262 research outputs found

    Basic zone control performance determination in FTS design

    Get PDF
    U radu je izložena procedura za procenu vremena blokiranja vozila u kontrolnim zonama, koja predstavlja mali deo postupka za određivanje vrednosti promenljivih performansi sistema i elementarnih podsistema u projektovanju fleksibilnih transportnih sistema (FTS). Procedura je završni korak Integralnog analitičkog modela (IAM) za projektovanje i određivanje performansi FTS-a, čiji je generalni algoritam, takođe, predstavljen. Predložena strategija analitičkog modeliranja znatno poboljšava nivo tačnosti predviđanja performansi sistema i elementarnih podsistema FTS-a.This paper presents procedure for estimation of vehicle control zone blocking times as an only a small part of system and elementary subsystems performance variables calculation in a flexible transport system (FTS) design. Procedure is a final step of an Integral analytical model (IAM) for FTS design and performances determination, whose general algorithm is shown. Some results of sensitively analyses performed by IAM are also presented. Proposed analytical modeling strategy substantially increases the level of accuracy of system and elementary subsystem performance predicting

    Modeling and Design of Container Terminal Operations

    Get PDF
    Design of container terminal operations is complex because multiple factors affect the operational perfor- mance. These factors include: topological constraints, a large number of design parameters and settings, and stochastic interactions that interplay among the quayside, vehicle transport, and stackside processes. In this research, we propose new integrated queuing network models for rapid design evaluation of container terminals with Automated Lift Vehicles (ALVs) and Automated Guided Vehicles (AGVs). These models offer the flexibility to analyze alternate design variations and develop insights. For instance, the effect of alternate vehicle dwell point policy is analyzed using state-dependent queues, whereas the efficient terminal layout is determined using variation in the service time expressions at the stations. Further, using embedded Markov chain analysis, we develop an approximate procedure for analyzing bulk container arrivals. These models form the building block for design and analysis of large-scale terminal operations. We test the model efficacy using detailed in-house simulation experiments and real-terminal validation by partnering with an external party

    Progress in Material Handling Research: 2012

    Get PDF
    Table of Content

    Optimization of Automated Guided Vehicles (AGV) Fleet Size With Incorporation of Battery Management

    Get PDF
    An important aspect in manufacturing automation is material handling. To facilitate material handling, automated transport systems are implemented and employed. The AGV (automated guided vehicle) has become widely used for internal and external transport of materials. A critical aspect in the use of AGVs is determining the number of vehicles required for the system to meet the material handling requirements. Several models and simulations have been applied to determine the fleet size. Most of these models and simulations do not incorporate the battery usage of the vehicles and the effect it can have on the throughput and the number of AGVs required for the system. The goal of this research is to develop a simulation model to determine the optimized number of AGVs that is capable of increasing throughput while meeting the material handling requirements of the system. This model incorporates the battery management aspect and issues, which are usually omitted in AGV research. This includes the charging options and strategies, the number and location of charging stations, maintenance, and extended charging. The analysis entails studying various scenarios by applying different charging options and strategies and changing different parameters to achieve improved throughput and an optimized AGV fleet size. The results clearly show that battery management can have a significant effect on the average throughput and the AGV usage. It is important that the battery management of the AGVs is addressed adequately to run an AGV system efficiently

    Sea Container Terminals

    Get PDF
    Due to a rapid growth in world trade and a huge increase in containerized goods, sea container terminals play a vital role in globe-spanning supply chains. Container terminals should be able to handle large ships, with large call sizes within the shortest time possible, and at competitive rates. In response, terminal operators, shipping liners, and port authorities are investing in new technologies to improve container handling infrastructure and operational efficiency. Container terminals face challenging research problems which have received much attention from the academic community. The focus of this paper is to highlight the recent developments in the container terminals, which can be categorized into three areas: (1) innovative container terminal technologies, (2) new OR directions and models for existing research areas, and (3) emerging areas in container terminal research. By choosing this focus, we complement existing reviews on container terminal operations

