4 research outputs found

    Characterisation and modelling Lithium Titanate Oxide battery cell by Equivalent Circuit Modelling Technique

    Get PDF
    Lithium Titanate Oxide (L TO) battery cells have immense potential as energy storage systems in large-scale stationary grid applications due to their better cycling performance, lower self-discharge and higher safety margins compared to other Lithium based battery chemistries. Hence, accurate L TO performance models at various operating conditions are required for different purposes like determination of their dynamic behaviour, modelling LTO's suitability to an application as well as to the development of battery and energy management systems (BMS and EMS). L TO battery cell performance is mainly affected by parameters such as, state of charge (SOC) and temperature. Hence, in this paper, second order equivalent circuit model (ECM) of an L TO cell will be developed based on their experimental characterisation at different SoC's (every 10% intervals) and temperatures (15 °C, 25 °C, 35 °C and 45 °C), Modified version of the Hybrid pulse power characterisation (HPPC) test method will be utilised for parametrisation of the ECM of 2.9 Ah L TO cell. The simulation model will be developed in Matlab/Simulink platform and compared with the laboratory measurements for ECM validation.©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Lithium-ion BESS integration for smart grid applications : ECM modelling approach

    Get PDF
    Lithium-ion battery energy storage systems (BESS) with their present state of technology and economic maturity possess huge potential for catering short-term flexibility requirements in smart grid environment. However, it is essential to model in detail the complexity of non-linear battery system characteristics and control of their adjoining power electronic interfaces. More detailed and accurate modelling of components, enables improved overall power system optimization studies by considering both, component and system level aspects simultaneously. Therefore, this paper develops an equivalent circuit model (ECM) for Lithium-ion battery and Lithium-ion nickel-manganese-cobalt (NMC) battery cell is modelled as a second order equivalent circuit (SOEC), including C-rate, temperature, state-of-charge and age effects. Secondly, detailed controller design methodology for DC/DC- and DC/AC-converter interfaces are developed to enable advanced grid integration studies. Overall, BESS integration design was validated by simulation studies in Simulink Simpowersystems platform.©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed

    Modelling battery energy storage systems for active network management : coordinated control design and validation

    Get PDF
    Control of battery energy storage systems (BESS) for active network management (ANM) should be done in coordinated way considering management of different BESS components like battery cells and inverter interface concurrently. In this paper, a detailed and accurate lithium‐ion battery model has been used to design BESS controls, thereby allowing improved overall power system control design optimisation studies by simultaneously considering both component and system‐level aspects. This model is utilised to develop a multi‐objective ANM scheme (a) to enhance utilisation of wind power generation locally by means of active power (P)‐ control of BESSs; (b) to utilise distributed energy resources (i.e. BESS and wind turbine generators) to maintain system voltage within the limits of grid code requirements by reactive power/voltage (QU)‐ and active power/voltage (PU)‐ controls. BESS control strategies to implement the ANM scheme, are designed and validated through real‐time simulation in an existing smart grid pilot, Sundom Smart Grid (SSG), in Vaasa, Finland.© 2021 The Authors. IET Renewable Power Generation published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.fi=vertaisarvioitu|en=peerReviewed

    Accurate Battery Modelling for Control Design and Economic Analysis of Lithium-ion Battery Energy Storage Systems in Smart Grid

