3,554 research outputs found

    Designing and Implementing Future Aerial Communication Networks

    Get PDF
    Providing "connectivity from the sky" is the new innovative trend in wireless communications. High and low altitude platforms, drones, aircrafts and airships are being considered as the candidates for deploying wireless communications complementing the terrestrial communication infrastructure. In this article, we report the detailed account of the design and implementation challenges of an aerial network consisting of LTE Advanced (LTE-A) base stations. In particular, we review achievements and innovations harnessed by an aerial network composed of Helikite platforms. Helikites can be raised in the sky to bring Internet access during special events and in the aftermath of an emergency. The trial phase of the system mounting LTE-A technology onboard Helikites to serve users on the ground showed not only to be very encouraging but that such a system could offer even a longer lasting solution provided that inefficiency in powering the radio frequency equipment in the Helikite can be overcome.Comment: IEEE Communications Magazine 201

    Aerial base stations with opportunistic links for next generation emergency communications

    Get PDF
    Rapidly deployable and reliable mission-critical communication networks are fundamental requirements to guarantee the successful operations of public safety officers during disaster recovery and crisis management preparedness. The ABSOLUTE project focused on designing, prototyping, and demonstrating a high-capacity IP mobile data network with low latency and large coverage suitable for many forms of multimedia delivery including public safety scenarios. The ABSOLUTE project combines aerial, terrestrial, and satellites communication networks for providing a robust standalone system able to deliver resilience communication systems. This article focuses on describing the main outcomes of the ABSOLUTE project in terms of network and system architecture, regulations, and implementation of aerial base stations, portable land mobile units, satellite backhauling, S-MIM satellite messaging, and multimode user equipments

    Dynamic Resource Management in Integrated NOMA Terrestrial-Satellite Networks using Multi-Agent Reinforcement Learning

    Full text link
    This study introduces a resource allocation framework for integrated satellite-terrestrial networks to address these challenges. The framework leverages local cache pool deployments and non-orthogonal multiple access (NOMA) to reduce time delays and improve energy efficiency. Our proposed approach utilizes a multi-agent enabled deep deterministic policy gradient algorithm (MADDPG) to optimize user association, cache design, and transmission power control, resulting in enhanced energy efficiency. The approach comprises two phases: User Association and Power Control, where users are treated as agents, and Cache Optimization, where the satellite (Bs) is considered the agent. Through extensive simulations, we demonstrate that our approach surpasses conventional single-agent deep reinforcement learning algorithms in addressing cache design and resource allocation challenges in integrated terrestrial-satellite networks. Specifically, our proposed approach achieves significantly higher energy efficiency and reduced time delays compared to existing methods.Comment: 16, 1

    Maritime coverage enhancement using UAVs coordinated with hybrid satellite-terrestrial networks

    Get PDF
    Due to the agile maneuverability, unmanned aerial vehicles (UAVs) have shown great promise for on-demand communications. In practice, UAV-aided aerial base stations are not separate. Instead, they rely on existing satellites/terrestrial systems for spectrum sharing and efficient backhaul. In this case, how to coordinate satellites, UAVs and terrestrial systems is still an open issue. In this paper, we deploy UAVs for coverage enhancement of a hybrid satellite-terrestrial maritime communication network. Using a typical composite channel model including both large-scale and small-scale fading, the UAV trajectory and in-flight transmit power are jointly optimized, subject to constraints on UAV kinematics, tolerable interference, backhaul, and the total energy of the UAV for communications. Different from existing studies, only the location-dependent large-scale channel state information (CSI) is assumed available, because it is difficult to obtain the small-scale CSI before takeoff in practice and the ship positions can be obtained via the dedicated maritime Automatic Identification System. The optimization problem is non-convex. We solve it by using problem decomposition, successive convex optimization and bisection searching tools. Simulation results demonstrate that the UAV fits well with existing satellite and terrestrial systems, using the proposed optimization framework

    Aerial-terrestrial communications: terrestrial cooperation and energy-efficient transmissions to aerial-base stations

    Get PDF
    Hybrid aerial-terrestrial communication networks based on low-altitude platforms are expected to meet optimally the urgent communication needs of emergency relief and recovery operations for tackling large-scale natural disasters. The energy-efficient operation of such networks is important given that the entire network infrastructure, including the battery-operated ground terminals, exhibits requirements to operate under power-constrained situations. In this paper, we discuss the design and evaluation of an adaptive cooperative scheme intended to extend the survivability of the battery-operated aerial-terrestrial communication links. We propose and evaluate a real-time adaptive cooperative transmission strategy for dynamic selection between direct and cooperative links based on the channel conditions for improved energy efficiency. We show that the cooperation between mobile terrestrial terminals on the ground could improve energy efficiency in the uplink, depending on the temporal behavior of the terrestrial and aerial uplink channels. The corresponding delay in having cooperative (relay-based) communications with relay selection is also addressed. The simulation analysis corroborates that the adaptive transmission technique improves overall energy efficiency of the network whilst maintaining low latency, enabling real-time applications

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed
    corecore