

input is known to have binary (step function) minimizers [9]. This may be taken one step 

further in the discretized problem where the boundary requirement can be dropped [24]. 

In the present work, we present a framework to bridge the gap between the continuous 
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and discrete cases, assuming a suitable triangulation result. This allows us to drop the 

requirement that integral d-currents in Rd+1 be boundaries to have a guaranteed integral 

optimal decomposition. The necessary triangulation result is proved in R2 by means 

of Shewchuk’s Terminator algorithm [38] for subdividing planar straight line graphs. 

This algorithm simultaneously bounds the smallest angles in the complex and tells us 

where they can occur, allowing us to tailor a simplicial complex to a given set of input 

currents. We then obtain a simplicial deformation theorem with constant bounds for 

these currents and simplicial complex, ensuring the sequence of aprroximating discretized 

problems are well-behaved and solve the continuous problem in the limit. Assuming a 

suitable triangulation result for higher dimensions (see Conjecture 3.3.4), we show that 

codimension 1 integral currents have an integral optimal flat norm decomposition. 

For the related problem of least area with a given boundary (which can be considered 

as the flat norm problem with X constrained to be empty), counterexamples of Young 

[47], White [46], and Morgan [31] provide instances in which the minimizer is not integral. 

These negative results are of codimension 3 (i.e., 1-dimensional curves in R4) which may 

translate into a limit on the flat norm question. 

3.1.1 Definitions 

To formally define d-currents in Rn , let Dd be the set of C∞ differentiable d-forms with 

compact support. The set of d-currents (denoted Dd) is the dual space of Dd with the 

weak topology. 

Currents have mass and boundary that correspond (for rectifiable currents, at least) 

to one’s intuition for what these should mean for d-dimensional surfaces in Rn with care 

taken to respect orientation and multiplicities. For more general classes of current, these 

concepts are still defined but may not have the same geometric significance. The mass 
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of a d-current T is formally given by supφ∈Dd {T (φ) | kφk ≤ 1} and the boundary is 

defined when d ≥ 1 by ∂T (ψ) = T (dψ) for all ψ ∈ Dd−1 . When T is a 0-current, we let 

∂T = 0 as a 0-current. The boundary operator on currents is linear and nilpotent (i.e., 

∂∂T = 0 for any current T ), inheriting these properties from exterior differentiation of 

forms (which are linear and satisfy ddφ = 0). 

Normal d-currents have compact support and finite mass and boundary mass (i.e., 

M(T ) + M(∂T ) < ∞). The set Rd denotes the rectifiable d-currents and contains all 

currents with compact support that represent oriented rectifiable sets with integer mul-

tiplicities and finite mass. That is, sets which are almost everywhere the countable 

union of images of Lipschitz maps from Rd to Rn . Lastly, the set Id represents integral 

d-currents and contains all currents that are both rectifiable and normal (formally, it is 

the set of rectifiable currents with rectifiable boundary, but this definition is equivalent 

by the closure theorem [19, 4.2.16]). 

S

T
T − ∂S

Figure 3.1: The flat norm decomposes the 1D current T into (the boundary of) a 2D 
piece S and the 1D piece X = T − ∂S. The resulting current is shown slightly separated 
from the input current for clearer visualization. 

The flat norm of a current T is given by 

F(T ) = min{M(X) + M(S) | T = X + ∂S, X ∈ Ed, S ∈ Ed+1} 

where Ed is the set of d-dimensional currents with compact support (see Figure 3.1). 

The Hahn-Banach theorem guarantees this minimum is attained [19, p. 367] so it makes 
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(a) T and T8 (b) T − T8 (c) F(T − T8) ≤ M(S) where 
∂S = T − T8 

Figure 3.2: The flat norm indicates the unit circle T and inscribed n-gon Tn are close 
because the region they bound has small area. 

sense to talk about particular X and S as a flat norm decomposition of T (note, however, 

that the decomposition need not be unique). 

For two currents, the flat distance between them is given by F(T, P ) = F(T − P ). 

This definition is useful because it is robust to small additions and perturbances (e.g., 

noise) and reflects when currents are intuitively close. For example, given a current T 

representing a unit circle in R2 and an inscribed n-gon Tn (both oriented clockwise, see 

Figure 3.2(a)), one would like Tn to converge to T in some sense as n → ∞ which the 

flat norm accomplishes (contrast with the mass norm M(Tn − T ) → 4π). 

The flat norm can be usefully discretized as well. Given a simplicial (d + 1)-complex 

K and a d-chain T on K, the simplicial flat norm [24] of T on K is denoted by FK (T ) 

and defined analogously except that X and S are restricted to be chains on K. 

3.1.2 Overview 

Our general technique is a standard notion: express the continuous problem as a limit of 

discrete problems for which the result holds. Theorem 3.2.3 tells us that the simplicial 
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K2 

BT 

P2 

Figure 3.3: A sequence of simplicial chains that converges in the flat norm (i.e., Pn → T ) 
need not have convergent simplicial flat norm values (i.e., FKn (Pn) → F(T ) need not 
hold). The current T is the segment from A to B, the complex Kn is the arrangement 
of 2n equilateral triangles of appropriate size stretching from A to B and Pn is the top 
chain from A to B on Kn. Clearly, F(T − Pn) → 0 but FKn (Pn) = √2 F(T ) 6→ F(T ).

3 

Polyhedral 
approximation 

T Pδ 
Optimal 
flat norm =

 

decomposition 
X → Xδ 
S → Sδ 

X + ∂S Xδ + ∂Sδ 
Polyhedral 

approximation 

Figure 3.4: Various approximations and decompositions used in our results. 

flat norm of an integral chain in codimension 1 has an optimal integral current decom-

position; by the compactness theorem from geometric measure theory, the limit of these 

decompositions is also integral. 

In order to show that an integral current T has integral flat norm decomposition, 

we therefore find suitable simplicial approximations to T and take the limit of their 

simplicial flat norm decompositions to obtain an integral decomposition for T . 

We must also show that this decomposition achieves the flat norm value for T (that 

is, express T using integral currents in such a way that it remains an optimal flat norm 

decomposition). This is immediate if our simplicial approximations to T have simplicial 

flat norm values that converge to the flat norm of T but this is not necessary (see 
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a 
Xδ 

Sδ 

Pδ 

Figure 3.5: A possible polyhedral approximation of the decomposition shown in Fig-
ure 3.1. Note that Pδ 6= Xδ + ∂Sδ. 

Figure 3.3). We wish to show 

lim FKδ (Pδ) = F(T ) (3.1) 
δ↓0 

where Pδ is a simplicial approximation to T on some complex Kδ with F(Pδ − T ) < δ. 

This goal prevents us from simply using the simplicial deformation theorem to obtain 

Pδ since we may end up with the situation in Figure 3.3. Instead, we use a polyhedral 

approximation to T which guarantees that the mass increases by at most δ (i.e., M(Pδ) < 

M(T ) + δ rather than the simplicial deformation theorem bound M(Pδ) < C1 M(T ) + 

C2 M(∂T ) with constants bounded away from 1). 

The next step is to take an optimal (possibly nonintegral) decomposition of T and 

approximate it with polyhedral chains (see Figure 3.4). That is, approximate the de-

composition T = X + ∂S with polyhedral Xδ and Sδ. If these approximations naturally 

form a decomposition (not necessarily optimal) of Pδ (i.e., Pδ = Xδ + ∂Sδ), then we 

would have FKδ (Pδ) ≤ M(Xδ) + M(Sδ) < F(T ) + 2δ for any complex Kδ containing Pδ, 

Xδ, and Sδ. This of course implies Equation (3.1). 

However (as in Figure 3.5), we need not have Pδ = Xδ + ∂Sδ. Since we obtained 

these quantities by polyhedral approximation, it turns out that the extent to which this 
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equation is violated is small (in the continuous flat norm). That is, we have 

Pδ = Xδ + ∂Sδ + (Pδ − T ) + (∂S − ∂Sδ) + (X − Xδ). (3.2) 

While Equation (3.2) can be viewed as a decomposition of Pδ, the added error terms 

mean it may not be a chain on a simplicial complex. This means it cannot be used 

directly to bound the simplicial flat norm of Pδ. 

If we use the simplicial deformation theorem to push the error terms to some complex 

Kδ while preserving a pushed version of Equation (3.2), we can obtain a candidate sim-

plicial decomposition of Pδ. In order to use this to bound FKδ , we must know that the 

deformation theorem didn’t make the small error terms large enough to matter. Unfor-

tunately, the simplicial deformation theorem mass bounds rely on simplicial regularity so 

a sufficiently skinny simplex could mean the error terms become large. If the simplicial 

irregularity in Kδ gets worse as δ ↓ 0, we will not be able to show Equation (3.1). 

Since we know exactly which currents we wish to push, the solution is to pick Kδ with 

these in mind: make sure the complex is as regular as possible overall (independently of 

δ) with any irregularities (which may be required to embed Pδ, Xδ, and Sδ) isolated in 

subcomplexes of small measure. By making the irregular portions small enough (so they 

contain a negligible portion of the error terms, even considering the possible magnifica-

tion from pushing), we establish a deformation theorem variant (Theorem 3.3.6) with 

constant mass expansion bounds, assuming a triangulation result that lets us isolate the 

irregularities as described (Shewchuk’s Terminator algorithm [38] provides this in R2). 

The pushed version of Equation (3.2) allows us to prove FKδ (Pδ) ≤ F(T ) + O(δ) from 

which Equation (3.1) and Theorem 3.3.7 follow. 

57 



3.2 Preliminaries 

Our goal is to investigate conditions under which the flat norm decomposition of an 

integral current can be taken to be integral as well. The corresponding statement for 

normal currents is true and useful in our development. 

Lemma 3.2.1. If T is a normal m-current and X and S are m- and (m + 1)-currents 

such that T = X + ∂S and F(T ) = M(X) + M(S) (i.e., T = X + ∂S is a flat norm 

decomposition of T ), then X and S are normal currents. 

Proof. By the definition of normal current, we have M(T ) + M(∂T ) < ∞. Thus 

M(X) + M(S) = F(T ) ≤ M(T ) < ∞ 

so M(X) < ∞ and M(S) < ∞. Since T = X + ∂S, we obtain 

M(∂X) = M(∂ (X + ∂S)) = M(∂T ) < ∞. 

Lastly, 

M(∂S) ≤ M(∂S − T ) + M(T ) = M(−X) + M(T ) < ∞. 

The currents X and S have compact support by the definition of the flat norm. Thus 

X and S are normal by definition. 

Convergence in the flat norm is linear and commutes with the boundary operator as 

the following easy lemma shows. 

Lemma 3.2.2. Suppose that Tn and Un are m-currents for n = 1, 2, . . . and Tn → T and 

Un → U in flat norm (i.e., F(Tn −T ) → 0) for some m-currents T and U . The following 

properties hold: (a) αTn + βUn → αT + βU for any constants α, β ∈ R, (b) ∂Tn → ∂T , 
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Proof. We apply properties of norms to obtain 

F((αTn + βUn) − (αT + βU)) ≤ F(αTn − αT ) + F(βUn − βU) 

= |α| F(Tn − T ) +|β| F(Un − U). 

Letting n →∞ yields the linearity result. Now let Xn and Sn be m- and (m+1)-currents 

such that Xn + ∂Sn is a flat norm decomposition of Tn − T for n = 1, 2, . . . , observing 

that 

F(∂Tn − ∂T ) = F(∂(Xn + ∂Sn)) = F(∂Xn) ≤ M(Xn) ≤ F(Tn − T ). 

The boundary result follows in the limit. 

In the case of the simplicial flat norm, an input integral chain is guaranteed an 

integral chain decomposition whenever the simplicial complex is totally unimodular [24]. 

This occurs when the complex is free of relative torsion which is the case for any (d + 

1)-complex in Rd+1 or when triangulating a compact, orientable (d + 1)-dimensional 

manifold. 

Theorem 3.2.3 (Simplicial flat norm integral decomposition [24]). If K is a simplicial 

(d + 1)-complex embedded in Rd+1 , then for any integral d-chain P on K, the optimal 

simplicial flat norm value for P is attained by an integral decomposition. 

We state the simplicial deformation theorem and sketch a portion of its proof. We 

will later modify it to obtain a multiple current deformation theorem that preserves 

linearity (Theorem 3.3.1). 

Theorem 3.2.4 (Simplicial deformation theorem [24]). Suppose K is a p-dimensional 

simplicial complex in Rq and T is a normal d-current supported on the underlying space of 

K. There exists a simplicial d-current P supported on the d-skeleton of K with boundary 
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supported on the (d − 1)-skeleton (i.e., a simplicial d-chain) such that T − P = Q + ∂R 

and there exists a constant ϑK (depending only on simplicial regularity in K) such that 

the following controls on mass hold: 

M(P ) ≤ (4ϑK )
p−d M(T ) + Δ(4ϑK )

p−d+1 M(∂T ) (3.3) 

M(∂P ) ≤ (4ϑK )
p−d+1 M(∂T ) (3.4) 

M(Q) ≤ Δ(4ϑK )
p−d(1 + 4ϑK ) M(∂T ) (3.5) 

M(R) ≤ Δ(4ϑK )
p−d M(T ) (3.6) 

F(T, P ) ≤ Δ(4ϑK )
p−d(M(T ) + (1 + 4ϑK ) M(∂T )) (3.7) 

where Δ is the diameter of the largest simplex in K. The regularity constant ϑK is given 

by 
diameter(σ) perimeter(σ) diameter(σ)

ϑK = sup + 2 sup (3.8) 
σ∈K Bσ σ∈K inradius(σ) 

where for each l-simplex σ, perimeter(σ) is the (l − 1)-volume of ∂σ and Bσ is the 

l-volume of a ball with radius inradius(σ)/2 in Rl . 

