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Abstract

In this paper, a three-field finite element stabilized formulation for the incompressible viscoelastic fluid

flow problem is tested numerically. Starting from a residual based formulation, a non-residual based one is

designed, the benefits of which are highlighted in this work. Both formulations allow one to deal with the

convective nature of the problem and to use equal interpolation for the problem unknowns σ-u-p (deviatoric

stress, velocity and pressure). Additionally, some results from the numerical analysis of the formulation are

stated. Numerical examples are presented to show the robustness of the method, which include the classical

4 : 1 planar contraction problem and the flow over a confined cylinder case, as well as a two-fluid formulation

for the planar jet buckling problem.
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1. Introduction

The finite element approximation of the flow of viscoelastic fluids presents several numerical difficulties,

particularly for the spatial approximation. On the one hand, the finite element approximation used must

satisfy two compatibility or inf-sup conditions, the first between velocity-pressure and the second associated

to the interpolation of velocity and stress [1, 2]. On the other hand, the convective nature presented both in

the momentum and constitutive equation may lead to numerical instabilities.

The advective nature of the constitutive equation makes it necessary to use a stabilized formulation to

avoid global oscillations. In the context of the finite element method, many algorithms have been developed

to solve this problem: the classical SUPG method and its non-consistent counterpart, the SU method [3],

the GLS method [4, 5], and the stabilization based on the discontinuous Galerkin method [6]. In the present

work, we apply two stabilized formulations based on the Variational Multiscale (VMS) framework introduced
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by Hughes et al. [7] for the scalar convection-diffusion-reaction problem, and extended later to the vectorial

Stokes problem in [8], where the space of the sub-grid scales is taken orthogonal to the finite element space.

As we shall see, this is an important ingredient in the design of our formulations.

The starting point of a VMS approach is to split the unknowns of the problem into two components,

namely, the component that can be approximated by the finite element mesh and the unresolvable one, called

sub-grid scale or simply sub-scale in what follows. The latter needs to be approximated in a simple manner

in terms of the former, so as to capture its main effect and yield a stable formulation for the finite element

unknown. There are different ways to approximate the sub-scale and, in particular, to choose the space

where it is taken. We will describe two formulations which precisely differ in this choice. Both formulations

will allow one to deal with the instabilities of the three-field viscoelastic formulation described earlier. There

will be no need to meet the inf-sup conditions for the interpolation spaces and it will be possible to solve

convection dominated problems both in the momentum and in the constitutive equation. For the latter, these

methods have been found to work well. However, for the momentum equation we have observed that they

are not robust in the presence of high gradients of the unknowns, and therefore we have had to modify them.

The modification consists in designing a sort of term-by-term stabilization based on the choice of subscales

orthogonal to the finite element space. We will describe in detail this method and the need for it.

The work is organized as follows. Section 2 contains the presentation of the problem. Section 3 presents

our stabilized finite element approach. Section 4 is devoted to the numerical analysis results and Section

5 contains typical numerical examples used for this kind of fluids. Finally, in Section 6 conclusions are

summarized.

2. The viscoelastic flow problem

2.1. Boundary value problem

To simulate the transitory incompressible and isothermal flow of viscoelastic fluids, one needs solve the

momentum balance equation, the continuity equation and a constitutive equation that defines the viscoelastic

contribution of the fluid.

The conservation equations for momentum and mass may be expressed as:

ρ
∂u

∂t
+ ρu · ∇u−∇ · T +∇p = f in Ω, t ∈]0, tf [, (1)

∇ · u = 0 in Ω, t ∈]0, tf [ (2)

where Ω is the computational domain of Rd occupied by the fluid, ]0, tf [ is the time interval where the

problem is solved, ρ denotes the constant density, p : Ω → R the pressure, u : Ω → Rd the velocity vector,

f : Ω→ Rd the force vector and T : Ω→ Rd ⊗Rd the deviatoric extra stress tensor which can be defined in
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terms of a viscous and a viscoelastic or elastic contribution as:

