22 research outputs found

    Optimal Exploitation of the Sentinel-2 Spectral Capabilities for Crop Leaf Area Index Mapping

    Get PDF
    The continuously increasing demand of accurate quantitative high quality information on land surface properties will be faced by a new generation of environmental Earth observation (EO) missions. One current example, associated with a high potential to contribute to those demands, is the multi-spectral ESA Sentinel-2 (S2) system. The present study focuses on the evaluation of spectral information content needed for crop leaf area index (LAI) mapping in view of the future sensors. Data from a field campaign were used to determine the optimal spectral sampling from available S2 bands applying inversion of a radiative transfer model (PROSAIL) with look-up table (LUT) and artificial neural network (ANN) approaches. Overall LAI estimation performance of the proposed LUT approach (LUTN₅₀) was comparable in terms of retrieval performances with a tested and approved ANN method. Employing seven- and eight-band combinations, the LUTN₅₀ approach obtained LAI RMSE of 0.53 and normalized LAI RMSE of 0.12, which was comparable to the results of the ANN. However, the LUTN50 method showed a higher robustness and insensitivity to different band settings. Most frequently selected wavebands were located in near infrared and red edge spectral regions. In conclusion, our results emphasize the potential benefits of the Sentinel-2 mission for agricultural applications

    An Emulator Toolbox to Approximate Radiative Transfer Models with Statistical Learning

    Get PDF
    Physically-based radiative transfer models (RTMs) help in understanding the processes occurring on the Earth’s surface and their interactions with vegetation and atmosphere. When it comes to studying vegetation properties, RTMs allows us to study light interception by plant canopies and are used in the retrieval of biophysical variables through model inversion. However, advanced RTMs can take a long computational time, which makes them unfeasible in many real applications. To overcome this problem, it has been proposed to substitute RTMs through so-called emulators. Emulators are statistical models that approximate the functioning of RTMs. Emulators are advantageous in real practice because of the computational efficiency and excellent accuracy and flexibility for extrapolation. We hereby present an “Emulator toolbox” that enables analysing multi-output machine learning regression algorithms (MO-MLRAs) on their ability to approximate an RTM. The toolbox is included in the free-access ARTMO’s MATLAB suite for parameter retrieval and model inversion and currently contains both linear and non-linear MO-MLRAs, namely partial least squares regression (PLSR), kernel ridge regression (KRR) and neural networks (NN). These MO-MLRAs have been evaluated on their precision and speed to approximate the soil vegetation atmosphere transfer model SCOPE (Soil Canopy Observation, Photochemistry and Energy balance). SCOPE generates, amongst others, sun-induced chlorophyll fluorescence as the output signal. KRR and NN were evaluated as capable of reconstructing fluorescence spectra with great precision. Relative errors fell below 0.5% when trained with 500 or more samples using cross-validation and principal component analysis to alleviate the underdetermination problem. Moreover, NN reconstructed fluorescence spectra about 50-times faster and KRR about 800-times faster than SCOPE. The Emulator toolbox is foreseen to open new opportunities in the use of advanced RTMs, in which both consistent physical assumptions and data-driven machine learning algorithms live together

    Using a Remote Sensing-Supported Hydro-Agroecological Model for Field-Scale Simulation of Heterogeneous Crop Growth and Yield: Application for Wheat in Central Europe

    Get PDF
    The challenge of converting global agricultural food, fiber and energy crop cultivation into an ecologically and economically sustainable production process requires the most efficient agricultural management strategies. Development, control and maintenance of these strategies are highly dependent on temporally and spatially continuous information on crop status at the field scale. This paper introduces the application of a process-based, coupled hydro-agroecological model (PROMET) for the simulation of temporally and spatially dynamic crop growth on agriculturally managed fields. By assimilating optical remote sensing data into the model, the simulation of spatial crop dynamics is improved to a point where site-specific farming measures can be supported. Radiative transfer modeling (SLC) is used to provide maps of leaf area index from Earth Observation (EO). These maps are used in an assimilation scheme that selects closest matches between EO and PROMET ensemble runs. Validation is provided for winter wheat (years 2004, 2010 and 2011). Field samples validate the temporal dynamics of the simulations (avg. R-2 = 0.93) and > 700 ha of calibrated combine harvester data are used for accuracy assessment of the spatial yield simulations (avg. RMSE = 1.15 t center dot ha(-1)). The study shows that precise simulation of field-scale crop growth and yield is possible, if spatial remotely sensed information is combined with temporal dynamics provided by land surface process models. The presented methodology represents a technical solution to make the best possible use of the growing stream of EO data in the context of sustainable land surface management

    Toward Generic Models for Green LAI Estimation in Maize and Soybean: Satellite Observations

