3,832 research outputs found

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    Car make and model recognition under limited lighting conditions at night

    Get PDF
    Car make and model recognition (CMMR) has become an important part of intelligent transport systems. Information provided by CMMR can be utilized when license plate numbers cannot be identified or fake number plates are used. CMMR can also be used when a certain model of a vehicle is required to be automatically identified by cameras. The majority of existing CMMR methods are designed to be used only in daytime when most of the car features can be easily seen. Few methods have been developed to cope with limited lighting conditions at night where many vehicle features cannot be detected. The aim of this work was to identify car make and model at night by using available rear view features. This paper presents a one-class classifier ensemble designed to identify a particular car model of interest from other models. The combination of salient geographical and shape features of taillights and license plates from the rear view is extracted and used in the recognition process. The majority vote from support vector machine, decision tree, and k-nearest neighbors is applied to verify a target model in the classification process. The experiments on 421 car makes and models captured under limited lighting conditions at night show the classification accuracy rate at about 93 %

    MTDeep: Boosting the Security of Deep Neural Nets Against Adversarial Attacks with Moving Target Defense

    Full text link
    Present attack methods can make state-of-the-art classification systems based on deep neural networks misclassify every adversarially modified test example. The design of general defense strategies against a wide range of such attacks still remains a challenging problem. In this paper, we draw inspiration from the fields of cybersecurity and multi-agent systems and propose to leverage the concept of Moving Target Defense (MTD) in designing a meta-defense for 'boosting' the robustness of an ensemble of deep neural networks (DNNs) for visual classification tasks against such adversarial attacks. To classify an input image, a trained network is picked randomly from this set of networks by formulating the interaction between a Defender (who hosts the classification networks) and their (Legitimate and Malicious) users as a Bayesian Stackelberg Game (BSG). We empirically show that this approach, MTDeep, reduces misclassification on perturbed images in various datasets such as MNIST, FashionMNIST, and ImageNet while maintaining high classification accuracy on legitimate test images. We then demonstrate that our framework, being the first meta-defense technique, can be used in conjunction with any existing defense mechanism to provide more resilience against adversarial attacks that can be afforded by these defense mechanisms. Lastly, to quantify the increase in robustness of an ensemble-based classification system when we use MTDeep, we analyze the properties of a set of DNNs and introduce the concept of differential immunity that formalizes the notion of attack transferability.Comment: Accepted to the Conference on Decision and Game Theory for Security (GameSec), 201
    • …
    corecore