T = 2βη0∇su+ σ (3)

where β ∈ [0, 1] is a real parameter (ratio) to define the amount of viscous or solvent viscosity βη0 and elastic

or polymeric viscosity (1− β) η0 in the fluid. For viscoelastic fluids, the problem is incomplete without

the definition of a constitutive equation for the elastic part of the extra stress tensor (σ). A large variety

of approaches exist to define it (see [9, 10] for a complete description). In this work, only the differential

Oldroyd-B model is considered. It reads:

λ

2η0

∂σ

∂t
+

1

2η0
σ − (1− β)∇su+

λ

2η0

(
u · ∇σ − σ · ∇u− (∇u)

T · σ
)

= 0 in Ω, t ∈]0, tf [ (4)

where λ is the relaxation time.

Calling U = [u,σ, p], F = [f , 0, 0] and defining

L(û,U) :=


ρû · ∇u− 2βη0∇ · (∇su)−∇ · σ +∇p

∇ · u
λ

2η0
∂σ
∂t + 1

2η0
σ − (1− β)∇su+ λ

2η0

(
û · ∇σ − σ · ∇û− (∇û)

T · σ
)
 (5)

and

T (U) :=


ρ∂u∂t

0

λ
2η0

∂σ
∂t

 (6)

we may write (1), (2) and (4) using the definition (3) as T (U) + L(û,U) = F .

Initial and boundary conditions have to be appended to problem (1)-(4). For simplicity in the exposition,

we will consider the simplest boundary condition u = 0 on ∂Ω, and no boundary conditions for σ. However,

due to the hyperbolic nature of the constitutive equation, in some examples the elastic stresses are fixed on

the inflow part of the boundary. For a complete description of the mathematical structure of the problem we

refer to [11].

2.2. The variational form

We introduce some notation in order to write the weak form of the problem. The space of square integrable

functions in a domain ω is denoted by L2 (ω), and the space of functions whose distributional derivatives of

order up to m ≥ 0 (integer) belong to L2 (ω) by Hm (ω). The space Hm
0 (ω) consists of functions in H1 (ω)

vanishing on ∂ω. The topological dual of H1
0 (Ω) is denoted by H−1 (Ω), the duality pairing by 〈·, ·〉, and the

L2 inner product in ω (for scalar, vectors and tensors) is denoted by (·, ·). The norm in a functional space X
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will be denoted by ‖ · ‖X , except when X = L2(Ω), case in which the subscript will be omitted.

Using this notation, the stress, velocity and pressure functional spaces for the continuous problem are

Υ0 = L2
(
0, tf ; (H1

0 (Ω))d×dsym

)
(the subscript sym standing for symmetric tensors), V0 = L2

(
0, tf ; (H1

0 (Ω))d
)

and Q = D
(
0, tf ; (L2(Ω)/R)

)
(D standing for distributions), respectively. The weak form of the problem

consists in finding U = [u, p,σ] ∈ X = V0 ×Q×Υ0, such that:

(
ρ
∂u

∂t
,v

)
+ 2 (βη0∇su,∇sv) + 〈ρu · ∇u,v〉+ (σ,∇sv)− (p,∇ · v) = 〈f ,v〉 (7)

(q,∇ · u) = 0 (8)(
λ

2η0

∂σ

∂t
, τ

)
+

(
1

2η0
σ, τ

)
− ((1− β)∇su, τ ) +

λ

2η0

(
u · ∇σ − σ · ∇u− (∇u)

T · σ, τ
)

= 0 (9)

for all V = [v, q, τ ] ∈ X̂ (the time independent counterpart of X ), where f ∈
(
0, tf ; (H−1(Ω))

)
.