Proof highlights. The simplicial current P is obtained by pushing T and its boundary 

to the d− and (d − 1)-dimension skeletons of K respectively. This pushing is done one 

dimension at a time; that is, T is pushed from the p-skeleton (i.e., the full complex K) 

to the (p − 1)-skeleton, then to the (p − 2) and so on until the d-skeleton. Pushing the 

current from the `-skeleton to the (` − 1)-skeleton is done by picking a projection center 

in each `-simplex σ and projecting the current in σ outwards to ∂σ via straight-line 

projection. 

A crucial step in the proof is to find a projection center that bounds the expansion 

of T and ∂T . In particular, this is done by proving that over all possible centers, 

the average expansion is bounded and then showing that individual centers exist with 
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bounded expansion. We call out this particular step because we modify it to obtain the 

next theorem. 

When projecting onto the skeleton of each simplex σ, we have [24, Lemma 5.9] Z Z 
Jdφ(x, a) dkT k (x) dL ` (a) ≤ ϑσ M(T |σ). (3.9) 

Bσ σ 

where Bσ is the set of possible centers in σ and ϑσ is a regularity constant for σ related to 

ϑK by ϑK = supσ∈K ϑσ. This shows that in each projection step the mass of T expands 

by a factor of at most ϑK averaged over all possible choices of centers. As the average 

expansion over all centers is ϑK , we observe that at most 1 
4
of the possible centers can 

expand the mass of T by a factor of 4ϑK or more. Similarly, at most 1 
4
of the centers 

can expand ∂T by a factor of 4ϑK or more. Therefore, at least 1 
2
of the possible centers 

bound the expansion of both T and ∂T by at most a factor of 4ϑK . Choosing a center 

from this set for each simplex yields the bounds required in the theorem. 

The following theorem allows normal (or integral) currents to be approximated by 

polyhedral chains which are simplicial chains not necessarily contained in an a priori 

complex. Note in particular that the mass bounds can be made arbitrarily tight by 

choice of � in contrast with the larger bounds of the deformation theorems. 

Theorem 3.2.5 (Polyhedral approximation of currents [19], 4.2.21, 4.2.24). If ρ > 0 

and T is a normal m-current in Rn supported in the interior of a compact subset K of 

Rn , then there exists a polyhedral chain P with 

FK (P − T ) ≤ ρ, (3.10a) 

M(P ) < M(T ) + ρ, (3.10b) 

M(∂P ) < M(∂T ) + ρ. (3.10c) 
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If T is integral, then P can be taken to be integral as well. 

Proof. This is a slight modification of Federer’s theorems which do not state Equa-

tions (3.10b) and (3.10c) separately but rather a combined bound M(P ) + M(∂P ) ≤ 

M(T ) + M(∂T ) + ρ. We show only the derivation of the separated bounds. 

In the normal current case [19, 4.2.24], these bounds follow from Federer’s proof. 

In particular, we have currents P1, P2 and Y such that P = P1 + Y and the following 

bounds hold: 

M(P1) < M(T ) + ρ/4, (3.11a) 

M(P2) < M(∂T ) + ρ/4, (3.11b) 

M(P2 − ∂P1 − ∂Y ) + M(Y ) < ρ/2. (3.11c) 

The bounds in Equations (3.10b) and (3.10c) follow from the triangle inequality and 

Equations (3.11a) to (3.11c): 

M(P ) ≤ M(P1) + M(Y ) 

< M(T ) + ρ/4 + ρ/2, 

M(∂P ) = M(∂P1 + ∂Y ) 

≤ M(P2 − ∂P1 − ∂Y ) + M(P2) 

< ρ/2 + M(∂T ) + ρ/4. 

In the integral current case [19, 4.2.21], Federer applies the approximation theorem 

4.2.20 to obtain P close to the pushforward of T under a Lipschitz diffeomorphism f . 
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That is, for any fixed � > 0, there exist P and f such that 

M(P − f#T ) + M(∂P − ∂f#T ) ≤ � (3.12a) 

Lip(f) ≤ 1 + � (3.12b) 

Lip(f−1) ≤ 1 + � (3.12c) 

From Equations (3.12a) to (3.12c), we obtain mass bounds on P and ∂P : 

M(P ) ≤ M(f#T ) + � (3.13a) 

≤ (1 + �)m M(T ) + � (3.13b) 

M(∂P ) ≤ M(∂f#T ) + � (3.13c) 

≤ (1 + �)m−1 M(∂T ) + � (3.13d) 

The bounds in Equations (3.10b) and (3.10c) follow by choosing � small enough. 

3.3 Results 

The simplicial deformation theorem can be modified to allow multiple currents to be 

deformed simultaneously by projecting from the same centers. As opposed to using 

Theorem 3.2.4 separately on each current (where the centers of projection need not be 

the same), this yields a linearity result: deformations of linear combinations are linear 

combinations of deformations. Pushing multiple currents at the same time comes at the 

cost of looser bounds on the deformation (linear in the number of currents) although 

slightly tighter analysis allows the bounds to be reduced by approximately a factor of 2 

(Corollary 3.3.2). 

Theorem 3.3.1. Suppose � > 0 and we have the hypotheses of Theorem 3.2.4 except 
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that there are now m d-currents T1, T2, . . . , Tm and n (d + 1)-currents S1, S2, . . . , Sn to 

push on to the complex to yield the corresponding simplicial chains Pi and Oj . There is 

a series of projection centers (as in the proof of Theorem 3.2.4 and depending on �, K, 

the Ti and Sj ) which can be used with every current Ti and Sj to obtain the bounds: 

M(Pi) ≤ ((2m + 2n + �)ϑK )
p−d M(Ti) + Δ((2m + 2n + �)ϑK )

p−d+1 M(∂Ti) 

M(∂Pi) ≤ ((2m + 2n + �)ϑK )
p−d+1 M(∂Ti) 

F(Ti, Pi) ≤ Δ((2m + 2n + �)ϑK )
p−d(M(Ti) + (1 + (2m + 2n + �)ϑK ) M(∂Ti)) 

M(Oj ) ≤ ((2m + 2n + �)ϑK )
p−d−1 M(Sj ) + Δ((2m + 2n + �)ϑK )

p−d M(∂Sj ) 

M(∂Oj ) ≤ ((2m + 2n + �)ϑK )
p−d M(∂Sj) 

F(Sj , Oj ) ≤ Δ((2m + 2n + �)ϑK )
p−d−1(M(Sj ) + (1 + (2m + 2n + �)ϑK ) M(∂Sj )) 

Moreover, if we let πK denote the projection map that uses these centers to push (d−1)−, 

d−, and (d + 1)-currents to chains on the complex, then we have that: 

• πK commutes with the boundary operator (i.e., πK (∂A) = ∂πK (A) where A is any 

d- or (d + 1)-current) 

• πK is linear on the currents Ti, ∂Ti, Sj and ∂Sj . That is, for any scalars ai and 

bj , 

πK 

⎛⎝Xm 

i=1 

ai∂Ti 

⎞⎠ Xm 

= aiπK (∂Ti) 

πK 

⎛⎝Xm 

i=1 X 
X
⎛ 

n ⎝ 

n 

aiTi + bj ∂Sj 

j=1 

⎞⎠ 
i=1 XXm n 

= aiπK (Ti) + bj ∂(πK (Sj )) ⎞⎠ 
i=1 j=1 

bjSj 

Xn 

= bj πK (Sj )πK 

j=1 j=1 
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Proof. We must show that there are centers in the set of feasible centers Bσ (see the 

proof sketch of Theorem 3.2.4) which simultaneously achieve the various bounds on the 

2(m + n) relevant currents: T1, . . . , Tm, ∂T1, . . . ∂Tm, S1, . . . Sn, ∂S1, . . . , ∂Sn. 

We consider the case of projecting currents from the `-skeleton to the (`−1)-skeleton 

in the `-simplex σ. As in the proof of Theorem 3.2.4, we again use the average bound 

in Equation (3.9). For each k ∈ Z+ and i = 1, 2, . . . ,m, let ( )Z � � 
1 

HTi,k = a ∈ Bσ Jdφ(x, a) dkTik (x) > 2m + 2n + ϑσ M(Ti) . 
kσ 

Then, using the same average-based argument as in Theorem 3.2.4, we have that H ` (HTi,k)/H ` (Bσ) < 

1 (i.e., the size of the set of poorly behaved centers with respect to each Ti is a small2m+2n 

fraction of the set Bσ of possible centers). We similarly define H∂Ti,k, HSj ,k, and H∂Sj ,k 

and obtain the same bound of 1 on the bad centers. For each k ∈ Z+ , we are
2m+2m 

interested in the set of centers which are simultaneously good centers for all currents 

involved (i.e., points in Bσ but not any of the H·,k sets). Call this set Gk and observe 

that it has positive measure: ⎛ ⎞⎛ ⎞ [ [ [ [
H ` (Gk) = H ` ⎜⎝Bσ\ ⎝ m 

HTi,k ∪ 
m 

H∂Ti,k ∪ 
n 

HSi,k ∪ 
n 

H∂Si,k
⎠⎟⎠ 

i=1 i=1 i=1 i=1 

m m n nX X X X 
≥ H ` (Bσ) − H ` (HTi,k) − H ` (H∂Ti,k) − H ` (HSj ,k) − H ` (H∂Sj ,k) 

i=1 i=1 j=1 j=1� � 
m m n n 

> H ` (Bσ) 1 − − − − 
2m + 2n 2m + 2n 2m + 2n 2m + 2n 

= 0. 

Thus for any k > 1 
� we have that Gk is a nonempty set of possible projection centers 

which simultaneously attain an expansion bound of at most (2m + 2n + �)ϑσ for all the 

pertinent currents. 
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The projection operator is clearly linear and commutes with the boundary operator 

as a consequence of properties [19, 4.1.6] of the differential forms to which currents are 

dual. 

Corollary 3.3.2. The bounds in Theorem 3.2.4 can all be tightened by replacing 4ϑK 

with (2 + �)ϑK . 

Proof. Simply taken m = 1 and n = 0 in Theorem 3.3.1. 

For a 2-complex K, the minimum angle over all triangles in the complex is eas-

ier to work with and can be used as a proxy for our simplicial regularity constant as 

Lemma 3.3.3 indicates. 

Lemma 3.3.3. A lower bound on the minimum angle of all triangles in a 2-complex 

implies an upper bound on the simplicial regularity constant. That is, given a 2-complex 

K with minimum angle at least θ, we have ϑK ≤ Cθ for some constant Cθ. 

Proof. The simplicial regularity constant ϑK used for Theorems 3.2.4 and 3.3.1 in the 

case of triangles is given by 

4 diameter(σ) perimeter(σ) diameter(σ)
ϑK = sup + 2 sup . 

π σ∈K inradius(σ)2 
σ∈K inradius(σ) 

We observe that bounding diameter(σ)/ inradius(σ) and perimeter(σ)/ inradius(σ) for 

all triangles σ ∈ K yields a bound for ϑK . Suppose σ has side lengths a ≥ b ≥ c and 

angle γ opposite c. Using the law of cotangents, we obtain 

diameter(σ) a cot(γ/2) a cot(γ/2) 
= ≤ = 2 cot(γ/2) ≤ 2 cot(θ/2). 

inradius(σ) (a + b)/2 − c/2 (a + b)/2 − b/2 

The bound for perimeter(σ)/ inradius(σ) follows easily from this: 

perimeter(σ) 3 diameter(σ)≤ < 6 cot(θ/2). 
inradius(σ) inradius(σ) 
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Thus we can take Cθ = 48 
π cot(θ/2)

2 + 4 cot(θ/2). 

Our result relies on the ability to localize irregularities via subdivision, focusing on 

localization rather than removal because the latter is not possible. For example, any 

subdivision of a 2-complex with a very small input angle will have an angle that is at least 

as small. With that in mind, we require that subdivisions be possible which push the 

irregularities into the corners. That is, the irregularity should be bounded by a constant 

(independent of the complex) away from the original complex skeleton and a complex-

dependent constant (reflecting the necessity of some bad simplices) near the skeleton. 

Conjecture 3.3.4 formalizes this requirement and Theorem 3.3.5 notes some cases where 

it holds. We present our main theorem in such a way that proving Conjecture 3.3.4 more 

generally will automatically extend our results. 

Conjecture 3.3.4. For any p-dimensional simplicial complex K in Rq and � > 0, it is 

possible to subdivide K so that all simplices are of bounded “badness” (with bound inde-

pendent of K or �) except possibly for simplices in a region of p-dimensional volume less 

than � near the (p − 1)-skeleton; even these simplices have bounded badness (dependent 

on K but not �). More precisely, there exists a subdivision M� of K and a subcomplex 

M� 
0 of M� (with simplicial regularity constants ϑM� and ϑM� 

0 ) such that: 

1. M�\M� 
0 ⊆ {x ∈ Rq | kx − yk < � for some y in the (p − 1)-skeleton of K}, 

2. ϑM� ≤ αK for some constant αK , 

3. ϑM� 
0 ≤ β for some fixed constant β. 

In particular, αK does not depend on � and β does not depend on K or �. The simplicial 

regularity constants are defined as in Equation (3.8). 

Theorem 3.3.5. Conjecture 3.3.4 holds for: 

67 



• q ≥ p = 1 

• p = q = 2 

Proof. The p = 1 case is trivial as all 1-simplices have the same regularity so we have 

ϑK = 8 and can take M� = M� 
0 = K. 

For the p = q = 2 case, we proceed in two steps. First we will superimpose a 

square grid on K (orienting it to bound the minimum angle created between its edges 

and those of K), creating a cell complex which is a refinement of K. Next we use 

Shewchuk’s Terminator algorithm [38] to further refine the cell complex back into a 

simplicial complex with bounds on the minimum angle and, crucially, restrictions on 

where these small angles can be so that we can obtain regularity bounds. 