    Simulation in Automated Guided Vehicle System Design

    Get PDF
    The intense global competition that manufacturing companies face today results in an increase of product variety and shorter product life cycles. One response to this threat is agile manufacturing concepts. This requires materials handling systems that are agile and capable of reconfiguration. As competition in the world marketplace becomes increasingly customer-driven, manufacturing environments must be highly reconfigurable and responsive to accommodate product and process changes, with rigid, static automation systems giving way to more flexible types. Automated Guided Vehicle Systems (AGVS) have such capabilities and AGV functionality has been developed to improve flexibility and diminish the traditional disadvantages of AGV-systems. The AGV-system design is however a multi-faceted problem with a large number of design factors of which many are correlating and interdependent. Available methods and techniques exhibit problems in supporting the whole design process. A research review of the work reported on AGVS development in combination with simulation revealed that of 39 papers only four were industrially related. Most work was on the conceptual design phase, but little has been reported on the detailed simulation of AGVS. Semi-autonomous vehicles (SA V) are an innovative concept to overcome the problems of inflexible -systems and to improve materials handling functionality. The SA V concept introduces a higher degree of autonomy in industrial AGV -systems with the man-in-the-Ioop. The introduction of autonomy in industrial applications is approached by explicitly controlling the level of autonomy at different occasions. The SA V s are easy to program and easily reconfigurable regarding navigation systems and material handling equipment. Novel approaches to materials handling like the SA V -concept place new requirements on the AGVS development and the use of simulation as a part of the process. Traditional AGV -system simulation approaches do not fully meet these requirements and the improved functionality of AGVs is not used to its full power. There is a considerflble potential in shortening the AGV -system design-cycle, and thus the manufacturing system design-cycle, and still achieve more accurate solutions well suited for MRS tasks. Recent developments in simulation tools for manufacturing have improved production engineering development and the tools are being adopted more widely in industry. For the development of AGV -systems this has not fully been exploited. Previous research has focused on the conceptual part of the design process and many simulation approaches to AGV -system design lack in validity. In this thesis a methodology is proposed for the structured development of AGV -systems using simulation. Elements of this methodology address the development of novel functionality. The objective of the first research case of this research study was to identify factors for industrial AGV -system simulation. The second research case focuses on simulation in the design of Semi-autonomous vehicles, and the third case evaluates a simulation based design framework. This research study has advanced development by offering a framework for developing testing and evaluating AGV -systems, based on concurrent development using a virtual environment. The ability to exploit unique or novel features of AGVs based on a virtual environment improves the potential of AGV-systems considerably.University of Skovde. European Commission for funding the INCO/COPERNICUS Projec

    A Review Of Design And Control Of Automated Guided Vehicle Systems

    Get PDF
    This paper presents a review on design and control of automated guided vehicle systems. We address most key related issues including guide-path design, estimating the number of vehicles, vehicle scheduling, idle-vehicle positioning, battery management, vehicle routing, and conflict resolution. We discuss and classify important models and results from key publications in literature on automated guided vehicle systems, including often-neglected areas, such as idle-vehicle positioning and battery management. In addition, we propose a decision framework for design and implementation of automated guided vehicle systems, and suggest some fruitful research directions

    Scheduling vehicles in automated transportation systems : algorithms and case study

    Get PDF
    One of the major planning issues in large scale automated transportation systems is so-called empty vehicle management, the timely supply of vehicles to terminals in order to reduce cargo waiting times. Motivated by a Dutch pilot project on an underground cargo transportation system using Automated Guided Vehicles CAGV s), we developed several rules and algorithms for empty vehicle management, varying from trivial First-Come, First-Served (FCFS) via look-ahead rules to integral planning. For our application, we focus on attaining customer service levels in the presence of varying order priorities, taking into account resource capacities and the relation to other planning decisions, such as terminal management We show how the various rules are embedded in a framework for logistics control of automated transportation networks. Using simulation, the planning options are evaluated on their performance in terms of customer service levels, AGV requirements and empty travel distances. Based on our experiments, we conclude that look-ahead rules have significant advantages above FCFS. A more advanced so-called serial scheduling method outperforms the look-ahead rules if the peak demand quickly moves amongst routes in the system

    Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda

    Get PDF
    Autonomous mobile robots (AMR) are currently being introduced in many intralogistics operations, like manufacturing, warehousing, cross-docks, terminals, and hospitals. Their advanced hardware and control software allow autonomous operations in dynamic environments. Compared to an automated guided vehicle (AGV) system in which a central unit takes control of scheduling, routing, and dispatching decisions for all AGVs, AMRs can communicate and negotiate independently with other resources like machines and systems and thus decentralize the decision-making process. Decentralized decision-making allows the system to react dynamically to changes in the system state and environment. These developments have influenced the traditional methods and decision-making processes for planning and control. This study identifies and classifies research related to the planning and control of AMRs in intralogistics. We provide an extended literature review that highlights how AMR technological advances affect planning and control decisions. We contribute to the literature by introducing an AMR planning and control framework t

    Stochastic Modeling of Unloading and Loading Operations at a Container Terminal using Automated Lifting Vehicles

    Get PDF
    With growing worldwide trade, container terminals have grown in number and size. Many new terminals are now automated to increase operational efficiency. The key focus is on improving seaside processes, where a distinction can be made between single quay crane operations (all quay cranes are either loading or unloading containers) and overlapping quay crane operations (some quay cranes are loading while others are unloading containers). From existing studies, it is not clear if the design insights obtained from analyzing single operations, such as optimal stack layout, are consistent with the insights obtained from analyzing overlapping operations. In this paper, we develop new integrated stochastic models for analyzing the performance of overlapping loading and unloading operations that capture the complex stochastic interactions among quayside, vehicle, and stackside processes. Using these integrated models, we are able to show that that there are stack layout configurations that are robust for both single (either loading or unloading) and for overlapping (both loading and unloading) operations
    corecore