In a compact form, the problem (7)-(9) can be written as:

(
ρ
∂u

∂t
,v

)
+

(
λ

2η0

∂σ

∂t
, τ

)
+B (u;U ,V ) = 〈f ,v〉

for all V ∈ X̂ , where

B (û;U ,V ) = 2 (βη0∇su,∇sv) + 〈ρû · ∇u,v〉+ (σ,∇sv)− (p,∇ · v) + (q,∇ · u)

+

(
1

2η0
σ, τ

)
− ((1− β)∇su, τ ) +

λ

2η0

(
û · ∇σ − σ · ∇û− (∇û)

T · σ, τ
)

(10)

3. Numerical approximation

3.1. Galerkin finite element discretization

The standard Galerkin approximation for the variational problem can be performed by considering a finite

element partition Th of the domain Ω. The diameter of an element domain K ∈ Th is denoted by hK and the

diameter of the element partition is defined by h = max {hK | K ∈ Th}. Under the above considerations, we

can construct conforming finite elements spaces, Vh,0 ⊂ V0, Qh ⊂ Q and Υh,0 ⊂ Υ0 in the usual manner. If

X h = Vh,0×Qh×Υh,0, and Uh = [uh, ph,σh], the Galerkin finite element approximation consist in finding

Uh ∈ X h, such that:

(
ρ
∂uh
∂t

,vh

)
+

(
λ

2η0

∂σh
∂t

, τh

)
+B (uh;Uh,V h) = 〈f ,vh〉 (11)

for all V h = [vh, qh, τh] ∈ X̂ h.

In principle, we have posed no restrictions on the choice of the finite element spaces. However, there

are restrictions that must be satisfied explicitly in the discrete formulation used. These are the same as for
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the three-field formulation of the Stokes problem [12, 1, 13]. A possible remedy to this situation is to use

inf-sup stable elements (see [3] for the 2D case and [14] for the 3D case). The other possibility is to use a

stabilized formulation permitting any interpolation between the variables, which is the approach used in this

work. In general, a stabilized formulation consists of replacing B by another bilinear form Bh, possibly mesh

dependent, with better stabilities properties.

3.2. Stabilized finite element approximation

In the following we present two stabilized finite element formulations for computing viscoelastic flows

using the Oldroyd-B constitutive model. They are based on the variational multi-scale approach, where the

unknown can be split as U = Uh + Ũ , where Uh is the finite element part and Ũ represents the remainder

non-captured part, called the sub-grid scale. A similar split can be considered for the test functions. The

first method to be discussed is a residual based stabilized formulation, whereas the second is a non-residual

one which turns out to have a better performance in situations in which the solution is not smooth.

3.2.1. Residual based stabilized finite element formulation

After some approximations (see [15]), the residual based method we consider consists in finding Uh ∈ X h

such that

(
ρ
∂uh
∂t

,vh

)
+

(
λ

2η0

∂σh
∂t

, τh

)
+B (uh;Uh,V h) +

∑
K

〈
Ũ ,L∗ (uh;V h)

〉
K

= 〈f ,vh〉 (12)

for all V h ∈ X̂ h, where L∗ (û,V h) is the formal adjoint of the operator in (5) without considering boundary

conditions, and Ũ is the subgrid scale, which needs to be approximated. If P̃ is the L2 projection onto the

space of sub-grid scales, the approximation we consider within each element is

Ũ = αP̃ [Rh] = αP̃ [F − L (uh;Uh)]

where Rh is the finite element residual and α is a matrix computed within each element, which we take as

α = diag (α1Id, α2, α3Id×d)

with Id the identity on vectors of Rd, Id×d the identity on second order tensors and the parameters αi,

i = 1, 2, 3, are computed as

α1 =

[
c1
η0

h2
+ c2

ρ |uh|
h

]−1

, α2 =
h2

c1α1
, α3 =

[
c1

1

2η0
+ c3

λ

η0

(
|uh|
2h

+ |∇uh|
)]−1

where the c1, c2 and c3 are algorithmic constants.
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Independently of the choice of the projection P̃ , the method defined by (12) is consistent, since the terms

added to the Galerkin ones are proportional to the finite element residual Rh. Thus, they vanish if the finite

element solution is replaced by the continuous solution U . It is in this sense that we call (12) a residual based

method.