By superimposing a fine enough square grid, we can force the small angles (whether 

already present in the complex or newly created) to occur only in a small measure subset 

of the complex. Pick δ > 0 small enough that the set 

{x ∈ R2 | y lies on the 1-skeleton of K, kx − yk < 3δ} 

has measure less than �. Let G be a finite square grid in R2 whose cells each have 

diameter δ such that G covers the underlying space of K in any rotation. Note that 

there are only two directions present in G so if we bound all possible angles created 

between these directions and the edges of K, we can bound the minimum new angle 

created by superimposing G. 

Let w ∈ R2 be a fixed unit vector and define � � 
π 

E = φ, φ + | φ is the angle between u − v and w for some edge (u, v) ∈ K . 
2 

Further let Eθ = {ψ ∈ [0, 2π) | |φ − ψ| < θ for some φ ∈ E}. This is the set of angles to 
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avoid when rotating G in order to guarantee all created angles will be θ or larger. 

Denote by N < ∞ the cardinality of E and note that [0, 2π)\E 
π 
has positive 2N 

measure so there exist rotations of the square grid that create no new angles smaller 

πthan .
2N 

After superimposing a suitably rotated version of G, we obtain a new cellular complex 

which is a refinement of K. This is a planar straight line graph which can be used as 

input to Shewchuk’s Terminator algorithm [38] which refines it into a simplicial complex 

M� with guarantees about the minimum angle bound of the resulting complex and where 

the small angles can occur. 

In particular, if θ be the minimum angle in the cellular complex (either present 

originally or added in the square grid superposition), then the minimum angle of M� 

√ 
is at least arcsin(( 3/2) sin(θ/2)). Furthermore, no angles less than 30◦ are created by 

the algorithm except in the vicinity of angles less than 60◦ . Specifically, newly created 

small angles must be part of a skinny triangle whose circumcenter encroaches upon a 

subsegment cluster bearing a small input angle. As all such subsegment clusters must 

be contained within a distance of 2δ of the 1-skeleton of K, we have that all small angles 

in M� are within 3δ of the 1-skeleton of K. 

Let M� 
0 be the subcomplex of M� containing all triangles not fully contained in the 

3δ tube, noting that all angles in M� 
0 are at least 30◦ so by Lemma 3.3.3 we have 

√ √ 
48 4(2 + 3)(24 + 12 3 + π)

ϑM� 
0 ≤ 

π 
cot(15◦)2 + 4 cot(15◦) = . 

π 

We may take β to be this quantity, noting that it is independent of � and K. The mini-

mum angle bound θ for M� and Lemma 3.3.3 give us a bound αK for ϑM� (independent 

of �). 

The following theorem shows that the bounds in Theorem 3.3.1 may be replaced 
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with constants independent of the complex and currents involved if we subdivide the 

complex by means of Conjecture 3.3.4 (the subdivision does depend on the currents and 

complex, of course). 

Theorem 3.3.6. Suppose we have integers d < s ≤ q and that Conjecture 3.3.4 holds 

for the given q and any p such that d − 1 ≤ p ≤ s (that is, suppose we can isolate the 

irregularities of any p-complex in Rq by suitable subdivision). Given a s-dimensional 

simplicial complex K in Rq and a set of d-currents T1, . . . , Tm and (d + 1)-currents 

S1, . . . , Sn in the underlying space of K with d < s, there exists a complex K 0 which is 

a subdivision of K such that we have all of the conclusions of Theorem 3.3.1 (i.e., mass 

and flat norm bounds and linear projection of the Ti and Sj to K 0) except the simplicial 

irregularity constant ϑK0 in the various bounds can be replaced with a constant L which 

does not depend on K. 

Proof. In the simplicial deformation theorems, the current is projected step-by-step to 

lower dimensional skeletons (e.g., a d-current is projected from the initial p-complex 

to the (p − 1)-skeleton, then the (p − 2)-skeleton eventually down to the d-skeleton 

with one more step to push the current’s boundary to the (d − 1)-skeleton) with each 

projection being done by picking a center in each simplex and using it to project outward 

to the boundary of the simplex. The simplicial regularity constant is used to bound the 

expansion of mass at each projection step and is defined by Equation (3.8), a bound on 

the regularity of all simplices in the complex. 

However, this is a bit stronger than required as the projection is a local operation 

and the bound at each step depends only on the simplicial regularity of the simplex 

in question. In addition, there is no reason in principle that we cannot subdivide the 

complex in between steps. That is, after pushing to the `-skeleton, we can further 

subdivide the complex and then push to the newly refined (` − 1)-skeleton. In this 
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case, the subdivision need not preserve the simplicial regularity of the (` + 1)- or higher 

simplices as all subsequent pushing steps will take place in lower dimensional simplices. 

Moreover, for a given portion of current we can use the maximum of the simplicial 

regularity constants of the simplices it encounters while being pushed (rather than the 

maximum over all simplices in the complex). 

For all � > 0 and nonnegative integers k < p, let Nk
� denote the set of all points in 

the (k +1)-skeleton of K with positive distance less than � from the k-skeleton of K (i.e., 

all points in the interior of the (k + 1)-simplices of K which are close to the k-skeleton). 

Let T N � 
p−1

¬
denote the restriction of the current T to the set N � 

p−1 and note that 

lim M(Ti N
� 
p−1

¬
) = 0, lim M(Sj 

¬
N � 

p−1) = 0, 
�↓0 �↓0 

(3.14) ¬
lim M(∂Ti 

¬
) = 0, lim M(∂Sj ) = 0.N � 

p−1 N � 
p−1

�↓0 �↓0 

Let 
β 

δ = min {M(Ti), M(∂Ti), M(Sj ), M(∂Sj )} (3.15)
αK 1≤i≤m,1≤j≤n 

where αK and β are as in (the assumed true) Conjecture 3.3.4 and choose � > 0 to make 

each of the masses in Equation (3.14) less than δ. We can apply Conjecture 3.3.4 with 

this � to obtain a subdivision M� of K and a subcomplex M� 
0 such that the portion of 

each of our currents which lies in M�\M� 
0 and is not already on the (p − 1)-skeleton (so 

is not fixed by the first projection) has mass less than δ. This portion of each current 

increases in mass by a factor of at most (2m +2n + �)αK when projecting to the (p − 1)-

skeleton (see proof of Theorem 3.3.1). Letting Ti 
0 denote the result of projecting Ti to 
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the (p − 1)-skeleton, we can bound its mass using Equation (3.15): 

h i 
M(Ti 

0) ≤ (2m + 2n + �) β M(Ti \ skelp−1(K)) + αK M(Ti 
¬¬
M�\(M� 

0 ∪ skelp−1(K)))M 0 
� 

+ M(Ti skelp−1(K))
¬
 

≤ (2m + 2n + �)(β M(Ti) + αK δ) 

≤ (2m + 2n + �)(β M(Ti) + β M(Ti)) 

≤ (2m + 2n + �)(2β) M(Ti). 

Similar inequalities hold for Sj , ∂Ti, and ∂Sj . In the preceding, we have accomplished 

the goal of projecting all currents involved from the p-skeleton to the (p − 1)-skeleton 

and can now consider them as currents in the underlying space of the (p − 1)-complex 

skelp−1(K). We can apply this procedure iteratively (use Conjecture 3.3.4 to localize the 

irregularities and then project) to push to the (p − 2), etc. skeletons. 

When we subdivide each k-skeleton using Conjecture 3.3.4, the higher dimension 

simplices are not subdivided by default but this is easy to fix. After a k-simplex is 

subdivided, add a point to the interior of every (k + 1)-simplex of which it was a face 

and connect the new point to every k-simplex on its boundary. This will likely generate 

highly irregular simplices but since we’ve already pushed the currents down beyond their 

dimension, it isn’t an issue. 

This argument continues in the same way as Theorems 3.2.4 and 3.3.1 and establishes 

our result with L = 2β. 

Theorem 3.3.7. If T is an integral d-current in Rd+1 and Conjecture 3.3.4 holds for 

d− and (d + 1)-currents, then some flat norm minimizer for T is an integral current. 

That is, there is an integral d-current XI and integral (d + 1)-current SI such that 

F(T ) = M(XI ) + M(SI ) and T = XI + ∂SI . 
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Proof. We let X + ∂S be an optimal flat norm decomposition of T . That is, X is a 

d-current and S is a (d + 1)-current such that 

T = X + ∂S, F(T ) = M(X) + M(S). (3.16) 

We note by Lemma 3.2.1 that X and S are normal currents. 

As a general outline of the proof, for each δ > 0, we will choose a particular simpli-

cial complex Kδ on which we have d-chains Pδ and Xδ and (d + 1)-chain Sδ respectively 

approximating T , X, and S with error at most δ. We convert the (possibly nonintegral) 

optimal flat norm decomposition of T into a candidate simplicial decomposition of Pδ in 

order to show (Claim 3.3.7.2) the simplicial flat norm of Pδ converges to the flat norm 

of T (this step does not yet show that the flat norm decompositions converge). We can 

take the optimal simplicial decomposition to be integral for each Pδ by Theorem 3.2.3. 

The compactness theorem from geometric measure theory along with the above conver-

gence result allows us to take the limit of (a subsequence of) these integral simplicial 

decompositions and obtain an integral flat norm decomposition of T (Claim 3.3.7.5). 

Suppose δ > 0 and apply Theorem 3.2.5 to obtain polyhedral currents Pδ, Xδ and 

Sδ with 

F(T − Pδ) < δ, M(Pδ) < M(T ) + δ, M(∂Pδ) < M(∂T ) + δ, (3.17a) 

F(X − Xδ) < δ, M(Xδ) < M(X) + δ, M(∂Xδ) < M(∂X) + δ, (3.17b) 

F(S − Sδ) < δ, M(Sδ) < M(S) + δ, M(∂Sδ) < M(∂S) + δ. (3.17c) 

We also require optimal flat norm decompositions of Pδ − T , X − Xδ and S − Sδ so let 
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Ui
δ , Wj

δ and V2 
δ be d-, (d + 1)- and (d + 2)-dimensional currents such that: 

Pδ − T = U0 
δ + ∂W0 

δ , F(Pδ − T ) = M(U0 
δ) + M(W0 

δ), (3.18a) 

X − Xδ = U1 
δ + ∂W1 

δ , F(X − Xδ) = M(U1 
δ) + M(W1 

δ), (3.18b) 

S − Sδ = W δ + ∂V2 
δ , F(S − Sδ) = M(W δ) + M(V δ). (3.18c)2 2 2 

To clarify the notation, we adopt the convention that variables with a δ subscript are 

chains on the simplicial complex Kδ whereas a δ superscript merely indicates dependence 

on δ. 

Let Kδ be any simplicial complex that triangulates Pδ, Xδ and Sδ separately as well 

as the convex hull of their union. We may assume (applying the subdivision algorithm 

of Edelsbrunner and Grayson [18] and Theorem 3.3.6 if necessary) that the currents U0, 

U1, W0, W1, and W2 can be pushed to Kδ with expansion bound at most L and the 

maximum diameter Δ of a simplex of Kδ satisfies 

δ 
Δ ≤ . (3.19) 

max{1, M(∂U0 
δ), M(∂U1 

δ), M(∂W0 
δ), M(∂W1 

δ), M(∂W2 
δ)} 

Claim 3.3.7.1. F(T ) ≤ limδ↓0 FKδ (Pδ) 

Proof of claim. By the triangle inequality and since any simplicial flat norm decompo-

sition is a candidate decomposition for the flat norm, we have 

F(T ) ≤ F(T − Pδ) + F(Pδ) 

≤ F(T − Pδ) + FKδ (Pδ). 

The claim follows from letting δ ↓ 0 and noting that F(T − Pδ) → 0. 

Claim 3.3.7.2. F(T ) = limδ↓0 FKδ (Pδ) 

Proof of claim. In light of Claim 3.3.7.1, we must show that F(T ) ≥ limδ↓0 FKδ (Pδ). 
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Recall that X + ∂S = T is an optimal flat norm decomposition of T and Xδ and 

Sδ are polyhedral approximations to X and S on our simplicial complex Kδ. Using the 

decompositions in Equations (3.16) and (3.18), we can write: 

Pδ = T + U0 
δ + ∂W0 

δ 

= X + ∂S + U0 
δ + ∂W0 

δ (3.20) 

= Xδ + U0 
δ + U1 

δ + ∂(Sδ + W δ + W δ + W δ).0 1 2 

Now apply Theorem 3.3.6 with � = 1 to the currents Ui
δ and Wj

δ for all i ∈ {0, 1} and 

j ∈ {0, 1, 2} to obtain Ui,δ and Wj,δ on the simplicial complex Kδ with 

M(Ui,δ) ≤ (11L)p−d+1 M(Ui
δ) + (11L)p−dΔ M(∂Ui

δ), (3.21a) 

M(Wj,δ) ≤ (11L)p−d M(Wj
δ) + (11L)p−d−1Δ M(∂Wj

δ)). (3.21b) 

Applying Equations (3.17) to (3.19), we obtain the following from Equation (3.21): 

M(Ui,δ) ≤ (11L)p−d+1δ + (11L)p−d δ 
M(∂Ui

δ)
M(∂U δ)i (3.22a) 

= (11L)p−d(1 + 11L)δ 

δ 
M(Wj,δ) ≤ (11L)p−dδ + (11L)p−d−1 M(∂Wj

δ)
M(∂Wj

δ) 
(3.22b) 

= (11L)p−d−1(1 + 11L)δ 

We apply the linearity result of Theorem 3.3.6 to Equation (3.20) along with the fact 

that Pδ, Xδ, and ∂Sδ are fixed by projection to the d-skeleton of Kδ to yield 

Pδ = (Xδ + U0,δ + U1,δ) + ∂(Sδ + W0,δ + W1,δ + W2,δ) 

which, as all quantities are chains on Kδ, is a candidate simplicial flat norm decom-

position of Pδ. Using this observation, the triangle inequality, and Equations (3.17) 
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and (3.22), we have 

FKδ (Pδ) ≤ M(Xδ + U0,δ + U1,δ) + M(Sδ + W0,δ + W1,δ + W2,δ) 

≤ M(Xδ) + M(U0,δ) + M(U1,δ) + M(Sδ) + M(W0,δ) + M(W1,δ) + M(W2,δ) 

≤ M(X) + M(S) + 2δ + 2(11L)p−d(1 + 11L)δ + 3(11L)p−d−1(1 + 11L)δ 

= F(T ) + 2δ + 2(11L)p−d(1 + 11L)δ + 3(11L)p−d−1(1 + 11L)δ. 

