5,663 research outputs found

    Kinematically optimal hyper-redundant manipulator configurations

    Get PDF
    “Hyper-redundant” robots have a very large or infinite degree of kinematic redundancy. This paper develops new methods for determining “optimal” hyper-redundant manipulator configurations based on a continuum formulation of kinematics. This formulation uses a backbone curve model to capture the robot's essential macroscopic geometric features. The calculus of variations is used to develop differential equations, whose solution is the optimal backbone curve shape. We show that this approach is computationally efficient on a single processor, and generates solutions in O(1) time for an N degree-of-freedom manipulator when implemented in parallel on O(N) processors. For this reason, it is better suited to hyper-redundant robots than other redundancy resolution methods. Furthermore, this approach is useful for many hyper-redundant mechanical morphologies which are not handled by known methods

    CAD-based approach for identification of elasto-static parameters of robotic manipulators

    Get PDF
    The paper presents an approach for the identification of elasto-static parameters of a robotic manipulator using the virtual experiments in a CAD environment. It is based on the numerical processing of the data extracted from the finite element analysis results, which are obtained for isolated manipulator links. This approach allows to obtain the desired stiffness matrices taking into account the complex shape of the links, couplings between rotational/translational deflections and particularities of the joints connecting adjacent links. These matrices are integral parts of the manipulator lumped stiffness model that are widely used in robotics due to its high computational efficiency. To improve the identification accuracy, recommendations for optimal settings of the virtual experiments are given, as well as relevant statistical processing techniques are proposed. Efficiency of the developed approach is confirmed by a simulation study that shows that the accuracy in evaluating the stiffness matrix elements is about 0.1%.Comment: arXiv admin note: substantial text overlap with arXiv:0909.146

    Lightweight design and encoderless control of a miniature direct drive linear delta robot

    Get PDF
    This paper presents the design, integration and experimental validation of a miniature light-weight delta robot targeted to be used for a variety of applications including the pick-place operations, high speed precise positioning and haptic implementations. The improvements brought by the new design contain; the use of a novel light-weight joint type replacing the conventional and heavy bearing structures and realization of encoderless position measurement algorithm based on hall effect sensor outputs of direct drive linear motors. The description of mechanical, electrical and software based improvements are followed by the derivation of a sliding mode controller to handle tracking of planar closed curves represented by elliptic fourier descriptors (EFDs). The new robot is tested in experiments and the validity of the improvements are verified for practical implementation

    A modal approach to hyper-redundant manipulator kinematics

    Get PDF
    This paper presents novel and efficient kinematic modeling techniques for “hyper-redundant” robots. This approach is based on a “backbone curve” that captures the robot's macroscopic geometric features. The inverse kinematic, or “hyper-redundancy resolution,” problem reduces to determining the time varying backbone curve behavior. To efficiently solve the inverse kinematics problem, the authors introduce a “modal” approach, in which a set of intrinsic backbone curve shape functions are restricted to a modal form. The singularities of the modal approach, modal non-degeneracy conditions, and modal switching are considered. For discretely segmented morphologies, the authors introduce “fitting” algorithms that determine the actuator displacements that cause the discrete manipulator to adhere to the backbone curve. These techniques are demonstrated with planar and spatial mechanism examples. They have also been implemented on a 30 degree-of-freedom robot prototype

    Outils pour l’identification des paramètres de raideur des robots à l’aide d’un logiciel de CAO

    Get PDF
    This report proposes a CAD-based approach for identification of the elasto-static parameters of the robotic manipulators. The main contributions are in the areas of virtual experiment planning and algorithmic data processing, which allows to obtain the stiffness matrix with required accuracy. In contrast to previous works, the developed technique operates with the deflection field produced by virtual experiments in a CAD environment. The proposed approach provides high identification accuracy (about 0.1% for the stiffness matrix element) and is able to take into account the real shape of the link, coupling between rotational/translational deflections and joint particularities. To compute the stiffness matrix, the numerical technique has been developed, and some recommendations for optimal settings of the virtual experiments are given. In order to minimize the identification errors, the statistical data processing technique was applied. The advantages of the developed approach have been confirmed by case studies dealing with the links of parallel manipulator of the Orthoglide family, for which the identification errors have been reduced to 0.1%ANR COROUSS

    Dynamic simulation of task constrained of a rigid-flexible manipulator

    Full text link
    A rigid-flexible manipulator may be assigned tasks in a moving environment where the winds or vibrations affect the position and/or orientation of surface of operation. Consequently, losses of the contact and perhaps degradation of the performance may occur as references are changed. When the environment is moving, knowledge of the angle α between the contact surface and the horizontal is required at every instant. In this paper, different profiles for the time varying angle α are proposed to investigate the effect of this change into the contact force and the joint torques of a rigid-flexible manipulator. The coefficients of the equation of the proposed rotating surface are changing with time to determine the new X and Y coordinates of the moving surface as the surface rotates

    Accuracy Improvement for Stiffness Modeling of Parallel Manipulators

    Get PDF
    The paper focuses on the accuracy improvement of stiffness models for parallel manipulators, which are employed in high-speed precision machining. It is based on the integrated methodology that combines analytical and numerical techniques and deals with multidimensional lumped-parameter models of the links. The latter replace the link flexibility by localized 6-dof virtual springs describing both translational/rotational compliance and the coupling between them. There is presented detailed accuracy analysis of the stiffness identification procedures employed in the commercial CAD systems (including statistical analysis of round-off errors, evaluating the confidence intervals for stiffness matrices). The efficiency of the developed technique is confirmed by application examples, which deal with stiffness analysis of translational parallel manipulators
    • …
    corecore