3.2.2. Non-Residual based stabilized finite element formulation

For smooth solution, method (12) is stable and displays optimal order of convergence. Considering

P̃ = P⊥h , from (12) we can design a simplified method, which consist in neglecting the cross local inner-

product terms, as well as some other terms that do not contribute to stability. In particular, from the

momentum equation we can obtain the following stabilization term

S⊥1 (ûh;Uh,V h) =
∑
K

α1

〈
P⊥h [ρûh · ∇uh] , ρûh · ∇vh

〉
K

+
∑
K

α1

〈
P⊥h [∇ph] ,∇qh

〉
K

(13)

+ (1− β)
∑
K

α1

〈
P⊥h [∇ · σh] ,∇ · τh

〉
K

instead of the following two terms derived from the residual based method:

S̃1 (ûh;Uh,V h) =
∑
K

α1

〈
P̃ [−∇ · σh − 2βη0∇ · (∇suh) + ρûh · ∇uh +∇ph] , (14)

− (1− β)∇ · τh + 2βη0∇ · (∇svh) + ρûh · ∇vh +∇qh
〉
K

that would contribute to the left-hand-side of the discrete problem and

R̃1 (ûh;V h) =
∑
K

α1

〈
P̃ [f ],− (1− β)∇ · τh + 2βη0∇ · (∇svh) + ρûh · ∇vh +∇qh

〉
K

(15)

that would appear in the right-hand-side of the discrete problem.

Note that the use of (13) intead of (14) and (15) is not just a simplification. For smooth solutions,

both methods have optimal convergence rate in h. However, in problems where the solution has strong

gradients, we found (13) more robust. When using (13), the terms that have identified as “problematic” are

the cross-terms α1 〈∇ph,− (1− β)∇ · τh〉K and α1 〈−∇ · σh,∇qh〉K . In the presence of high derivatives of

pressure and stress, such as in the corner 4:1 contraction example, they lead to convergence difficulties for

high Weissenberg numbers and to inaccurate localization of pressure and stress peaks. This is a fact that we

have confirmed from several numerical experiments.

For the stabilization terms of the constitutive equation and the continuity equation we may still use

the residual based form, which has proven to be a very robust combination with the additional advantage

of a smaller number of finite element projections needed to construct the method. For the continuity and
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constitutive equation the stabilization terms are defined respectively as:

S̃2 (Uh,V h) =
∑
K

α3

〈
P̃ [∇ · uh] ,∇ · vh

〉
K
, (16)

S̃3 (ûh;Uh,V h) =
∑
K

α3

〈
P̃

[
1

2η0
σh − (1− β)∇suh +

λ

2η0

(
ûh · ∇σh − σh · ∇ûh − (∇ûh)

T · σh
)]
,

− 1

2η0
τh −∇svh +

λ

2η0

(
ûh · ∇τh + τh · (∇ûh)

T
+∇ûh · τh

)〉
K

(17)

Finally, the proposed method can be defined as follows: find Uh ∈ X h such that

(
ρ
∂uh
∂t

,vh

)
+

(
λ

2η0

∂σh
∂t

, τh

)
+B (u;Uh,V h)

+ S⊥1 (ûh;Uh,V h) + S̃2 (Uh,V h) + S̃3 (ûh;Uh,V h) = 〈f ,vh〉 (18)

for all V h ∈ X̂ h. This replaces the residual formulation defined in (12). In the numerical examples and for

the following analysis results, we use P̃ = P⊥h in the terms S̃2 and S̃3.

Both methods, the residual and the non-residual, are optimally convergent in space. The temporal order

accuracy in the monolithic case is determined by the time integration scheme used. In the case of a fractional

step approach, different algorithms could be designed. See [16], where first, second third order schemes in

time were designed for the three-field viscoelastic case.