The claim follows from taking the limit as δ ↓ 0. 

Claim 3.3.7.3. For each δ > 0, there exist integral simplicial chains Yδ and Rδ on 

Kδ such that Pδ = Yδ + ∂Rδ is an optimal simplicial flat norm decomposition (i.e., 

FKδ (Pδ) = M(Yδ) + M(Rδ)). 

Proof of claim. This follows from Theorem 3.2.3. 

Claim 3.3.7.4. There exists c > 0 such that for all δ ≤ 1, the currents Yδ, ∂Yδ, Rδ, 

and ∂Rδ all have mass at most c. 

Proof of claim. Using the fact that Pδ = Yδ + ∂Rδ is an optimal simplicial flat norm 

decomposition and facts from Equation (3.17), we observe that 

M(Yδ) ≤ M(Pδ) M(∂Yδ) = M(∂(Pδ − ∂Rδ)) 

< M(T ) + δ = M(∂Pδ) 

≤ M(T ) + 1, < M(∂T ) + δ 

≤ M(∂T ) + 1, 

M(Rδ) ≤ M(Pδ) M(∂Rδ) = M(Pδ − Yδ) 

< M(T ) + δ ≤ M(Pδ) + M(Yδ) 

≤ M(T ) + 1, < 2 M(T ) + 2. 
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So c = max{2 M(T ) + 2, M(∂T ) + 1} works. 

Claim 3.3.7.5. There is an optimal flat norm decomposition of T with integral currents. 

Proof of claim. The compactness theorem [19,32] states that given any closed ball K in 

Rn and nonnegative constant c, the set 

{I is an integral p-current in Rn | M(I) ≤ c, M(∂I) ≤ c, spt I ⊆ K} 

is compact with respect to the flat norm. In light of Claim 3.3.7.4, this means there is 

a compact set of integral currents containing Yδ for all δ ≤ 1 (and similarly for Rδ). 

Let δn = 
n 
1 and consider the sequences {Yδn } and {Rδn }. By compactness, there 

exists a subsequence {δn 
∗ } of {δn} and integral currents Y ∗ and R∗ such that Yδn 

∗ → Y ∗ 

and Rδ∗ → R∗ in the flat norm. By Lemma 3.2.2, we have Yδ∗ + ∂Rδ∗ → Y ∗ + ∂R∗ . 
n n n 

Applying Claim 3.3.7.3 and Claim 3.3.7.2, we get M(Yδ∗ ) + M(Rδ∗ ) = FKδ (Pδ∗ ) → F(T ).
n n n 

Since Yδ + ∂Rδ = Pδ → T , we also have Yδn 
∗ + ∂Rδn 

∗ → T . That is, T = Y ∗ + ∂R∗ . 

As mass is lower semicontinuous with respect to convergence in the flat norm and by 

Claim 3.3.7.2, we have that 

M(Y ∗ ) + M(R ∗ ) ≤ lim M(Yδn 
∗ ) + M(Rδn 

∗ ) 
n→∞ 

= lim FKδn 
∗ (Pδ) 

n→∞ 

= F(T ). 

Thus M(Y ∗) + M(R∗) = F(T ) and Y ∗ + ∂R∗ is an optimal flat norm decomposition of 

T . 
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Chapter 4 

Nonasymptotic densities1 

4.1 Introduction 

This work discusses the integral area invariant introduced by Manay et al. [30], par-

ticularly with regard to reconstructability of shapes. This topic has been considered 

previously by Fidler et al. [20] [21] for the case of star-shaped regions. Recent results 

have shown local injectivity in the neighborhood of a circle [6] and for graphs in a 

neighborhood of constant functions [8]. 

The present work does not assume a star-shaped condition but does make use of 

a tangent-cone graph-like condition which is local to the integral area circle. We also 

present an interpretation of the integral area invariant as a nonasymptotic density. This 

is based on a poster presented by the authors [26]. 

Our tangentially graph-like and tangent-cone graph-like conditions (definitions 4.2.3 

and 4.2.5 in section 4.2) restrict our attention to shapes with boundaries that can lo-

cally (i.e., within radius r) be viewed as graphs of functions in a Cartesian plane in one 

particular orientation (in the case of tangentially graph-like) or a particular set of ori-

entations (for tangent-cone graph-like). Intuitively, these conditions guarantee that the 

boundary does not turn too sharply within the given radius and that working locally in 

Euclidean space is the same as working locally on the boundary of our shapes (i.e., the 

shape boundary does not pass through any given invariant circle multiple times, section 

1Previously published as [27] 
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4.2.2). These simplifying assumptions allow us to explicitly analyze what happens when 

we move along the boundary and to work locally without worrying about global effects. 

We show that the tangent-cone graph-like property can be preserved when approx-

imating a shape with a polygon (section 4.3) and discuss what the derivatives of these 

nonasymptotic densities represent (section 4.4) and show that all tangentially graph-like 

boundaries can be reconstructed (modulo translations and rotations) given sufficient in-

formation about the nonasymptotic density and its derivatives (section 4.5 and appendix 

4.11). 

The main contribution of this paper is to show (under our tangent-cone graph-like 

condition) that all polygons (theorem 4.6.1 in section 4.6) and a C1-dense set of C2 

boundaries (theorem 4.7.1 in section 4.7) are reconstructible (modulo translations and 

rotations). We briefly discuss and sketch the proofs of these two theorems. 

Theorem 4.6.1. For a polygon Ω which is tangent-cone graph-like with radius r, suppose 

that we have the integral area invariant g(s, r) where s is parameterized by arc length. 

Suppose that for all s we know g(s, r) and its first derivatives with respect to r (disk 

radius) and s (position along the boundary). This information is sufficient to completely 

determine Ω up to translation and rotation; that is, we can recover the side lengths and 

angles of Ω. 

The proof of this theorem uses the discontinuities in the s derivative to determine 

the locations of vertices (and thus the side lengths between them). We combine the 

r derivative and the one-sided s derivative information when centered on a vertex to 

recover the angles at which the polygon enters and exits the circle (which might not 

be the polygon vertex angle if the circle contains another vertex). Doing this with the 

other one-sided s derivative gives the same thing but using the orientation determined 

by the other polygon side incident to the vertex. The combination of these yields the 
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polygon’s angle at each vertex. 

Theorem 4.7.1. Define G ≡ {γ|γ is a C2 simple closed curve and tangentially graph-

like for r = r̂}. Suppose that, for r = r̂, for all s ∈ [0, L], and for each γ ∈ G, we know 

the first-, second-, and third-order partial derivatives of gγ (s, r). Then the set of recon-

structible γ ∈ G is C1 dense in G where reconstructability is modulo reparametrization, 

translation, and rotation. 

The first part of the proof shows that the derivative information can be used to 

obtain the curvature. However, it is not the curvature at the boundary point where the 

circle is centered but rather the curvature at each of the points where the boundary 

enters and exits the circle. Although the Euclidean distance to these points is known, 

the arc length distances are not and can vary from point to point. Thus the sequences 

of curvatures we obtain also lose the arc length parameterization of our area invariant. 

The rest of the proof is concerned with finding the arc length distance from the center 

to the entry and exit points which effectively recovers the curvature for all points. This 

relies on matching up the unique features of exit angle sequences with each other which 

in turn relies on the existence of unique maxima and minima in these sequences. While 

this is not true in general, it can be arranged to be so by a suitable small perturbation 

of the boundary (which is why our result is one of density rather than for all shapes). 

This is a theoretical paper about a measure that is useful in applications: we do not 

pretend that the reconstruction techniques in our proofs are practically useful. In fact, 

the reconstructions we use to show uniqueness would be seriously disturbed by the noise 

that any practical application would encounter. We do, however, comment on some 

possible approaches to reconstruction (section 4.8) using the OrthoMads direct search 

algorithm [2] to successfully reconstruct shapes which are not predicted by our theory. 
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Ω 

γ ≡ ∂Ω 

r 

γ(s) 

Figure 4.1: Notation and basic setup 

4.2 Notation and Preliminaries 

Unless otherwise specified, we will be assuming throughout this paper that Ω ⊂ R2 is 

a compact set with simple closed, piecewise continuously differentiable boundary ∂Ω of 

length L. Let γ : [0, L] → ∂Ω be a continuous arclength parameterization of ∂Ω (see 

Figure 4.1). We will adopt the convention that γ traverses ∂Ω in a counterclockwise 

direction so it always keeps the interior of Ω on the left (there is no compelling reason 

for this particular choice, but adopting a consistent convention allows us to avoid some 

ambiguities later). Note that γ(0) = γ(L) and that γ restricted to [0, L) is a bijection. 

Denote by D(p, r) the closed disk and C(p, r) the circle of radius r centered at the point 

p ∈ R2 . 

In geometric measure theory, the m-dimensional density of a set A ⊆ Rn at a point 

p ∈ Rn is given by 
Hm(A ∩ D(p, r))

Θm(A, p) = lim 
r↓0 αmrm 
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where Hm is the m-dimensional Hausdorff measure and αm is the volume of the unit 

ball in Rm [33]. In the current context, the 2-dimensional density of Ω at γ(s) is simply 

Area(Ω ∩ D(γ(s), r))
Θ2(Ω, γ(s)) = lim . 

r↓0 πr2 

While we can evaluate this for all s ∈ [0, L), just knowing the density at every point 

along the boundary is generally insufficient to reconstruct the original shape. If γ0(s) 

exists, then Area(Ω ∩ D(γ(s), r)) is approximated arbitrarily well for sufficiently small 

r by replacing ∂Ω with its tangent line (which gives us an area of exactly πr 
2 

2 
). Hence, 

we have Θ2(Ω, γ(s)) = 1
2 at any point where γ is differentiable. That is, just knowing 

Θ2 (i.e., the limit) is insufficient to distinguish any two shapes with C1 boundary. 

Contrast this with the situation where we know Area(Ω ∩ D(γ(s), r)) for every s ∈ 

[0, L) and r > 0 (i.e., we have all of the values needed to compute the limit as well). 

This added information is sufficient to uniquely identify C2 curves by recovering their 

curvature at every point (see Appendix 4.11). 

One natural question to ask (and the focus of the present work) is whether failing 

to pass to the limit (i.e., using some fixed radius r instead of the limit or all r > 0) and 

collecting the values for all points along the boundary preserves enough information to 

reconstruct the original shape. That is, can a nonasymptotic density (perhaps along 

with information about its derivatives) be used as a signature for shapes? 

4.2.1 Definitions 

Definition 4.2.1. In the current context, the integral area invariant [30] is denoted by 

g : [0, L) × R+ → R+ and given by Z 
g(s, r) = dx = Area(Ω ∩ D(γ(s), r)). 

D(γ(s),r)∩Ω 
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Remark 4.2.2. Note the lack of the normalizing factor πr2 in the definition of g(s, r). 

Since we presume that r is fixed and known for the situations we study, it’s trivial to 

convert data between the forms g(s, r) and g(s,r) ; we choose to leave out the normalizing
πr2 

factor in the definition of g(s, r) as it is the integral area invariant of Manay et al. [30] 

and this form proves useful when computing derivatives in section 4.4. 

We introduce the tangentially graph-like condition as a simplifying assumption for 

the shapes we consider. 

Definition 4.2.3. For a fixed radius r, we say that ∂Ω is graph-like (GL) at a point 

p ∈ ∂Ω (or graph-like on D(p, r)) if it is possible to impose a Cartesian coordinate 

system such that the set of points ∂Ω ∩ D(p, r) is the graph of some function f in this 

coordinate system. Without loss of generality, we adopt the convention that p is the 

origin so that f(0) = 0. We define tangentially graph-like (TGL) in the same way but 

further require that ∂Ω be continuously differentiable and f 0(0) = 0 (noting that f is C1 

because ∂Ω is). This is illustrated in figure 4.2(a). Without loss of generality (and in 

keeping with our convention that γ traverses ∂Ω counterclockwise), we assume that the 

interior of Ω is “up” in the circle (i.e., that (0, �) ∈ Ω for sufficiently small � > 0). If ∂Ω 

is (tangentially) graph-like on D(p, r) for all p ∈ ∂Ω, we say that ∂Ω is (tangentially) 

graph-like for radius r. 

It is instructive to consider what is not graph-like or tangentially graph-like. Viola-

tions of the graph-like condition are generally due to a radius that is too large (certainly, 

choosing a radius so large that all of Ω is in the disk will do it). For example, a unit 

side length square is not graph-like with radius 
2
1 + � for any � > 0 (position the circle 

at the center of a side; see figure 4.3(a)). Notice that the same square is graph-like with 

any radius 
2
1 or below. A shape can fail to be tangentially graph-like while still being 
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γ 

γ 

(a) (b) 

Figure 4.2: (a) Tangentially and (b) tangent cone graph-like 

γ(s) γ(s) 

(a) (b) 

Figure 4.3: (a) The square is not graph-like with the indicated radius (no orientation 
makes it a graph). (b) The rounded rectangle is graph-like but not tangentially graph-
like with the indicated center and radius. 
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graph-like if it fails to be a graph in the required orientation but works in some other 

(see figure 4.3(b)). 