    Get PDF
    Adoption of lithium-ion battery energy storage systems (Li-ion BESSs) as a flexible energy source (FES) has been rapid, particularly for active network management (ANM) schemes to facilitate better utilisation of inverter based renewable energy sources (RES) in power systems. However, Li-ion BESSs display highly nonlinear performance characteristics, which are based on parameters such as state of charge (SOC), temperature, depth of discharge (DOD), charge/discharge rate (C-rate), and battery-aging conditions. Therefore, it is important to include the dynamic nature of battery characteristics in the process of the design and development of battery system controllers for grid applications and for techno-economic studies analyzing the BESS economic profitability. This thesis focuses on improving the design and development of Li-ion BESS controllers for ANM applications by utilizing accurate battery performance models based on the second-order equivalent-circuit dynamic battery modelling technique, which considers the SOC, C-rate, temperature, and aging as its performance affecting parameters. The proposed ANM scheme has been designed to control and manage the power system parameters within the limits defined by grid codes by managing the transients introduced due to the intermittence of RESs and increasing the RES penetration at the same time. The validation of the ANM scheme and the effectiveness of controllers that manage the flexibilities in the power system, which are a part of the energy management system (EMS) of ANM, has been validated with the help of simulation studies based on an existing real-life smart grid pilot in Finland, Sundom Smart Grid (SSG). The studies were performed with offline (short-term transient-stability analysis) and real-time (long-term transient analysis) simulations. In long-term simulation studies, the effect of battery aging has also been considered as part of the Li-ion BESS controller design; thus, its impact on the overall power system operation can be analyzed. For this purpose, aging models that can determine the evolving peak power characteristics associated with aging have been established. Such aging models are included in the control loop of the Li-ion BESS controller design, which can help analyse battery aging impacts on the power system control and stability. These analyses have been validated using various use cases. Finally, the impact of battery aging on economic profitability has been studied by including battery-aging models in techno-economic studies.Aurinkosähköjärjestelmien ja tuulivoiman laajamittainen integrointi sähkövoimajärjestelmän eri jännitetasoille on lisääntynyt nopeasti. Uusiutuva energia on kuitenkin luonteeltaan vaihtelevaa, joka voi aiheuttaa nopeita muutoksia taajuudessa ja jännitteessä. Näiden vaihteluiden hallintaan tarvitaan erilaisia joustavia energiaresursseja, kuten energiavarastoja, sekä niiden tehokkaan hyödyntämisen mahdollistaviea älykkäitä ja aktiivisia hallinta- ja ohjausjärjestelmiä. Litiumioniakkuihin pohjautuvien invertteriliitäntäisten energian varastointijärjestelmien käyttö joustoresursseina aktiiviseen verkonhallintaan niiden pätö- ja loistehon ohjauksen avulla on lisääntynyt nopeasti johtuen niiden kustannusten laskusta, modulaarisuudesta ja teknisistä ominaisuuksista. Litiumioniakuilla on erittäin epälineaariset ominaisuudet joita kuvaavat parametrit ovat esimerkiksi lataustila, lämpötila, purkaussyvyys, lataus/ purkausnopeus ja akun ikääntyminen. Akkujen ominaisuuksien dynaaminen luonne onkin tärkeää huomioida myös akkujen sähköverkkoratkaisuihin liittyvien säätöjärjestelmien kehittämisessä sekä teknis-taloudellisissa kannattavuusanalyyseissa. Tämä väitöstutkimus keskittyy ensisijaisesti aktiiviseen verkonhallintaan käytettävien litiumioniakkujen säätöratkaisuiden parantamiseen hyödyntämällä tarkkoja, dynaamisia akun suorituskykymalleja, jotka perustuvat toisen asteen ekvivalenttipiirien akkumallinnustekniikkaan, jossa otetaan huomioon lataustila, lataus/purkausnopeus ja lämpötila. Työssä kehitetyn aktiivisen verkonhallintajärjestelmän avulla tehtävät akun pätö- ja loistehon ohjausperiaatteet on validoitu laajamittaisten simulointien avulla, esimerkiksi paikallista älyverkkopilottia Sundom Smart Gridiä simuloimalla. Simuloinnit tehtiin sekä lyhyen aikavälin offline-simulaatio-ohjelmistoilla että pitkän aikavälin simulaatioilla hyödyntäen reaaliaikasimulointilaitteistoa. Pitkän aikavälin simulaatioissa akun ikääntymisen vaikutus otettiin huomioon litiumioniakun ohjauksen suunnittelussa jotta sen vaikutusta sähköjärjestelmän kokonaistoimintaan voitiin analysoida. Tätä tarkoitusta varten luotiin akun ikääntymismalleja, joilla on mahdollista määrittää akun huipputehon muutos sen ikääntyessä. Akun huipputehon muutos taas vaikuttaa sen hyödynnettävyyteen erilaisten pätötehon ohjaukseen perustuvien joustopalveluiden tarjoamiseen liittyen. Lisäksi väitöstutkimuksessa tarkasteltiin akkujen ikääntymisen vaikutusta niiden taloudelliseen kannattavuuteen sisällyttämällä akkujen ikääntymismalleja teknis-taloudellisiin tarkasteluihin.fi=vertaisarvioitu|en=peerReviewed
    corecore