4. Numerical Analysis Results

We have performed a complete numerical analysis of the stationary and linearized problem, proving

stability and convergence in the mesh dependent norm associated to the problem and in natural norms. We

present here the results of this analysis without proof, which can be found in [17].

The problem we consider is the following: find Uh ∈ X h (now a space of time independent functions)

such that

Bstab(Uh,V h) := B(ah;Uh,V h) +
∑
K

〈
Ũ ,L∗ (ah;V h)

〉
K

= 〈f ,vh〉 (19)

for all V h ∈ X h, with the adequate approximation for Ũ . Here, ah is a given advection velocity, which in a

fixed-point like iterative algorithm can be understood as the velocity field obtained in a previous iteration.

To guarantee the well-posedness in the solution of the problem (19), the advection velocity must satisfy the

following assumption (see e.g. [11]):

ah ∈ V0, ∇ · ah = 0, ‖ah‖∞ ≤Ma, ‖∇ah‖∞ ≤Mg for some constants Ma,Mg <∞ (20)
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Let us assume for simplicity that the stabilization parameters are constant. The norm associated to the

stabilized bilinear form Bstab, in which the results will be first presented, is given by

‖V h‖2W = 2βµ (1− β) ‖∇svh‖2 +
1

2µ
‖τh‖2 + α1 ‖ρah · ∇vh +∇qh −∇ · τh‖2

+ α1

∥∥P⊥u (ρah · ∇vh)
∥∥2

+ α1 (1− β)
∑
K

∥∥P⊥u (∇ · τh)
∥∥2

+ α1

∑
K

∥∥P⊥u (∇qh)
∥∥2

+ α2 ‖∇ · vh‖2 + α3

∥∥∥∥− (1− β)∇svh +
λ

2µ
(ah · ∇τh + τ̇ ∗∗h )

∥∥∥∥2

(21)

where τ̇ ∗∗h = τh · ∇asah−∇asah ·σh and ∇as stands for the skew-symmetric part of the gradient of a vector

field.

The stability result we have is the following:

Theorem 1 (stability). There is a constant C > 0, such that

inf
Uh∈Xh

sup
Uh∈Xh

Bstab (Uh,V h)

‖Uh‖W ‖V h‖W
≥ C

Here and bellow, C denotes a generic positive constant.

After having stability, we may proceed to prove convergence. The first ingredient is consistency. The

method we have presented is not exactly consistent, but has an optimal consistency error. To state it, we need

some additional notation. Let Wh be a finite element space of degree kv. For any function v ∈ Hk′v+1 (Ω)

and for i = 0, 1, we define the interpolation errors εi (v) from the interpolation estimates

inf
vh∈Wh

∑
K

‖v − vh‖Hi(K) ≤ Ch
k′′v +1−i

∑
K

‖v‖
Hk′′v +1(K)

=: εi (v)

where k′′v = min (kv, k
′
v). We will denote by ṽh the best approximation of v in Wh. Clearly, we have that

ε0 (v) = hε1 (v). This notation will allow us to prove that the error function of the method is

E (h) :=
√
µε1 (u) +

√
µ

√(
ρ ‖ah‖h

µ

)
ε1 (u) +

1
√
µ
ε0 (σ) +

1
√
µ

(
λ ‖ah‖
h

)
ε0 (σ) +

1
√
µ
Cε0 (p)

Note that this error function is defined in terms of the local Reynolds number and the local Weissenberg

number.

Lemma 1 (consistency). Let U ∈ X be the solution of the continuous problem and Uh ∈ X h the finite

element solution. If f ∈ Vh and U is regular enough, so that Bstab (U ,V h) is well defined, then

Bstab (U −Uh,V h) ≤ CE (h) ‖V h‖W
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for all V h ∈ X h.