We would like to consider shapes with corners but our tangentially graph-like condi-

tion requires that the boundary be differentiable everywhere. The following definitions 

allow us to generalize the tangentially graph-like condition to this situation by using 

one-sided derivatives. 

Definition 4.2.4. Given a piecewise C1 function γ : [0, L] → R2 , we define the tangent 

cone of γ at a point s (which we denote by Tγ (s)) in terms of the one-sided derivatives. 

In particular, we let Tγ (s) = {αΓ− + βΓ+ | α, β ≥ 0, α + β > 0} where Γ− = limt↑s γ
0(t) 

and Γ+ = limt↓s γ
0(t). 

Definition 4.2.5. We extend the tangentially graph-like notion to boundaries that are 

piecewise C1 by defining ∂Ω to be tangent-cone graph-like (TCGL) at a point γ(s) ∈ ∂Ω 

if it is graph-like at γ(s) for every orientation in the tangent cone of ∂Ω at s. More 

precisely, for every w ∈ Tγ (s) and every pair of distinct points u, v ∈ ∂Ω ∩ D(p, r), we 

have hw, u − vi 6= 0 (see figure 4.2(b)). 

Remark 4.2.6. It is clear that Tγ (s) in definition 4.2.4 is a convex cone. The tangent 

cone is dependent on the direction in which γ traverses ∂Ω (which by convention was 

counterclockwise) since an arc-length traversal γ̂(s, r) = γ(L − s, r) would have different 

tangent cones (namely, w ∈ Tγ (s) iff −w ∈ Tγ̂(s)). However, these differences are 

irrelevant to the application of definition 4.2.5. 

Remark 4.2.7. Note that when ∂Ω is C1 , there is only one direction in Tγ (s) for 

each s (i.e., the tangent to ∂Ω at γ(s)). Thus, the definitions of tangentially graph-like 

and tangent-cone graph-like coincide when ∂Ω is C1 and every tangentially graph-like 

boundary is tangent-cone graph-like. 
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4.2.2 Two-Arc Property 

The graph-like condition implies (in proof of the following lemma) that Ω will never be 

entirely contained in the disk, no matter where on the boundary we center it. That is, 

some part of Ω lies outside of D(p, r) for every p ∈ ∂Ω. 

Lemma 4.2.8. Let r ∈ R+ and p ∈ ∂Ω. If ∂Ω is graph-like on D(p, r), then |∂Ω ∩ 

C(p, r)| ≥ 2. 

Proof. Suppose by way of contradiction that |∂Ω ∩ C(p, r)| < 2. Since ∂Ω is a simple 

closed curve, we have ∂Ω ⊆ D(p, r). As ∂Ω is graph-like at p with radius r, there 

exists some orientation for which ∂Ω ∩ D(p, r) = ∂Ω is the graph of a well-defined 

function. However, ∂Ω is a simple closed curve so it is not the graph of a function in 

any orientation, yielding a contradiction. 

The next result is the reason we find the tangent-cone graph-like condition useful. It 

says that if ∂Ω is tangent-cone graph-like with radius r, then, for every p ∈ ∂Ω, the disk 

D(p, r) has only two points of intersection with ∂Ω and these are transverse. In other 

words, this means that when working locally in the disk D(p, r) we need only consider 

a single piece of ∂Ω. 

Theorem 4.2.1. If ∂Ω is tangent-cone graph-like with radius r ∈ R+ at p ∈ ∂Ω, then 

|∂Ω ∩ C(p, r)| = 2 and ∂Ω crosses C(p, r) transversely at these points. As a result, for 

every q1, q2 ∈ ∂Ω ∩ D(p, r), there is a unique arc along ∂Ω between them in D(p, r). 

Proof. By Lemma 4.2.8, we have that |∂Ω ∩ C(p, r)| ≥ 2. Note that ∂Ω contains an 

interior point (p) and at least two boundary points of the disk D(p, r) (since |∂Ω ∩ 

C(p, r)| ≥ 2). As ∂Ω is connected and simply closed, there must exist an arc of ∂Ω 

within the disk going from some point on C(p, r) through p to another point on C(p, r). 
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D(p, r) 

p p 

D(p, r) 

p 

D(p, r) 

Figure 4.4: Additional points of intersection violate the TCGL condition. 

Suppose |∂Ω ∩ C(p, r)| > 2; that is, there are other points of intersection. Letting q 

denote one of these, there are two cases to consider (illustrated in Figure 4.4). 

(a) ∂Ω does not cross C(p, r) at q. 

As ∂Ω is tangent-cone graph-like at q, then ∂Ω ∩ C(q, r) is a graph in every orien-

tation in the tangent cone of ∂Ω at q. In particular, note that the tangent line to 

C(p, r) at q is in this cone. However, the line from p to q is normal to this line and 

thus ∂Ω ∩ C(q, r) is not graph-like in this orientation, a contradiction. Therefore, 

this case cannot occur. This argument applies to all points in ∂Ω ∩ C(p, r) so we 

immediately have the result that ∂Ω always crosses C(p, r) transversely. 

(b) ∂Ω crosses C(p, r) at q. 

There exists q0 ∈ ∂Ω ∩ C(p, r) such that there is a path along ∂Ω in D(p, r) from 

q to q0 . That is, there exist s1, s2 ∈ [0, L) (without loss of generality, s1 < s2) such 

that γ(s1) = q, γ(s2) = q0 and the image of [s1, s2] under γ is contained in D(p, r) 

(but does not include p, since it is on another arc and ∂Ω is simple). Thus γ enters 

C(p, r) at s1 and exits at s2. 

If we can find s ∈ [s1, s2] and w in the tangent cone of ∂Ω at γ(s) satisfying 

hw, p − γ(s)i = 0, we will contradict that ∂Ω is tangent-cone graph-like. 
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⎪
⎪

Define v : [s1, s2] → R2 by ⎧ ⎪⎨limt↓s1 γ
0(s), s = s1, 

v(s) = ⎪⎩limt↑s γ
0(s), s ∈ (s1, s2]. 

Note that v(s) is in the tangent cone of ∂Ω at γ(s) so that ∂Ω ∩ D(γ(s), r) is 

graph-like using the orientation given by v(s). 

Define φ(s) : [s1, s2] → R by φ(s) = hv(s), p − γ(s)i. Note that from γ(s1) both 

v(s1) and p − γ(s1) are directions pointing into the circle so φ(s1) > 0. Similarly, 

v(s2) points out and p − γ(s2) points in so that φ(s2) < 0. 

Observe that v (and therefore φ) is piecewise continuous since γ is piecewise C1 . 

By a piecewise continuous analogue of the intermediate value theorem, there exists 

s̄ ∈ [s1, s2] such that 

lim 
− 
φ(t) ≤ 0 ≤ lim φ(t). 

t→s̄  t→s̄+ 

By continuity of the inner product and γ, we have 

lim 
− 
φ(t) = h lim 

− 
γ0(t), p − γ(s̄)i. 

t→s̄  t→s̄  

Similarly, limt→s̄+ φ(t) = hlimt→s̄+ γ0(t), p − γ(s̄)i 

If γ is differentiable at s̄, then φ(s̄) = limt→s̄  φ(t) = 0 and we have our contradic-

tion. Otherwise, let w1 = limt→s̄− γ0(t) and w2 = limt→s̄+ γ0(t). As both w1 and 

w2 are in the convex tangent cone of ∂Ω at γ(s̄), any positive linear combination 

of them is as well. Letting ψ(λ) = λw1 + (1 − λ)w2, we have 

hψ(0), p − γ(s̄)i ≤ 0 ≤ hψ(1), p − γ(s̄)i. 

Noting that ψ is continuous in λ, we apply the intermediate value theorem to 
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obtain λ̄ ∈ (0, 1) such that hψ(λ̄), p − γ(s̄)i = 0. Letting w = ψ(λ̄), we obtain our 

contradiction. 

Therefore, there are no other points of intersection and |∂Ω ∩ C(p, r)| = 2. 

Definition 4.2.9. We say that Ω has the two-arc property for a given radius r if for every 

point p ∈ ∂Ω, we have that D(p, r) divides ∂Ω into two connected arcs: ∂Ω ∩ D(p, r) and 

∂Ω\D(p, r). Instead of considering how D(p, r) divides ∂Ω, we can equivalently frame 

the definition in terms of how ∂Ω divides C(p, r). That is, Ω has the two-arc property 

if the circle C(p, r) is divided into two connected arcs by ∂Ω for every p ∈ ∂Ω. 

Corollary 4.2.10. If Ω is tangent-cone graph-like for some radius r, then it has the 

two-arc property. 

Proof. This is a trivial consequence of Theorem 4.2.1. 

Corollary 4.2.11. If Ω is tangentially graph-like for some radius r, then it has the 

two-arc property for radius r. 

Remark 4.2.12. While the assumption of the two-arc property for disks of radius r = r̂  

does not imply the two-arc property for all r < r̂  (see Figure 4.5), it is the case that TGL 

for r = r̂  does imply that γ is TGL for all 0 < r < r̂. The fact that γ is TGL for all 

0 < r < r̂  follows easily from the definition of TGL and the fact that D(p, r) ( D(p, r̂). 

4.2.3 Notation 

Suppose that ∂Ω is tangent-cone graph-like with radius r and we have some s ∈ [0, L) 

such that ∂Ω is tangentially graph-like at γ(s) with radius r. Since ∂Ω is TGL at γ(s), 

it has two points of intersection with C(γ(s), r) by theorem 4.2.1. In the orientation 
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Figure 4.5: The two-arc property for r = r̂  does not imply that it holds for all r < r̂  
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θ2 

ν1D ∩ Ω 
γ(s−) γ(s+)

ν2 θ1 

γ(s) 

D = D(γ(s), r) 
C = ∂D 

Figure 4.6: Notation and conventions 

forced by the TGL condition, one of these points of intersection must be on the right 

side of the circle and one must be on the left side. 

With reference to figure 4.6 we define s+(s) and s−(s) ∈ [0, L) so that γ(s+(s)) is the 

point of intersection on the right and γ(s−(s)) is the point of intersection on the left. 

The notation is motivated by the fact that 0 < s−(s) < s < s+(s) < L in general due 

to our convention that γ traverses ∂Ω counterclockwise. The only case where this is not 

true is when γ(L) = γ(0) is in the disk but even then it will hold for a suitably shifted 

γ̂ that starts at some point outside the current disk. 

The quantities θ1(s) and θ2(s) are the angles that the rays from the origin to the 

right and left points of intersection, respectively, make with the positive x axis. We can 

assume θ1(s) ∈ (−π , π ) and θ2(s) ∈ (π , 3π ).
2 2 2 2 

We define ν1(s) as the angle between the vector γ(s+(s)) − γ(s) and the vector 

limt↓s+(s) γ
0(t), the one-sided tangent to ∂Ω at the point of intersection on the right. 

That is, we are measuring the angle between the outward normal to the disk at the 

point of intersection and the actual direction γ is going as it exits the disk. We define 
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⎪
⎪

∈ (−π πν2(s) similarly. We have ν1, ν2 2 , 2 ) due to the fact that all circle crossings are 

transverse by theorem 4.2.1. 

When the proper s to use is implied by context, we will often simply write s+ , s− , 

θ1, θ2, ν1 and ν2 in place of s+(s), s−(s), and so forth. 

4.2.4 Calculus on Tangent Cones 

The following result is a version of the intermediate value theorem for elements of the 

tangent cones. 

Lemma 4.2.13. Suppose ∂Ω is tangent-cone graph-like on D(γ(s), r) and s1 < s2 such 

that γ(s1), γ(s2) ∈ D(γ(s), r). Further suppose that w1 ∈ Tγ (s1), w2 ∈ Tγ (s2), α ∈ (0, 1), 

0 0 0and let w = αw1 + (1 − α)w2. Then, there exists s0 ∈ [s1, s2] such that either w or −w 

is in Tγ (s
0). 

Proof. Let n be a unit vector in R2 with n ⊥ (αw1+(1−α)w2). We have αhn, w1i = −(1− 

α)hn, w2i. It suffices to consider only hn, w1i ≤ 0 ≤ hn, w2i as the argument is identical 

in the other case. Note that since 0 ≤ hn, w2i = c1hn, limt↑s2 γ
0(t)i + c2hn, limt↓s2 γ

0(t)i 

for some nonnegative constants c1, c2 not both zero, at least one of the inner products 

on the right is nonnegative. Using the notation of definition 4.2.4, we define M2 = 

argmaxΓ∈{Γ+ ,Γ−}hn, Γi and have hn, M2i ≥ 0. We similarly define M1 with respect to w1 

such that hn, M1i ≤ 0. 

Define ⎧ ⎪⎨Mi, t = si, i = 1, 2 
v(t) = ⎪⎩limt↑t γ

0(s) 

and φ(t) = hn, v(t)i. Since φ(s1) ≤ 0 ≤ φ(s2), the argument proceeds as in theorem 

4.2.1 to yield s̄ ∈ [s1, s2] and w̄ ∈ Tγ (s̄) such that hn, w̄i = 0. Thus w̄ = kw0 for some 
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0 1 0 0k =6 0. In particular, w = 
k w̄ so either w ∈ Tγ (s̄) or −w ∈ Tγ (s̄) (depending on the 

sign of k). 

In addition to the intermediate value theorem, we have an analogous mean value 

theorem for tangent cone elements. 

Lemma 4.2.14. Suppose γ : [a, b] → R2 is a simple, arc-length parameterized curve 

with piecewise continuous derivative defined on (a, b) except possibly on finitely many 

points. Further suppose that the image of γ has no cusps. Then there exists c in (a, b) 

such that either γ(b) − γ(a) or −(γ(b) − γ(a)) is in Tγ (c). 