    Get PDF
    Informative spectral bands for green leaf area index (LAI) estimation in two crops were identified and generic models for soybean and maize were developed and validated using spectral data taken at close range. The objective of this paper was to test developed models using Aqua and Terra MODIS, Landsat TM and ETM+, ENVISAT MERIS surface reflectance products, and simulated data of the recently-launched Sentinel 2 MSI and Sentinel 3 OLCI. Special emphasis was placed on testing generic models which require no re-parameterization for these species. Four techniques were investigated: support vector machines (SVM), neural network (NN), multiple linear regression (MLR), and vegetation indices (VI). For each technique two types of models were tested based on (a) reflectance data, taken at close range and resampled to simulate spectral bands of satellite sensors; and (b) surface reflectance satellite products. Both types of models were validated using MODIS, TM/ETM+, and MERIS data. MERIS was used as a prototype of OLCI Sentinel-3 data which allowed for assessment of the anticipated accuracy of OLCI. All models tested provided a robust and consistent selection of spectral bands related to green LAI in crops representing a wide range of biochemical and structural traits. The MERIS observations had the lowest errors (around 11%) compared to the remaining satellites with observational data. Sentinel 2 MSI and OLCI Sentinel 3 estimates, based on simulated data, had errors below 8%. However the accuracy of these models with actual MSI and OLCI surface reflectance products remains to be determined

    Using a Remote Sensing-Supported Hydro-Agroecological Model for Field-Scale Simulation of Heterogeneous Crop Growth and Yield: Application for Wheat in Central Europe

    Get PDF
    The challenge of converting global agricultural food, fiber and energy crop cultivation into an ecologically and economically sustainable production process requires the most efficient agricultural management strategies. Development, control and maintenance of these strategies are highly dependent on temporally and spatially continuous information on crop status at the field scale. This paper introduces the application of a process-based, coupled hydro-agroecological model (PROMET) for the simulation of temporally and spatially dynamic crop growth on agriculturally managed fields. By assimilating optical remote sensing data into the model, the simulation of spatial crop dynamics is improved to a point where site-specific farming measures can be supported. Radiative transfer modeling (SLC) is used to provide maps of leaf area index from Earth Observation (EO). These maps are used in an assimilation scheme that selects closest matches between EO and PROMET ensemble runs. Validation is provided for winter wheat (years 2004, 2010 and 2011). Field samples validate the temporal dynamics of the simulations (avg. R-2 = 0.93) and > 700 ha of calibrated combine harvester data are used for accuracy assessment of the spatial yield simulations (avg. RMSE = 1.15 t center dot ha(-1)). The study shows that precise simulation of field-scale crop growth and yield is possible, if spatial remotely sensed information is combined with temporal dynamics provided by land surface process models. The presented methodology represents a technical solution to make the best possible use of the growing stream of EO data in the context of sustainable land surface management

    Hyperspectral leaf area index and chlorophyll retrieval over forest and row-structured vineyard canopies

    Get PDF
    As an unprecedented stream of decametric hyperspectral observations becomes available from recent and upcoming spaceborne missions, effective algorithms are required to retrieve vegetation biophysical and biochemical variables such as leaf area index (LAI) and canopy chlorophyll content (CCC). In the context of missions such as the Environmental Mapping and Analysis Program (EnMAP), Precursore Iperspettrale della Missione Applicativa (PRISMA), Copernicus Hyperspectral Imaging Mission for the Environment (CHIME), and Surface Biology Geology (SBG), several retrieval algorithms have been developed based upon the turbid medium Scattering by Arbitrarily Inclined Leaves (SAIL) radiative transfer model. Whilst well suited to cereal crops, SAIL is known to perform comparatively poorly over more heterogeneous canopies (including forests and row-structured crops). In this paper, we investigate the application of hybrid radiative transfer models, including a modified version of SAIL (rowSAIL) and the Invertible Forest Reflectance Model (INFORM), to such canopies. Unlike SAIL, which assumes a horizontally homogeneous canopy, such models partition the canopy into geometric objects, which are themselves treated as turbid media. By enabling crown transmittance, foliage clumping, and shadowing to be represented, they provide a more realistic representation of heterogeneous vegetation. Using airborne hyperspectral data to simulate EnMAP observations over vineyard and deciduous broadleaf forest sites, we demonstrate that SAIL-based algorithms provide moderate retrieval accuracy for LAI (RMSD = 0.92–2.15, NRMSD = 40–67%, bias = −0.64–0.96) and CCC (RMSD = 0.27–1.27 g m−2, NRMSD = 64–84%, bias = −0.17–0.89 g m−2). The use of hybrid radiative transfer models (rowSAIL and INFORM) reduces bias in LAI (RMSD = 0.88–1.64, NRMSD = 27–64%, bias = −0.78–−0.13) and CCC (RMSD = 0.30–0.87 g m−2, NRMSD = 52–73%, bias = 0.03–0.42 g m−2) retrievals. Based on our results, at the canopy level, we recommend that hybrid radiative transfer models such as rowSAIL and INFORM are further adopted for hyperspectral biophysical and biochemical variable retrieval over heterogeneous vegetation

    Modelling susceptibility to Parthenium hysterophorus invasion in KwaZulu-Natal Province, South Africa using physical, climatic and remotely sensed derived variables.