That E(h) is the error function of the formulation is determined by the following result:

Lemma 2 (interpolation error). Let U ∈ X be the solution of the continuous problem, assumed to be

regular enough, and Ũh ∈ X h its best finite element approximation. Then, the following inequalities hold:

Bstab(U − Ũh,V h) ≤ CE (h) ‖V h‖W , ‖U − Ũh‖W ≤ CE (h)

for all V h ∈ X h.

Finally, we can state the main convergence result, which in view of the definition of the error function

E(h) turns out to be optimal:

Theorem 2 (convergence). Let U = (u, p,σ) ∈ X be the solution of the continuous problem. Then there

exist a constant C > 0 such that

‖U −Uh‖W ≤ CE (h)

The results stated in terms of the norm ‖·‖W are fully meaningful. However, in the case in which viscosity

is high and elasticity is small, we can prove stability and convergence in the norms of the spaces where the

solution belongs. This is what the following theorem states:

Theorem 3 (stability and convergence in natural norms). The solution of the discrete problem Uh =

(uh, ph,σh) ∈ X h can be bounded as (for the viscous dominated case and for the low Weissenberg number

case):
√
µ ‖uh‖H1(Ω) +

1
√
µ
‖σh‖+

1
√
µ
‖ph‖ ≤

C
√
µ
‖f‖H−1(Ω)

Moreover, if the solution of the continuous problem U = (u, p,σ) ∈ X is regular enough, the following error

estimate holds:
√
µ ‖u− uh‖H1(Ω) +

1
√
µ
‖σ − σh‖+

1
√
µ
‖p− ph‖ ≤ CE (h)

Finally, under the classical assumption of elliptic regularity we can prove L2 estimates for the velocity:

Theorem 4 (L2-error estimate for the velocity). Suppose that the Reynolds number and the Weissenberg

numbers are small, and that the continuous problem satisfies the elliptic regularity condition

√
µ ‖u‖H2(Ω) +

1
√
µ
‖σ‖H1(Ω) +

1
√
µ
‖p‖H1(Ω) ≤

C
√
µ
‖f‖

Then, there holds:

√
µ ‖u− uh‖ ≤ Ch

(
√
µ ‖u− uh‖H1(Ω) +

1
√
µ
‖σ − σh‖+

1
√
µ
‖p− ph‖

)
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4 : 1 contraction
n◦ elements n◦ nodes ∆xmin = ∆ymin

M1 27258 27667 0.05
M2 39894 40501 0.025
M3 105816 106671 0.01
Flow over a cylinder

n◦ elements n◦ nodes ∆xmin = ∆ymin

M1 41514 21330 0.025
M2 56905 29152 0.015
M3 67856 35167 0.005

Table 1: Mesh convergence details.

5. Numerical results

In this section, some tests are conducted to show the numerical performance of the proposed formulation,

emphasizing the robustness of the non-residual one.

The first example corresponds to the 4 : 1 contraction problem, then we show some results of the classical

flow over a confined cylinder problem, defined by a pipe of diameter equal to 2 and a cylinder of diameter 1,

and finally, a tridimensional jet-buckling case of a high elastic flow using a two-fluid formulation. In all the

cases, the Oldroyd-B constitutive model is used.

In Fig. 1 the spatial discretization is shown for the 4:1 contraction problem and for the cylinder case. In

this figure ne represents the number of elements, nn the number of nodes and ∆xmin represents the minimum

element size used in both cases. These mesh sizes were chosen after evaluating the convergence of the results

using different meshes for each example. The details of the meshes used to do this are detailed in Table 1.

Note that in both cases, the presented results are associated to the M3 mesh but are practically identical to

the results of mesh M2.

Figure 1: Meshes used: 4:1 contraction (left) and flow over a cylinder (right).