Proof. Let n be a unit vector with hγ(b) − γ(a), ni = 0. Consider ψ(t) = hγ(t), ni 

and note that ψ0(t) = hγ0(t), ni is defined wherever γ(t) is differentiable. We have R b 
a ψ

0(t) = ψ(b) − ψ(a) = hγ(b) − γ(a), ni = 0. Thus, either ψ0(t) = 0 everywhere it is 

defined or it takes on both positive and negative values. In particular, there exists a 

point c ∈ (a, b) such that either ψ0(c) = 0 or limt↑c ψ
0(t) ≤ 0 ≤ limt↓c ψ

0(t). 

If ψ0(c) = 0, then we have hγ0(c), ni = 0 so that γ0(c) = k(φ(b) − φ(a)) for some 

k 6= 0. As γ0(c) ∈ Tγ (c), we have k (φ(b) − φ(a)) ∈ Tγ (c) which gives us our conclusion.|k| 

If limt↑c ψ
0(t) ≤ 0 ≤ limt↓c ψ

0(t), there exists α ∈ (0, 1) such that 0 = α limt↑c ψ
0(t) + 

(1 − α) limt↓c ψ
0(t). Note that limt↑c ψ

0(t) = hw1, ni and limt↓c ψ
0(t) = hw2, ni for some 

w1, w2 ∈ Tγ (c) and let w0 = αw1 + (1 − α)w2. 

By the convexity of Tγ (c), we have w0 ∈ Tγ (c) with hw0, ni = 0 which follows as in 

the previous case. 

The following lemma tells us that the tangent-cone graph-like condition is sufficient 

to apply lemma 4.2.14. 

Lemma 4.2.15. If ∂Ω is tangent-cone graph-like for some radius r, then ∂Ω has no 

cusps. 
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Proof. Suppose ∂Ω has a cusp at γ(s). Then, using the terminology of definition 4.2.4 

and the fact that γ is arc length parameterized, we have Γ+ = −Γ− . We let w = 0 and 

note that w = Γ+ + Γ− ∈ Tγ (s). Letting u, v ∈ ∂Ω ∩ D(γ(s), r) with u 6= v, we have 

hw, u − vi = 0, contradicting the fact that ∂Ω is tangent-cone graph-like. Therefore, ∂Ω 

has no cusps. 

4.2.5 TCGL Boundary Properties 

The following technical lemmas allow us to bound various distances and areas encoun-

tered in tangent-cone graph-like boundaries. 

Lemma 4.2.16. Suppose that ∂Ω is tangent-cone graph-like with radius r and points 

p1, p2 ∈ ∂Ω with d(p1, p2) < r. Then one of the arcs (call it P ) along ∂Ω between p1 and 

p2 is such that, for any two points q1, q2 ∈ P , we have d(q1, q2) < r. 

Proof. Note that p2 ∈ D(p1, r) so that there is an arc along ∂Ω from p1 to p2 which is 

fully contained in the interior of D(p1, r) by theorem 4.2.1. We will call this arc P . 

For all x on P , let Px denote the subpath of P from p1 to x (so P = Pp2 ). We claim 

that Px is contained in D(x, r) for all x on P (thus, P is contained in D(p2, r)). Indeed, 

if this were not the case, then there must be some x̂ on P such that Px̂ is contained 

in D(x̂, r) but C(x̂, r) ∩ Px̂ is nonempty (i.e., we can move the disk along P until some 

part of the subpath hits the boundary). That is, the subpath Px̂ has a tangency with 

the disk D(x̂, r) which is impossible because of theorem 4.2.1. 

Let q1 ∈ P and note that since Px is contained in D(x, r) for all x on P , we have 

that P is contained in D(q1, r). Therefore, d(q1, q2) < r for all q1, q2 ∈ P as desired. 

Lemma 4.2.17. If q1 = γ(s1), q2 = γ(s2) ∈ P where P is as in the previous lemma, 
√ 

then the arc length between q1 and q2 along P is at most 2d(q1, q2). 
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Proof. Since Ω is tangentially graph-like, for any w1 ∈ Tγ (s1), w2 ∈ Tγ (s2), the angle 

between w1 and w2 is at most π 
2 . Since this is true for all q ∈ P , there is a point 

q0 = γ(s0) ∈ P and w0 ∈ Tγ (s
0) such that the angle between w0 and tangent vectors for 

any other point q ∈ P is at most π 
4 . 

This means that P is the graph of a Lipschitz function g of rank 1 in the orientation 

defined by w0 . This does not necessarily imply that D(q0, r) ∩ ∂Ω, D(p1, r) ∩ ∂Ω or 

D(p2, r) ∩ ∂Ω is the graph of a Lipschitz function; we explore a Lipschitz condition for 

the disks in section 4.3. Let x1, x2 ∈ [−r, r] with p1 = (x1, g(x1)), p2 = (x2, g(x2)). Then 

the arclength from p1 to p2 is given by Z Z x2 p x2 √ √ √ 
1 + g0(x)2 dx ≤ 2 dx = 2(x2 − x1) ≤ 2d(p1, p2). 

x1 x1 

Lemma 4.2.18. If γ is tangent-cone graph-like with radius r and 0 ≤ s1 ≤ s2 < L with 

d(γ(s1), γ(s2)) = δ < r, then the image of [s1, s2] together with the straight line from 

γ(s1) to γ(s2) enclose a region with O(δ2) area. 

Proof. By Lemma 4.2.17, we have that the image of [s1, s2] under γ has arc length 
√ √ 

s2 − s1 ≤ 2δ. Therefore, the region of interest has perimeter at most ( 2 + 1)δ so 
√ 
( 2+1)2 

by the isoperimetric inequality has area at most 
4π δ2 from which the conclusion 

follows. 

4.3 TCGL polygonal approximations 

If Ω is tangent-cone graph-like with radius r, it can sometimes be nice to know that there 

is an approximating polygon to Ω which is also tangent-cone graph-like. The following 

lemmas explore this idea. 

Lemma 4.3.1. If ∂Ω is TCGL with radius r then for each � ∈ (0, r), then there exists 
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a polygonal approximation to ∂Ω that is TCGL with radius r − � and such that every 

point on ∂Ω is within distance 
6 
� of the polygon. 

Proof. First, choose a finite number of points along the boundary such that the arc 

length along γ between any two neighboring points is no more than 
3 
� . These will be 

the vertices of our polygon. Similarly to γ, we let φ be an arclength parameterization of 

this polygon so that they both encounter their common points in the same order. 

The fine spacing between vertices guarantees that we obtain the 
6 
� bound. Indeed, 

given any point p ∈ ∂Ω and its neighboring vertices v1 and v2, the arc length along ∂Ω 

from v1 to p plus that from p to v2 is at most 3 
� by assumption. Since Euclidean distance 

is bounded above by arc length, we have d(p, v1) + d(p, v2) ≤ 
3 
� . This bound in turn 

implies that at least one of d(p, v1) and d(p, v2) is bounded above by 
6 
� . 

Consider a point p = φ(t) on a side of the polygon (i.e., not a vertex) and its 

neighboring vertices v1 = φ(t1) = γ(s1) and v2 = φ(t2) = γ(s2) (chosen with t1 < t < t2 

and s1 < s2). By lemma 4.2.14, there exists s ∈ (s1, s2) such that v2 − v1 ∈ Tγ (s). Note 

that this is the only member of Tφ(t) up to positive scalar multiplication. 

Combining the arcs along γ and φ between v1 and v2, we obtain a closed curve with 

total length at most 2
3 
� , so that the distance between any two points on the curve is at 

most 
3 
� . That is, for any s0 ∈ [s1, s2] and t0 ∈ [t1, t2], we have d(γ(s0), φ(t0)) ≤ 

3 
� . 

Let x ∈ D(φ(t), r − �). Then d(x, γ(s)) ≤ d(x, φ(t)) + d(φ(t), γ(s)) ≤ r − 2
3 
� so that 

D(φ(t), r − �) is contained in D(γ(s), r − 2
3 
� ). 

Let a, b be distinct points on the polygon in D(φ(t), r − �) and consider the line 

0 = b0 0) ≤connecting them. This line also intersects a0, b0 on γ such that we have a 6 , d(a, a 

3 
� and d(b, b0) ≤ 

3 
� so that a0, b0 ∈ ∂Ω ∩ D(γ(s), r). As a − b = c(a0 − b0) for some scalar 

c > 0, we have 

hv2 − v1, a − bi = chv2 − v1, a 0 − b0i =6 0 
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since γ is TCGL at γ(s) with radius r and v2 − v1 ∈ Tγ (s). Thus φ is TCGL at p with 

radius r − �. 

The case where p = φ(t) is a vertex is similar but we must consider an arbitrary 

vector w ∈ Tφ(t) in the inner product. We wish to show that, for every w ∈ Tφ(t), there 

is a s0 such that either w or −w ∈ Tγ (s
0) and d(p, γ(s0)) ≤ 

3 
� , after which the proof 

follows as in the first case with w (or −w) in place of v2 −v1. We let γ(s) = φ(t) = p and 

let v1 = φ(t1) = γ(s1) and v2 = φ(t2) = γ(s2) be the neighboring vertices (so t1 < t < t2 

and s1 < s < s2). 

As above, there exist s0 1, s
0 
2 such that s1 ≤ s0 1 ≤ s ≤ s0 2 ≤ s2, γ(s)−γ(s1) ∈ Tγ (s

0 
1) and 

γ(s2) − γ(s) ∈ Tγ (s2 
0 ). Note that Tφ(t) is exactly the set of positive linear combinations 

of these vectors. By lemma 4.2.13, for every w ∈ Tφ(t), there is a s0 ∈ [s1 
0 , s2 

0 ] such that 

w ∈ Tγ (s
0). As d(p, γ(s0)) < 

3 
� , the proof is complete. 

Definition 4.3.2. We say that Ω is tangentially graph-like and Lipschitz (TGLL) with 

radius r if Ω is tangentially graph-like with radius r and there is some constant 0 < 

K < ∞ such that for every p ∈ ∂Ω, the arc D(p, r) ∩ ∂Ω is the graph of a Lipschitz 

function (in the same orientation used by the tangentially graph-like definition) and that 

the Lipschitz constant is at most K. 

Remark 4.3.3. Note that tangentially graph-like does not imply tangentially graph-like 

and Lipschitz: taking γ to be a square with side length 5 whose corners are replaced by 
√ 

quarter circles of radius 1 and then considering disks of radius 2 centered on γ yields 

one example. 

Because γ is arclength parameterized by s, ||γ0(s)|| = 1 for all s. Since γ is assumed 

C1 on its compact domain [0, L], γ0 is uniformly continuous: for any � > 0, there is a δ� 

such that if |s2 − s1| < δ� then ||γ0(s2) − γ0(s1)|| < �. 
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We will use the fact that γ always crosses ∂D transversely to prove that γ is in fact 

TGLL on slightly bigger disks of radius r + δ as long as one takes a somewhat bigger 

ˆLipschitz constant K. It is then an immediate result of lemma 4.3.1 that we can find an 

approximating polygon that is TCGL with radius r. 

γ(0) 

n(s + δ) 

n(s) 

γ̇(s + δ) 

γ(s + δ) 

γ(s) 

γ̇(s) 
ν 

Figure 4.7: TGLL implies TCGL: Step one 

Lemma 4.3.4. If γ is TGLL with radius r, then it is TGLL with radius r + δ for some 

δ > 0 and there is an approximating polygon Pγ which is TCGL with radius r. 

Proof. Step 1: Show that the quantities ν1 and ν2 are continuous as a function 

of s ∈ [0, L].(see Fig. 4.6) 

Define R2(s, t) ≡ ||γ(s) − γ(t)||2 . Taking the derivative, we get "� � � �# 
γ(s) − γ(t) γ(t) − γ(s)

DR = , γ0(s) , , γ0(t) . 
R(s, t) R(s, t) 

Because ν1 and ν2 are both less than π/2 and γ is graph-like in the disk, we have that 

both elements of this derivative are nowhere zero. By the implicit function theorem, we 
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get that s−(s) and s+(s) are continuous functions of s. From this it follows that ν1 and 

ν2 are continuous on [0, L]. 

Step 2: From the previous step and the compactness of [0, L] we get that ν1(s) and ν2(s) 

are both bounded by Mν < π/2. We define �ν ≡ π/2 − Mν > 0. Fix a t ∈ [0, L]. Define 

ρ(s) = hγ(s)−γ(t)ρ̂(s) by ρ̂2(s) = R2(s, t) = ||γ(s) − γ(t)||2 . Then ˆ̇ 
ρ̂  , γ0(s)i = hnt(s), γ

0(s)i 
γ(s)−γ(t) γ(s)−γ(t)where nt(s) = = , the external normal to ∂D(γ(t), ρ̂) at γ(s) (see ||γ(s)−γ(t)|| ρ̂  

˙Figure 4.7). On any interval in s where ρ̂(s) > 0 we have that ρ̂(s) is one to one 

and strictly increasing. Define s ∗ ≡ s+(t) and s∗ ≡ s−(t). We showed above that 

ρ̇̂(s ∗) = hnt(s ∗), γ0(s ∗)i ≥ cos(Mν ) > 0. 

For hnt(s), γ
0(s)i = 0, nt(s) and γ0 will have to have together turned by at least 

π/2 − Mν radians. And until they have turned this far, hnt(s), γ
0(s)i > 0. But ṅ t(s) ≤ 

1 1 r 
ρ ≤ for some rmin > 0. (Choosing rmin = 

2 works.) And γ0 is uniformly continuous 
rmin 

on [0, L]. Therefore, there is a δs such that on [s ∗ , s ∗ + δs], nt(s) and γ0 both turn by less 

than �ν /3. Therefore, for s ∈ [s ∗ , s ∗ + δs], we have that hnt(s), γ
0(s)i > cos(π/2 − �ν /3) 

and γ([s ∗ , s ∗ + δs)) intersects C = ∂D(γ(t), ρ) once for each ρ ∈ [r, r + δr], where 

δr ≡ δs cos(π/2 − �ν /3). 