    Get PDF
    Master of Science in Environmental Sciences. University of KwaZulu-Natal. Pietermaritzburg, 2018.Invasive alien plants (IAP) are considered as one of the major causes of global change. Parthenium hysterophorus is recognized as one of the world’s most aggressive, harmful and extremely resilient invasive plant species. It has adverse impacts on the environment, economies, biodiversity, human health and agriculture. Identification and modelling of areas vulnerable to Parthenium invasion is critical for proactive control and site- specific management of its spread. This study sought to test the performance of Maxent algorithm in modelling habitats susceptible to Parthenium invasion using selected environmental and physical variables and remotely sensed data. Specifically, the study sought to identify key physical and bio-climatic variables that influence the distribution of Parthenium. Furthermore, the study sought to determine the value of the freely available Sentinel 2 multispectral instrument (MSI) datasets in concert with environmental variables in modelling habitat susceptible to Parthenium invasion. The Maximum Entropy model (MaxEnt) machine learning algorithm was used to model Parthenium invasion using presence - only records (n = 274). Results showed that landscapes characterized by low elevation, close proximity to roads and high precipitation were the most susceptible to Parthenium invasion. An Area under curve (AUC) value of 0.946 was attained, indicating that the model derived using the aforementioned optimal physical and bio-climatic variables performed better than random. Based on the high AUC values, results also showed that all the model scenarios derived from spectral bands and environmental variables, vegetation indices and environmental variables and a combination of spectral bands, vegetation indices and environmental variables performed better than random, with AUC values of 0.976, 0.970 and 0.974, respectively. The higher accuracy exhibited by the optimal model (bands and environmental variables) can be attributed to the integration of red edge band centered at 705 nm in Sentinel 2 MSI and environmental variables in predicting areas susceptible to Parthenium. Overall, these results demonstrate the potential of integrating the freely available Sentinel 2 MSI data and environmental variables to improve the mapping of habitat susceptibility to Parthenium invasion. These results could be beneficial for early detection, site -specific weed management and long-term monitoring

    Improving remote estimation of winter crops gross ecosystem production by inclusion of leaf area index in a spectral model

    Get PDF
    The hysteresis of the seasonal relationships between vegetation indices (VIs) and gross ecosystem production (GEP) results in differences between these relationships during vegetative and reproductive phases of plant development cycle and may limit their applicability for estimation of croplands productivity over the entire season. To mitigate this problem and to increase the accuracy of remote sensing-based models for GEP estimation we developed a simple empirical model where greenness-related VIs are multiplied by the leaf area index (LAI). The product of this multiplication has the same seasonality as GEP, and specifically for vegetative periods of winter crops, it allowed the accuracy of GEP estimations to increase and resulted in a significant reduction of the hysteresis of VIs vs. GEP. Our objective was to test the multiyear relationships between VIs and daily GEP in order to develop more general models maintaining reliable performance when applied to years characterized by different climatic conditions. The general model parametrized with NDVI and LAI product allowed to estimate daily GEP of winter and spring crops with an error smaller than 14%, and the rate of GEP over- (for spring barley) or underestimation (for winter crops and potato) was smaller than 25%. The proposed approach may increase the accuracy of crop productivity estimation when greenness VIs are saturating early in the growing season

    How Universal is the Relationship Between Remotely Sensed Vegetation Indices and Crop Leaf Area Index? A Global Assessment

    Get PDF
    Leaf Area Index (LAI) is a key variable that bridges remote sensing observations to the quantification of agroecosystem processes. In this study, we assessed the universality of the relationships between crop LAI and remotely sensed Vegetation Indices (VIs). We first compiled a global dataset of 1459 in situ quality-controlled crop LAI measurements and collected Landsat satellite images to derive five different VIs including Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), two versions of the Enhanced Vegetation Index (EVI and EVI2), and Green Chlorophyll Index (CI(sub Green)). Based on this dataset, we developed global LAI-VI relationships for each crop type and VI using symbolic regression and Theil-Sen (TS) robust estimator. Results suggest that the global LAI-VI relationships are statistically significant, crop-specific, and mostly non-linear. These relationships explain more than half of the total variance in ground LAI observations (R2 greater than 0.5), and provide LAI estimates with RMSE below 1.2 m2/m2. Among the five VIs, EVI/EVI2 are the most effective, and the crop-specific LAI-EVI and LAI-EVI2 relationships constructed by TS, are robust when tested by three independent validation datasets of varied spatial scales. While the heterogeneity of agricultural landscapes leads to a diverse set of local LAI-VI relationships, the relationships provided here represent global universality on an average basis, allowing the generation of large-scale spatial-explicit LAI maps. This study contributes to the operationalization of large-area crop modeling and, by extension, has relevance to both fundamental and applied agroecosystem research
    corecore