The motivation for the design of the non-residual based formulation is due to the fact that the residual

formulation is not robust in the presence of high gradients of the unknowns. Fig. 2 shows the pressure

variation along a line near to the corner. The corner is situated in x = 20. In this figure, the non-residual

based and the residual based solutions are shown for a Weissenberg number We = 2.0 and a Reynolds number
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Re = 1.0. The non-residual formulation captures the peak accurately but the residual one generates a non-

physical secondary peak, that cannot be removed using mesh refinement. From the numerical analysis, the

term-by-term formulation permits an orthogonal term-by-term control for the pressure gradient and for the

divergence of the elastic stresses, that the residual formulation cannot control, a possible answer for this

situation. In any case, it has to be remarked that for smooth solutions, both formulations are stable and

display an optimal order of convergence. We have observed that only in cases in which the solution has very

high concentrated gradients the non-residual based formulation is more robust, as shown in this example.

Figure 2: Pressure variation along a line in 4:1 contraction problem (We = 2.0 and Re = 1.0): non-residual based (left) and
residual based (right).

Additionally to a better capability in the resolution of high gradient problems, the non-residual formulation

permits the calculation of more elastic flows. In Fig. 3 the streamlines of two cases are shown. Using the

residual based formulation, the more elastic case that we have been able to compute is approximately We =

2.0; for more elastic cases the calculations failed to converge. However, the non-residual based formulation

is capable to solve the same problem up to We = 5.0 (see more results in [15], where the formulation was

presented).

In the case of the confined cylinder, where the solution is smooth, the behavior of the non-residual based

formulation compared to the residual based one is very similar. In Fig. 4, the drag coefficient obtained

with both formulation is compared with published results. Note that in some curves of the graph the word

“log” is added, which is associated to the use of the log-conformation approach. In general, what can be

found in the literature is that standard formulations can solve the problem for We up to a value between

0.7 and 1.0 depending on the reference [18, 19, 5], whereas the log-conformation formulation allows one to

obtain solutions for We up to a value between 2.0 and 2.5, depending on the source [20, 21, 22]. Using our

formulations, we have been able to solve the problem up to We = 1.4. In this graph, we can see that the

agreement is good up to We = 1.1, with differences lower than 1% with respect to the accepted values of
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Figure 3: Streamlines in 4:1 the contraction problem: We = 2.0, Re = 1.0 (left) and We = 5.0, Re = 1.0 (right), both using the
non-residual based formulation.

references; for higher values the differences with respect to the log-conformation approach begin to increase,

which is possibly associated to the high Weissenberg number problem (HWNP). The term HWNP refers to

the empirical observation that all numerical methods break down when the Weissenberg number exceeds a

critical value, due to the exponential grown of the stresses.

Figure 4: Drag coefficient flow over a cylinder: residual based and non-residual based formulations.

The final numerical example (Fig. 5) is presented to show the robustness of the non-residual based

formulation for the three-dimensional case of a jet-buckling flow problem. More details of this example and

the two-fluids approach used can be found in [23], from where the example was taken. The only objective to

include these results here is to show that the formulation presented is also accurate and robust in situations

other than those considered in this paper.
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Figure 5: Jet buckling is a 3D prismatic cavity for: We = 100 and Re = 0.25.
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6. Conclusions

In this paper we have presented a stabilized finite element method to approximate the incompressible

viscoelastic flow problem. On the one hand, we have summarized the formulation, stated some results of the

numerical analysis of the linearized problem and presented some numerical results. On the other hand, we

have explained why the residual based formulation fails in situations in which the stresses have high localized

peaks, and how the term-by-term stabilization based on local projections solves the problem. This work can

thus be understood as a summary of previous (recent) work and an explanation of the phenomenon described.

The formulation used still suffers from the high Weissenberg number problem. This can also be under-

stood in the light of the estimates presented for the linearized stationary problem, where it is seen that the

deteriorate as the Weissenber number (or the Reynolds number) increases. Nevertheless, the present method

could also be applied to log-conformation formulations.

Numerical results show the robustness of the method. Once localized oscillations present in residual based

formulations have been removed by the term-by-term stabilized method, results obtained are smooth, even

for the highest Weissenberg numbers for which results can be found in the literature.
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