13,468 research outputs found

    Linearly Solvable Stochastic Control Lyapunov Functions

    Get PDF
    This paper presents a new method for synthesizing stochastic control Lyapunov functions for a class of nonlinear stochastic control systems. The technique relies on a transformation of the classical nonlinear Hamilton-Jacobi-Bellman partial differential equation to a linear partial differential equation for a class of problems with a particular constraint on the stochastic forcing. This linear partial differential equation can then be relaxed to a linear differential inclusion, allowing for relaxed solutions to be generated using sum of squares programming. The resulting relaxed solutions are in fact viscosity super/subsolutions, and by the maximum principle are pointwise upper and lower bounds to the underlying value function, even for coarse polynomial approximations. Furthermore, the pointwise upper bound is shown to be a stochastic control Lyapunov function, yielding a method for generating nonlinear controllers with pointwise bounded distance from the optimal cost when using the optimal controller. These approximate solutions may be computed with non-increasing error via a hierarchy of semidefinite optimization problems. Finally, this paper develops a-priori bounds on trajectory suboptimality when using these approximate value functions, as well as demonstrates that these methods, and bounds, can be applied to a more general class of nonlinear systems not obeying the constraint on stochastic forcing. Simulated examples illustrate the methodology.Comment: Published in SIAM Journal of Control and Optimizatio

    New advances in H∞ control and filtering for nonlinear systems

    Get PDF
    The main objective of this special issue is to summarise recent advances in H∞ control and filtering for nonlinear systems, including time-delay, hybrid and stochastic systems. The published papers provide new ideas and approaches, clearly indicating the advances made in problem statements, methodologies or applications with respect to the existing results. The special issue also includes papers focusing on advanced and non-traditional methods and presenting considerable novelties in theoretical background or experimental setup. Some papers present applications to newly emerging fields, such as network-based control and estimation

    Design of generalized minimum variance controllers for nonlinear multivariable systems

    Get PDF
    The design and implementation of Generalized Minimum Variance control laws for nonlinear multivariable systems that can include severe nonlinearities is considered. The quadratic cost index minimised involves dynamically weighted error and nonlinear control signal costing terms. The aim here is to show the controller obtained is simple to design and implement. The features of the control law are explored. The controller obtained includes an internal model of the process and in one form is a nonlinear version of the Smith Predictor

    Stability and Performance Verification of Optimization-based Controllers

    Get PDF
    This paper presents a method to verify closed-loop properties of optimization-based controllers for deterministic and stochastic constrained polynomial discrete-time dynamical systems. The closed-loop properties amenable to the proposed technique include global and local stability, performance with respect to a given cost function (both in a deterministic and stochastic setting) and the L2\mathcal{L}_2 gain. The method applies to a wide range of practical control problems: For instance, a dynamical controller (e.g., a PID) plus input saturation, model predictive control with state estimation, inexact model and soft constraints, or a general optimization-based controller where the underlying problem is solved with a fixed number of iterations of a first-order method are all amenable to the proposed approach. The approach is based on the observation that the control input generated by an optimization-based controller satisfies the associated Karush-Kuhn-Tucker (KKT) conditions which, provided all data is polynomial, are a system of polynomial equalities and inequalities. The closed-loop properties can then be analyzed using sum-of-squares (SOS) programming
    corecore