8,389 research outputs found

    Finite element approximation of the viscoelastic flow problem: a non-residual based stabilized formulation

    Get PDF
    In this paper, a three-field finite element stabilized formulation for the incompressible viscoelastic fluid flow problem is tested numerically. Starting from a residual based formulation, a non-residual based one is designed, the benefits of which are highlighted in this work. Both formulations allow one to deal with the convective nature of the problem and to use equal interpolation for the problem unknowns View the MathML sources-u-p (deviatoric stress, velocity and pressure). Additionally, some results from the numerical analysis of the formulation are stated. Numerical examples are presented to show the robustness of the method, which include the classical 4: 1 planar contraction problem and the flow over a confined cylinder case, as well as a two-fluid formulation for the planar jet buckling problem.Peer ReviewedPostprint (author's final draft

    A note on the penalty parameter in Nitsche's method for unfitted boundary value problems

    Get PDF
    Nitsche's method is a popular approach to implement Dirichlet-type boundary conditions in situations where a strong imposition is either inconvenient or simply not feasible. The method is widely applied in the context of unfitted finite element methods. From the classical (symmetric) Nitsche's method it is well-known that the stabilization parameter in the method has to be chosen sufficiently large to obtain unique solvability of discrete systems. In this short note we discuss an often used strategy to set the stabilization parameter and describe a possible problem that can arise from this. We show that in specific situations error bounds can deteriorate and give examples of computations where Nitsche's method yields large and even diverging discretization errors

    Stabilized lowest order finite element approximation for linear three-field poroelasticity

    Full text link
    A stabilized conforming mixed finite element method for the three-field (displacement, fluid flux and pressure) poroelasticity problem is developed and analyzed. We use the lowest possible approximation order, namely piecewise constant approximation for the pressure and piecewise linear continuous elements for the displacements and fluid flux. By applying a local pressure jump stabilization term to the mass conservation equation we ensure stability and avoid pressure oscillations. Importantly, the discretization leads to a symmetric linear system. For the fully discretized problem we prove existence and uniqueness, an energy estimate and an optimal a-priori error estimate, including an error estimate for the divergence of the fluid flux. Numerical experiments in 2D and 3D illustrate the convergence of the method, show the effectiveness of the method to overcome spurious pressure oscillations, and evaluate the added mass effect of the stabilization term.Comment: 25 page

    Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche's coupling approach

    Full text link
    We develop a computational model to study the interaction of a fluid with a poroelastic material. The coupling of Stokes and Biot equations represents a prototype problem for these phenomena, which feature multiple facets. On one hand it shares common traits with fluid-structure interaction. On the other hand it resembles the Stokes-Darcy coupling. For these reasons, the numerical simulation of the Stokes-Biot coupled system is a challenging task. The need of large memory storage and the difficulty to characterize appropriate solvers and related preconditioners are typical shortcomings of classical discretization methods applied to this problem. The application of loosely coupled time advancing schemes mitigates these issues because it allows to solve each equation of the system independently with respect to the others. In this work we develop and thoroughly analyze a loosely coupled scheme for Stokes-Biot equations. The scheme is based on Nitsche's method for enforcing interface conditions. Once the interface operators corresponding to the interface conditions have been defined, time lagging allows us to build up a loosely coupled scheme with good stability properties. The stability of the scheme is guaranteed provided that appropriate stabilization operators are introduced into the variational formulation of each subproblem. The error of the resulting method is also analyzed, showing that splitting the equations pollutes the optimal approximation properties of the underlying discretization schemes. In order to restore good approximation properties, while maintaining the computational efficiency of the loosely coupled approach, we consider the application of the loosely coupled scheme as a preconditioner for the monolithic approach. Both theoretical insight and numerical results confirm that this is a promising way to develop efficient solvers for the problem at hand
    • …
    corecore