4,180 research outputs found

    Trees and Markov convexity

    Full text link
    We show that an infinite weighted tree admits a bi-Lipschitz embedding into Hilbert space if and only if it does not contain arbitrarily large complete binary trees with uniformly bounded distortion. We also introduce a new metric invariant called Markov convexity, and show how it can be used to compute the Euclidean distortion of any metric tree up to universal factors

    Fat Polygonal Partitions with Applications to Visualization and Embeddings

    Get PDF
    Let T\mathcal{T} be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T\mathcal{T} is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in Rd\mathbb{R}^d. We use these partitions with slack for embedding ultrametrics into dd-dimensional Euclidean space: we give a polylog(Δ)\mathop{\rm polylog}(\Delta)-approximation algorithm for embedding nn-point ultrametrics into Rd\mathbb{R}^d with minimum distortion, where Δ\Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in nn. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.Comment: 26 page

    Markov convexity and nonembeddability of the Heisenberg group

    Get PDF
    We compute the Markov convexity invariant of the continuous infinite dimensional Heisenberg group H\mathbb{H}_\infty to show that it is Markov 4-convex and cannot be Markov pp-convex for any p<4p < 4. As Markov convexity is a biLipschitz invariant and Hilbert space is Markov 2-convex, this gives a different proof of the classical theorem of Pansu and Semmes that the Heisenberg group does not admit a biLipschitz embedding into any Euclidean space. The Markov convexity lower bound will follow from exhibiting an explicit embedding of Laakso graphs GnG_n into H\mathbb{H}_\infty that has distortion at most Cn1/4lognC n^{1/4} \sqrt{\log n}. We use this to show that if XX is a Markov pp-convex metric space, then balls of the discrete Heisenberg group H(Z)\mathbb{H}(\mathbb{Z}) of radius nn embed into XX with distortion at least some constant multiple of (logn)1p14loglogn.\frac{(\log n)^{\frac{1}{p}-\frac{1}{4}}}{\sqrt{\log \log n}}. Finally, we show that Markov 4-convexity does not give the optimal distortion for embeddings of binary trees BmB_m into H\mathbb{H}_\infty by showing that the distortion is on the order of logm\sqrt{\log m}.Comment: version to appear in Ann. Inst. Fourie

    Line-distortion, Bandwidth and Path-length of a graph

    Full text link
    We investigate the minimum line-distortion and the minimum bandwidth problems on unweighted graphs and their relations with the minimum length of a Robertson-Seymour's path-decomposition. The length of a path-decomposition of a graph is the largest diameter of a bag in the decomposition. The path-length of a graph is the minimum length over all its path-decompositions. In particular, we show: - if a graph GG can be embedded into the line with distortion kk, then GG admits a Robertson-Seymour's path-decomposition with bags of diameter at most kk in GG; - for every class of graphs with path-length bounded by a constant, there exist an efficient constant-factor approximation algorithm for the minimum line-distortion problem and an efficient constant-factor approximation algorithm for the minimum bandwidth problem; - there is an efficient 2-approximation algorithm for computing the path-length of an arbitrary graph; - AT-free graphs and some intersection families of graphs have path-length at most 2; - for AT-free graphs, there exist a linear time 8-approximation algorithm for the minimum line-distortion problem and a linear time 4-approximation algorithm for the minimum bandwidth problem

    Squarepants in a Tree: Sum of Subtree Clustering and Hyperbolic Pants Decomposition

    Full text link
    We provide efficient constant factor approximation algorithms for the problems of finding a hierarchical clustering of a point set in any metric space, minimizing the sum of minimimum spanning tree lengths within each cluster, and in the hyperbolic or Euclidean planes, minimizing the sum of cluster perimeters. Our algorithms for the hyperbolic and Euclidean planes can also be used to provide a pants decomposition, that is, a set of disjoint simple closed curves partitioning the plane minus the input points into subsets with exactly three boundary components, with approximately minimum total length. In the Euclidean case, these curves are squares; in the hyperbolic case, they combine our Euclidean square pants decomposition with our tree clustering method for general metric spaces.Comment: 22 pages, 14 figures. This version replaces the proof of what is now Lemma 5.2, as the previous proof was erroneou
    corecore