research

Markov convexity and nonembeddability of the Heisenberg group

Abstract

We compute the Markov convexity invariant of the continuous infinite dimensional Heisenberg group H\mathbb{H}_\infty to show that it is Markov 4-convex and cannot be Markov pp-convex for any p<4p < 4. As Markov convexity is a biLipschitz invariant and Hilbert space is Markov 2-convex, this gives a different proof of the classical theorem of Pansu and Semmes that the Heisenberg group does not admit a biLipschitz embedding into any Euclidean space. The Markov convexity lower bound will follow from exhibiting an explicit embedding of Laakso graphs GnG_n into H\mathbb{H}_\infty that has distortion at most Cn1/4lognC n^{1/4} \sqrt{\log n}. We use this to show that if XX is a Markov pp-convex metric space, then balls of the discrete Heisenberg group H(Z)\mathbb{H}(\mathbb{Z}) of radius nn embed into XX with distortion at least some constant multiple of (logn)1p14loglogn.\frac{(\log n)^{\frac{1}{p}-\frac{1}{4}}}{\sqrt{\log \log n}}. Finally, we show that Markov 4-convexity does not give the optimal distortion for embeddings of binary trees BmB_m into H\mathbb{H}_\infty by showing that the distortion is on the order of logm\sqrt{\log m}.Comment: version to appear in Ann. Inst. Fourie

    Similar works