A completely analogous argument works to show that γ([s∗ − δs, s∗]) intersects C = 

∂D(γ(t), ρ) once for each ρ ∈ [r, r + δr]. 

Define d(t) to be the distance from D(γ(t), r) to γ \ γ([s∗ − δs, s ∗ + δs]). Since γ 

is TGL, d(t) is greater than zero for all t and is continuous in t. Therefore, there is a 

smallest distance δd such that d(t) ≥ δd for all t. Define δγo = min(δd/2, δr/2). 

Therefore, ∂D(γ(t), ρ) intersects γ exactly twice for ρ ∈ [r, r + δγo ] for any t ∈ [0, L]. 

A similar argument shows that ∂D(γ(t), ρ) intersects γ exactly twice for ρ ∈ [r−δγi , r] 

for any t ∈ [0, L]. Defining δγ ≡ min(δγi , δγo ) we get that ∂D(γ(t), ρ) intersects γ exactly 

twice for ρ ∈ [r −δγ , r +δγ ], with the additional fact that hnt(s), γ
0(s)i > cos(π/2 − �ν /3) 
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at all those intersections. 

Step 3: TGLL implies that there is a constant K < ∞ such that γ ∩ D(γ(t), r) is 

the graph of a function whose x-axis direction is parallel to γ0(t) and this function is 

Lipschitz with Lipschitz constant K. 

Since γ0 is uniformly continuous, there will be a δ1 such that if |u − v| < δ1, then 

∠(γ0(u), γ0(v)) < arctan 2K − arctan K. Define δK,s = min(δs, δ1). Define δK,r = 

min(δγ , δK,s cos(π/2 − �ν /3)). Then γ ∩ D(γ(t), r + δK,r) is the graph of a Lipschitz 

function with Lipschitz constant at most 2K when γ0(t) is used as the x-axis direction. 

That is, for all t, γ is TGLL with Lipschitz constant 2K for disks of radius r + δK,r. The 

result follows by lemma 4.3.1. 

4.4 Derivatives of g(s, r) 

≈ H1(∂D ∩ Ω)Δr 

γ 

r +Δr 

r 

∂g = H1(∂D ∩ Ω)∂r 

Figure 4.8: Deriving ∂g as the arclength of the circular segment. 
∂r 
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Lemma 4.4.1. Using the notation of figure 4.6, we have ∂ g(s, r) = That
∂r (θ2 − θ1)r. 

is, the derivative exists and equals the length of the curve C(γ(s), r) ∩ Ω. 

Proof. We have (see figure 4.8) 

∂ Area(Ω ∩ D(γ(s), r +Δr)) − Area(Ω ∩ D(γ(s), r)) 
g(s, r) = lim . 

∂r Δr→0 Δr 

This difference of areas can be modeled by the difference in the circular sectors of 

D(γ(s), r +Δr) and D(γ(s), r) with angle θ1 −θ2. The actual area depends on the image 

of γ outside of D(γ(s), r), but this correction will be a subset of the circular segment 

of D(γ(s), r + Δr) which is tangent to D(γ(s), r) at the point γ exits. This has area 

O(Δr2) by lemma 4.2.18. 

Thus we have 

∂ (θ1 − θ2)rΔr + 
2
1 (θ1 − θ2)Δr2 + O(Δr2) 

g(s, r) = lim = (θ1 − θ2)r. 
∂r Δr→0 Δr 

ΔArea ≈ Δs(h2 − h1) 

γ 

h1 

h2
Δs 

∂g 
∂s = h2 − h1 

Figure 4.9: Deriving ∂g as the difference in heights of the entry and exit points 
∂s 
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Lemma 4.4.2. Using the notation of figures 4.6 and 4.9, we have 
∂s 
∂ g(s, r) = h2 − h1 = 

r sin(θ2) − r sin(θ1). 

Proof. We have 

∂ Area(Ω ∩ D(γ(s +Δs), r)) − Area(Ω ∩ D(γ(s), r)) 
g(s, r) = lim . 

∂s Δs→0 Δs 

The situation is illustrated in figure 4.9 where we can see that the area being added 

as we go from s to s + Δs is the shaded region on the right with height r − h1 and, 

considering first-order terms only, uniform width Δs so has area (r − h1)Δs. Similarly, 

we are subtracting the area (r − h2)Δs on the left. Therefore, we have 

∂ (r − h1)Δs − (r − h2)Δs 
g(s, r) = lim = h2 − h1. 

∂s Δs→0 Δs 

4.5 Reconstructing shapes from T-like data 

Distance along curve s → s = L 

r = r̂ 

s = 0 

s 
=

 ŝ
 

r = 0 

r = diam(γ) 

D
is
k

 r
ad
iu
s 
r 
→

 

Figure 4.10: T-like data: we restrict the domain of g(s, r) to a fixed radius r̂  plus any 
vertical segment from r = 0 to r = r̂  
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In this section, we consider the case where nonasymptotic densities and first deriva-

tives are known along a T-shaped set (i.e., for all s with a fixed radius r̂  and for all 

r ≤ r̂  with a fixed ŝ). We show that this information is sufficient to guarantee recon-

structability modulo reparametrizations, translations, and rotations. 

Lemma 4.5.1. Assume that γ is TGL for r̂  (and thus all r ≤ r̂). Then if we know 

∂g(s,r) ∂g(s,r)g(s, r), gs(s, r) = , and gr(s, r) = for (s, r) ∈ ([0, L] × {r̂}) ∪ ({ŝ} × (0, r̂]),
∂s ∂r 

we can reconstruct γ(s) ∈ R2 for all s ∈ [0, L] modulo reparametrizations, translation, 

and rotations. (See figure 4.10.) 

Proof: As was shown in section 4.4, gr gives us the length of the arc ∂D(s, r̂) ∩ Ω 

and gs tells us precisely what position this arc is along ∂D(s, r̂) with respect to the 

direction γ0(s). The assumption of TGL for r = r̂  implies TGL for 0 < r < r̂  (see 

remark 4.2.12) and this implies that γ has the 2 arc property and transverse intersections 

with ∂ D(s, r) for all disks corresponding to (s, r) ∈ ([0, L] × {r̂}) ∪ ({ŝ} × [0, r̂]). Since 

we care only about reconstructing a curve γ isometric to the original curve, we choose 

γ(ŝ) = (0, 0) ∈ R2 and γ0(ŝ) = (1, 0). Taken together, gs(ŝ, r) and gr(ŝ, r) locate both 

points in ∂D(ŝ, r) ∩ γ for all r ∈ [0, r̂]. This yields γ ∩ D(γ(ŝ), r̂). Now, simply increase 

s, sliding the center of a disk of radius r̂  along γ ∩ D(γ(ŝ), r̂), using gr(s, r̂) to find the 

element of γ ∩ D(γ(s), r̂) outside D(γ(ŝ), r̂), using the fact that the other element of 

γ ∩ D(γ(s), r̂) is inside D(γ(ŝ), r̂) and known. This process can be continued until the 

entire curve is traced out in R2 . 
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4.6 TCGL Polygon Is Reconstructible from gr and 

gs without tail 

Theorem 4.6.1. For a tangent-cone graph-like polygon Ω, knowing g(s, r), gr(s, r) and 

gs(s, r) for all s ∈ [0, L) and a particular r for which ∂Ω is tangent-cone graph-like 

is sufficient to completely determine Ω up to translation and rotation; that is, we can 

recover the side lengths and angles of Ω. 

Proof. For a given s and r where gr and gs exist, we can use them to obtain r(θ2 − θ1) 

as the length of the circular arc between the entry and exit points by Lemma 4.4.1 and 

r(sin θ2 − sin θ1) as the difference in heights of the entry and exit points by Lemma 4.4.2. 

We wish to recover θ1 and θ2 from these quantities. Note that if (θ1, θ2) = (φ1, φ2) is 

one possible solution, then so is (θ1, θ2) = (2π − φ2, 2π − φ1) so solutions always come 

in pairs. 

We can imagine placing a circular arc with angle g
r 
r on our circle and sliding it around 

until the endpoints have the appropriate height difference, yielding our θ1 and θ2. Note 

that since Ω is tangent-cone graph-like, one endpoint must be on the left side of the 

circle and the other must be on the right and we cannot slide either endpoint to or 

beyond the vertical line through the center of the circle. 

Therefore, as we slide the right endpoint down, the left endpoint slides up so that 

the height difference as a function of the slide is strictly monotonic. Therefore, the slide 

that gives us θ1 and θ2 is unique for a given starting arc placement. However, there are 

two starting arc placements: the first calls the angle for the right endpoint θ1 and the 

left endpoint θ2 (so the interior of Ω is “up” in the circle) and the second swaps these (so 

the interior of Ω is “down”). Since we have adopted the convention that ∂Ω is traversed 

in a counterclockwise direction (so the interior of Ω is up in the circles) we therefore pick 
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γ(s−) 

γ(s+) θ1 

θ2 

ψ 

γ(s) 
φ1 

φ2 

γ(s−) 

γ(s+) 

γ(s) 

Figure 4.11: Using gs− and gs+ to obtain the polygon angle at s. 

the first option; this gives us a unique solution for θ1 and θ2. 

This procedure works whenever gr and gs exist which is certainly true whenever the 

density disk does not touch a vertex of Ω either at its center or on its boundary because 

if we avoid these cases, then there is only one graph-like orientation to deal with and 

∂Ω is C∞ for all the points that enter into the computation. In fact, with a moment’s 

thought, we can make a stronger statement than this: gr always exists and gs exists as 

long as the center of the density disk is not a vertex of the polygon. 

We can identify the s values at which gs(s, r) does not exist to obtain the arc length 

positions of the vertices (and therefore obtain side lengths). For a given s corresponding 

to a vertex, we can find gr and the one-sided derivatives gs− and gs+. These correspond 

to the graph-like orientations required by the polygon sides adjacent to the current 

vertex. 

Referring to Figure 4.11, the one-sided derivatives along with the argument at the 

beginning of the proof yield the angles θ1, θ2, φ1, and φ2. Thus we can calculate ψ = 

θ1 − φ1 which means that the polygon vertex at s has angle π − ψ. 

Doing this for all s corresponding to vertices, we can determine all of the angles of 
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the polygon. With the side lengths identified earlier, this completely determines the 

polygon Ω up to translation and rotation. 

4.7 Simple closed curves are generically 

reconstructible using fixed radius data 

We will assume that γ is TGL for the radius r̂. We will also assume that we know 

the first, second, and third derivatives of g(s, r) for r = r̂. Under these assumptions, 

γ is generically reconstructible. By generic we mean the admittedly weak condition of 

density – reconstructible curves are C1 dense in the space of C2 simple closed curves. 

Theorem 4.7.1. Define G ≡ {γ|γ is a C2 simple closed curve and TGL for r = r̂}. 

Suppose that, for r = r̂, for all s ∈ [0, L], and for each γ ∈ G we know the first-, second-, 

and third-order partial derivatives of gγ (s, r). Then the set of reconstructible γ ∈ G is 

C1 dense in G where reconstructability is modulo reparametrization, translation, and 

rotation. 

Proof: In section 4.4 we showed that ∂g(s,r) = r(θ2 −θ1) and ∂g(s,r) = r(sin(θ2)−sin(θ1)),∂r ∂s 

where the notation is as in Figure 4.12. Because γ is TGL, we can solve for θ1 and θ2 

from these two derivatives as in the proof of Theorem 4.6.1. 

∂2g(s,r) θ2 − θ1 + r(∂θ2 − ∂θ1 ∂2g(s,r)Claim 1. The following equations hold: 
∂r2 = 

∂r ) and = 
∂r ∂r∂s 

sin(θ2) − sin(θ1) + r(cos(θ2)∂θ2 − cos(θ1)∂θ1 ).
∂r ∂r 

∂g(s,r)Proof of Claim 1: Simply differentiate the expressions we already have for 
∂r and 

∂g(s,r) 
∂s . � 

We wish to express this in terms of ν1 and ν2. Note that if we expand the circle radius 

by Δr, the right exit point s+(s) moves approximately (i.e., considering first-order terms 
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θ2 

ν1D ∩ Ω 
γ(s−) γ(s+)

ν2 θ1 

γ(s) 

D = D(γ(s), r) 
C = ∂D 

Figure 4.12: Figure 4.6 again as a reminder 

only) a distance of k ≡ Δr sec(ν1) (so ∂k = sec ν1, a fact we will use later to compute∂r 

curvature). Therefore, � � 
r sin θ1+k sin(θ1+ν1)arctan − θ1∂θ1 r cos θ1+k cos(θ1+ν1) 

= lim . 
∂r Δr→0 Δr 

tan ν1Straightforward techniques yield ∂θ1 = and a similar calculation shows that ∂θ2 = 
∂r r ∂r 

tan ν2 . 
r 

Therefore, rewriting the second derivatives of g(s, r) in terms of ν1 and ν2, we get: 

∂2g(s, r) 
= θ2 − θ1 + tan(ν2) − tan(ν1)

∂r2 

∂2g(s, r) 
= sin(θ2) − sin(θ1) + cos(θ2) tan(ν2) − cos(θ1) tan(ν1)

∂r∂s 

Using these 2 derivatives, together with the previous two, we can solve for ν1 = arctan(r ∂θ 
∂r 

1 ) 

and ν2 = arctan(r ∂θ 
∂r 

1 ) whenever cos(θ1) 6= cos(θ2). Since we are assuming that the curve 

is a simple closed curve, cos(θ1) 6= cos(θ2) is always true. 

g(s,r) g(s,r)Claim 2. Knowing ∂
3 

∂r3 and ∂
3 

gives us κ(s+(s)) and κ(s−(s)), the curvatures of
∂r2∂s 
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γ at s+(s) and s−(s). 

