3 research outputs found

    Optimal pressure boundary control of steady multiscale fluid-structure interaction shell model derived from koiter equations

    Get PDF
    Fluid-structure interaction (FSI) problems are of great interest, due to their applicability in science and engineering. However, the coupling between large fluid domains and small moving solid walls presents numerous numerical difficulties and, in some configurations, where the thickness of the solid wall can be neglected, one can consider membrane models, which are derived from the Koiter shell equations with a reduction of the computational cost of the algorithm. With this assumption, the FSI simulation is reduced to the fluid equations on a moving mesh together with a Robin boundary condition that is imposed on the moving solid surface. In this manuscript, we are interested in the study of inverse FSI problems that aim to achieve an objective by changing some design parameters, such as forces, boundary conditions, or geometrical domain shapes. We study the inverse FSI membrane model by using an optimal control approach that is based on Lagrange multipliers and adjoint variables. In particular, we propose a pressure boundary optimal control with the purpose to control the solid deformation by changing the pressure on a fluid boundary. We report the results of some numerical tests for two-dimensional domains to demonstrate the feasibility and robustness of our method

    Linear stability analysis of strongly coupled fluid–structure problems with the Arbitrary-Lagrangian–Eulerian method

    Get PDF
    International audienceThe stability analysis of elastic structures strongly coupled to incompressible viscous flows is investigated in this paper, based on a linearization of the governing equations formulated with the Arbitrary-Lagrangian–Eulerian method. The exact linearized formulation, previously derived to solve the unsteady non-linear equations with implicit temporal schemes, is used here to determine the physical linear stability of steady states. Once discretized with a standard finite-element method based on Lagrange elements, the leading eigenvalues/eigenmodes of the linearized operator are computed for three configurations representative for classical fluid–structure interaction instabilities: the vortex-induced vibrations of an elastic plate clamped to the rear of a rigid cylinder, the flutter instability of a flag immersed in a channel flow and the vortex shedding behind a three-dimensional plate bent by the steady flow. The results are in good agreement with instability thresholds reported in the literature and obtained with time-marching simulations, at a much lower computational cost. To further decrease this computational cost, the equations governing the solid perturbations are projected onto a reduced basis of free-vibration modes. This projection allows to eliminate the extension perturbation, a non-physical variable introduced in the ALE formalism to propagate the infinitesimal displacement of the fluid–solid interface into the fluid domain
    corecore