Proof of Claim 2: Computing, we get 

∂3g(s, r) ∂θ2 ∂θ1 ∂ν2 ∂ν1 
= − + sec 2(ν2) − sec 2(ν1)

∂r3 ∂r ∂r ∂r ∂r 
∂3g(s, r) ∂θ2 ∂θ1 ∂θ2 

= cos(θ2) − cos(θ1) − sin(θ2) tan(ν2)
∂r2∂s ∂r ∂r ∂r 

∂θ1 ∂ν2 ∂ν1 
+ sin(θ1) tan(ν1) + cos(θ2) sec

2(ν2) − cos(θ1) sec
2(ν1) . 

∂r ∂r ∂r 

≡ ∂ν2 ≡ ∂ν1Since ν2 
0 and ν1 

0 are the only unknowns, we end up having to invert 
∂r ∂r ⎡ ⎢⎣ 1 −1 

cos(θ2) cos(θ1) 

⎤ ⎥⎦ 
again and this is always nonsingular, giving us ν1 

0 and ν2 
0 as a function of s, the coordinate 

of the center of the disk. 

Relative to the horizontal, the angle of the curve at s+(s) is θ1 + ν1 so the rate of 

∂θ1 + ν 0change in angle as we expand the circle is 
∂r 1. Recalling that rate of movement 

of this exit point as we expand the circle is given by ∂k = sec ν1, we have that the∂r 

∂k (∂θ1curvature is given by κ(s+(s)) = + ν 0 ) = sec ν1(∂θ1 + ν 0 ). Similarly, κ(s−(s)) = 
∂r ∂r 1 ∂r 1 

sec(ν2)(
∂θ 
∂r 

2 + ν2 
0 ). � 

Claim 3. Generically, we can deduce s+(s) from knowledge of ν1(s), ν2(s), θ1(s) and 

θ2(s). 

Proof: We outline the proof without some of the explicit constructions that follow 

without much trouble from the outline. We have that θ1(s−(s)) + ν1(s−(s)) = π − 

θ2(s) − ν2(s) and θ1(s) + ν1(s) = π − θ2(s+(s)) − ν2(s+(s)). All four of these quantities 

(the left- and right-hand sides of each of the 2 equations) are the turning angles between 

the tangent to the curve at the center of the disk and the tangent to the curve at a point 

108 



ˆ ˆ ˆ

ˆ ˆ

r away from the center of the disk. 

Now we use this correspondence between the θ+ν curves to solve for s−(s) and s+(s). 

But these curves can differ by a homeomorphism of the domain. Thus, we can only find 

the correspondence if there is a distinguished point on those curves as well as no places 

where the values attained are constant. The turning angle curves having isolated critical 

points and a unique maximum or minimum is sufficient for our purposes. 

To get isolated extrema, start by approximating the curve γ with another one, γ̂, that 

agrees in C1 at a large but finite number of points {si}Ni=1 (i.e. agrees in tangent direction 

as well as position) and has isolated critical points in the derivative of the tangent 

direction. Now perturb γ̂ to one that is C1 close (but not C2 close) by using oscillations 

about the curve so that the 2nd and 3rd derivatives are never simultaneously below the 

bounds on the 2nd and 3rd derivatives of the curve we started with. We do this in a way 

that alternates around the curve. See Figure 4.13. In a bit more detail, suppose that 

max{d2 ̂  γ/ds3} < L1.γ/ds2, d3 ̂  Choose a starting point on the curve; s = 0 works. Now 

begin perturbing γ̂ at the point sr̂  in the positive s direction such that |γ̂(sr̂)− γ̂(0)| = r̂. 

We name the newly perturbed curve γ̂ and we keep L1 < max{d2 ̂  γ/ds3} < L2.γ/ds2, d3 ̂  

We continue perturbing until we have reached s2r defined by |γ̂(s2r̂) − γ̂(sr̂)| = r̂. We 

begin perturbing again when we reach s3r̂. Continue in this fashion around γ̂. The last 

piece, shown in green in the figure, will require a perturbation that is distinct in size due 

to the fact that it will interact with the perturbation that starts at sr̂. On this last piece, 

we enforce L2 < max{d2ˆ γ/ds3} < L3.γ/ds2, d3 ̂  All these perturbations can be chosen 

with isolated singularities in derivatives, thus giving us θ + ν curves that are monotonic 

between isolated singularities. (In fact, we might as well choose all perturbations to be 

piecewise polynomial perturbations. This immediately gives us the isolated singularities 

and monotonicity that we want.) 
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Finally, if there is not a distinct maximum, we can choose one of the maxima and 

add a small twist to the curve at that point. See Figure 4.14. The idea is that a small 

twist, applied to the leading edge of the tangents we are comparing to get the turning 

angle, will increase the angle most at the center of the twist. If this corresponds to a 

nonunique global maximum, we end up with a unique global maximum. 

L2 < max{d2γ/ds2, d3γ/ds3} < L3 

L1 < max{d2γ/ds2, d3γ/ds3} < L2 

Figure 4.13: In this schematic figure, we illustrate the alternating perturbation around 
the curve, keeping the curve C1 close to and messing with the second and third deriva-
tives to eliminate any critical points other than isolated maxima and minima. Here the 
perturbation is of course greatly exaggerated. 

Figure 4.14: A twist perturbation. Notice that if the twist is applied precisely at a global 
max of the turning angle (as measured by the tangent here and the one lagging it in s), 
we will increase the turning angle there and will end up with a unique global maximum. 

Now the correspondence scheme works. That is, we know that the global maximums 

must match, and because the turning angle curves are monotonic between isolated crit-

ical points, we can find the homeomorphisms in s that move the turning angle curves 

into correspondence. � 
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Taken together, the last two claims give us the curvature as a function of arclength. 

This determines γ up to translations and rotations. � 

4.8 Numerical experiments 

In this section, we consider a numerical curve reconstruction for the situation in which 

g(s, r) is known for a given radius r but no derivative information is available. This 

reconstruction is more strict than the scenarios of sections 4.5–4.7. Our motivation is to 

explore whether any γ can be uniquely and practically reconstructed with this limited 

information. 

We consider γa(s̄) ∈ PN , the set of simple polygons of N ordered vertices {(x1, y1), . . . , 

(xN , yN )} parameterized by the set {s̄ k}kN 
=1 with s̄ k = k/N as 

m−1X 
xk = a1,j cos(2πjs̄ k/N) + a2,j sin(2πjs̄ k/N), 

j=0 
m−1 (4.1)X 

yk = a3,j cos(2πjs̄ k/N) + a4,j sin(2πjs̄ k/N), 
j=0 

for some coefficients ai,j ∈ R. In this way, the polygon γ is a discrete approximation of 

a C∞ curve. The sides of γa(s̄) are not necessarily of equal length. 

We take the vector signature ga(s̄, r) ∈ RN to be the discrete area densities of γa(s̄) 

computed at each vertex. Given such a signature for fixed radius r and fixed partition 

s̄, we seek a ∗ satisfying 

a ∗ ∈ arg min kgb(s̄, r) − ga(s̄, r)k22 
b∈R4m 

(4.2) 

s.t. γb ∈ PN 
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Equation (4.2) represents a nonlinearly constrained optimization problem with continu-

ous nonsmooth objective. The constraint ensures that polygons are simple though any 

optimal reconstruction γa ∗ is not expected to lie on the feasible region boundary except 

in cases of noisy signatures. This approach to reconstructing curves seeks a polygon that 

matches a given discrete signature, rather than an analytic sequential point construction 

procedure. 

We use the direct search OrthoMads algorithm [2] to solve this problem. Mads 

class algorithms do not require objective derivative information [2, 4] and converge to 

second-order stationary points under reasonable conditions on nonsmooth functions [1]. 

We implement our constraint using the extreme barrier method [5] in which the objective 

value is set to infinity whenever constraints are not satisfied. We utilize the standard 

implementation with partial polling and minimal spanning sets of 4m + 1 directions. 

We performed a series of numerical tests using the synthetic shamrock curve shown 

in black in the upper portion of Figure 4.15. This curve is given as a polygon in P256 

with discretization coefficients a ∈ R4×20 (m = 20). A sequence of reconstructions was 

performed with all integer values 8 ≤ m ≤ 20. The m = 8 reconstruction begins with 

initial coefficients, ai,j , which determine a regular 256-gon with approximately the same 

interior area as the shamrock (as determined by the signature ga(s̄, r). In particular, 

the value(s) ai,j supplied initially are those which define the best fit circle (m = 1), 

which can be computed directly. That is, only a1,0 and a4,0 are nonzero. Subsequent 

reconstructions begin with initial coefficients optimal to the previous relatively coarse 

reconstruction. Curve reconstructions for m = 12 (blue) and m = 18 (red) are compared 

to the shamrock in the upper portion of Figure 4.15. Reconstructions for m ≥ 20 are 

visually indistinguishable from the actual curve and are not shown. Corresponding area 

density signatures are shown in the lower portion of Figure 4.15. A representative disk 
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Figure 4.15: Shamrock reconstruction: comparing the original curve with those found 
for m = 12 and m = 18. Curves for m ≥ 20 are visually indistinguishable from the 
original curve. The shape signatures are given at the bottom. 

of radius r is shown in green along with corresponding location in the signature; note 

that the shamrock is not tangent-cone graph-like with this radius. 

When comparing and interpreting the shamrock curves, it is important to note that 

the scale of the curves is determined entirely by the fit parameters ai,j . On the other 

hand, as the density signature is independent of curve rotation, the rotation is eyeball 
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adjusted for easy visual comparison. Also note that the two-arc property does not hold 

for this example so our reconstructability results do not apply. The accuracies of both 

the curve reconstruction and area density signature fit suggest that somewhat more 

general reconstructability results hold. In particular, we speculate that general simple 

polygons may be reconstructible from g(s, r) for fixed r and no derivative information. 

4.9 Conclusions 

We have studied the integral area invariant with particular emphasis on the tangent-

cone graph-like condition. In particular, we have shown that all TCGL polygons and a 

C1-dense set of C2 TGL curves are reconstructible using only the integral area invariant 

for a fixed radius along the boundary and its derivatives. 

We also showed that TCGL boundaries can be approximated by TCGL polygons, 

determined what the derivatives represented, and commented on other sets of data 

sufficient for reconstruction (namely, both T-like and all radii in a neighborhood of 0). 

These reconstructions are all modulo translations, rotations, and reparametrizations. 

The arc length parameterization plays a special role here since any two such parame-

terizations of a boundary will differ only by a shift and can easily be placed into corre-

spondence. The situation becomes more complicated in higher dimensions as boundaries 

are no longer canonically parameterized by a single variable which is a fundamental as-

sumption of our results and methods. It is not immediately obvious how to resolve the 

issues created by higher dimensions except that it may be possible to modify some of the 

machinery to work with star convex regions which restore some semblance of canonical 

representation. 

114 



Another space which is open for further development is that of reconstruction algo-

rithms. This is doubly true since our theoretical reconstructions are unstable and the 

numerical examples in the present work do not have guaranteed reconstruction. How-

ever, even without these guarantees, the numerical examples hint at more expansive 

reconstructability results. 
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4.11 Appendix: Easy Reconstructability 

For completeness, we include a short proof of the fact that knowing g(s, r) for all s and 

r very easily gives us reconstructability. This follows from the fact that knowing the 

asymptotic behavior of g(s, r) as r → 0 for any s gives us κ(s). That in turn implies 

that knowing g(s, r) in any neighborhood of the set (s, r) ∈ [0, L] × {r = 0} also gives 

us κ(s) and therefore the curve. 

Theorem 4.11.1. Suppose ∂Ω is C2 and there exists � > 0 such that we know g(s, r) 

for all (s, r) ∈ [0, L) × (0, �). This information is enough to determine the curvature 

of every point on ∂Ω. In particular, if γ : [0, L) → ∂Ω is a counterclockwise arclength 

∂ g(s,r)parameterization of ∂Ω, then κ(γ(s)) = −3π limr→0 .
∂r πr2 

Proof. Fix s ∈ [0, L). If the curvature of γ at s is positive, we consider what happens if 
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γ(s) 

R 
r 

(a) 

R 

r 

γ(s) 

(b) 

∂Ω 
∂Ω 

Figure 4.16: Using the osculating circle as a surrogate for ∂Ω in the (a) positive and (b) 
negative curvature cases. 

we replace Ω with the disk whose boundary is the osculating circle of ∂Ω at γ(s) (call 

its radius R). We have the following expression for the new normalized nonasymptotic 

density (see Figure 4.16(a)): Z pg(s, r) 1 √ √ 
= r2 − x2 − (R − R2 − x2) dx. 

πr2 πr2 
−p 

√ √ 
where x = p is the positive solution to r2 − x2 = R − R2 − x2 . Differentiating with 

1respect to r and then taking the limit as r goes to 0 gives us −
3πR . That is, for the case 

∂ g(s,r)where Ω is locally a disk, the curvature at γ(s) is given by −3π limr→0 .
∂r πr2 

If the curvature of ∂Ω at γ(s) is negative, we can set up a similar surrogate (see 

∂ g(s,r)figure 4.16(b)) and again obtain that κ(γ(s)) = −3π limr→0 .
∂r πr2 

Lastly, this calculation gives the right result in the curvature 0 case when ∂Ω is R √ 
g(s,r) r

locally a straight line (so = 1 r2 − x2 dx = 1 for sufficiently small r and
πr2 πr2 −r 2 

∂ g(s,r)−3π limr→0 = 0).
∂r πr2 

For the case where ∂Ω is not locally a circle or straight line, the corrections to the 

integrals are of order O(x3) as r goes to 0 and have no impact on the final answer so 
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∂ g(s,r)the curvature at γ(s) is always given by −3π limr→0 . The available data (the
∂r πr2 

values g(s, r) for all s ∈ [0, L) and all r ∈ (0, �)) are sufficient to compute the relevant 

derivative and limit so we can use this process to determine the curvature of every point 

on the C2 curve ∂Ω. 
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