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Abstract

The stability analysis of elastic structures strongly coupled to incompressible viscous flows is investigated in this paper,
based on a linearization of the governing equations formulated with the Arbitrary-Lagrangian–Eulerian method. The exact
linearized formulation, previously derived to solve the unsteady non-linear equations with implicit temporal schemes, is used
here to determine the physical linear stability of steady states. Once discretized with a standard finite-element method based
on Lagrange elements, the leading eigenvalues/eigenmodes of the linearized operator are computed for three configurations
representative for classical fluid–structure interaction instabilities: the vortex-induced vibrations of an elastic plate clamped
to the rear of a rigid cylinder, the flutter instability of a flag immersed in a channel flow and the vortex shedding behind
a three-dimensional plate bent by the steady flow. The results are in good agreement with instability thresholds reported in
the literature and obtained with time-marching simulations, at a much lower computational cost. To further decrease this
computational cost, the equations governing the solid perturbations are projected onto a reduced basis of free-vibration modes.
This projection allows to eliminate the extension perturbation, a non-physical variable introduced in the ALE formalism to
propagate the infinitesimal displacement of the fluid–solid interface into the fluid domain.
c⃝ 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In various industrial applications, the interaction of fluid flows with structures induces large deformations which
can be detrimental in many cases, but also beneficial to the engineering system in other cases. For instance, flutter
of airplanes wings or bridge decks results in premature fatigue and can even lead to fracture of the structure. The
vortex-induced vibration of elongated marine risers is another example of an industrial system where structural
oscillations are detrimental. On the contrary, energy harvesting devices are designed to exploit these vibrations and
transform the mechanical energy into electricity. In both cases, being able to predict the onset of such oscillations
allows a better design of the systems. This onset can be predicted numerically by simulating in time the deformation
induced by the fluid–structure interaction, or by determining the linear stability of their steady equilibrium position,
as proposed in this paper.
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In aeronautics, the linear stability of structures immersed in a fluid flow has a long history and often constitutes
the first topic of classical books in aeroelasticity [1,2]. The threshold for static divergence and flutter instability of
airplanes wings in cruise condition are usually predicted by the so-called flutter analysis, which relies on several
hypotheses for modelling the structure, the fluid and their interaction. For instance, the spanwise deformation of
the wing is often modelled by a spring-mounted two-dimensional airfoil section. The high Reynolds-number flow
is considered as inviscid and irrotational, and thus described with potential equations. A quasi-steady approach is
also used to couple the fluid and solid dynamics [3], since the characteristic time-scale for the flow (transit time
of the fluid particles over the wing) is much smaller than the characteristic time-scale for the solid (wing vibration
period). The effect of the flow onto the structural motion is then reduced to the computation of the so-called flutter
derivatives. They are determined as the first-order coefficients of a Taylor expansion of the fluid loads with respect to
the solid displacement and/or velocity variables. These coefficients appear in the structure equations as the so-called
generalized aerodynamic forces [2] and allow to obtain a reduced model of the coupled fluid–structure dynamics. A
linear stability analysis of this reduced model well predicts the critical flutter speed [4]. However, the flutter analysis
is strictly valid only at the critical flutter speed [5], when the growth rate of the perturbation vanishes. Moreover,
the domain of validity for this approach is difficult to extend, for instance when the fluid and solid time-scales
separation does not hold, as in vortex-induced vibration problems for instance.

In the present paper, we follow a more general approach, known as the time-linearized approach [6] in
aeroelasticity, which investigates the temporal evolution of small fluid–structure perturbations developing around
steady solutions of the fully coupled fluid–structure equations. Unlike the flutter analysis previously described, the
linearization of the governing equation is thus performed prior to any model reduction. A similar analysis, known
as global stability analysis (see the reviews [7,8]) in hydrodynamics, is performed when considering the stability of
flows developing around rigid structures. The equations governing the dynamics of infinitesimal flow perturbations
developing around steady flows are determined by linearization of the Navier–Stokes equations written in a fixed
spatial domain. In the context of fluid–structure interaction, an additional difficulty arises in the linearization process
because of the Lagrangian motion of the fluid–solid interface.

In the early nineties, a substantial effort had been set on solving linearized flow equations coupled to an elastic
solid model using the so-called transpiration approach, very popular in aeronautics. Derived from the work of
Lightill [9] for simulating the changes in airfoil thickness, the infinitesimal motion of the fluid–solid interface is
taken into account in the linearized equation via a simple modification of the velocity boundary condition applied at
the equilibrium position of the fluid–solid interface. This transpiration velocity condition allows one to easily adapt
a flow solver to treat the fluid–structure problem and to effectively perform unsteady aeroelastic simulations. The
transpiration approach was first applied to inviscid flows [10–12], as for instance in the work by Fisher [12], who
predicted flutter characteristics of an AGARD wing by coupling a modal solid dynamics solver to a compressible
Euler solver. More recently, this transpiration approach was also extended to viscous turbulent flows, as in the
work by Bekka [13] who performed aeroelastic computations of the nozzle of a rocket launcher engine using a
Reynolds-Averaged Navier–Stokes solver coupled to a beam-element solid solver.

Although the transpiration approach (as derived in the early nineties) sounds quite attractive from a computational
point of view, it entirely neglects an important physical effect, namely the coincidence of fluid and solid normal
stresses at the interface. Indeed, a generic perturbation in the position of the fluid–solid interface does not
only modify the velocity continuity condition but also the normal stress condition. A few exact derivations of
linearized fluid–structure problems have therefore been achieved. There are basically two approaches for deriving
the perturbative equation of a physical problem governed by a non-linear equation defined in a moving domain [14].
The perturbations are defined either in a fixed reference configuration (Lagrangian-based perturbations) or in the
instantaneous, deformed configuration (Eulerian-based perturbations) [15]. These two approaches result eventually
to two different descriptions of the same physical problem. Richter [16] and Richter and Wick [17] used for
instance the Lagrangian-based approach to linearize the steady fluid–structure equations and then study in detail
the associated adjoint equations, for the purpose of optimal control and error/parameter estimation. Considering a
steady Stokes flow interacting with a string model, Van der Zee et al. [18] applied the two linearization approaches
in order to derive the adjoint equations. In the formulation obtained for the Lagrangian-based perturbations, the
coupling conditions at the fluid–solid interface are straightforward, but non-local couplings also exist in the fluid
domain and result in significant modifications of the original equations. In the formulation obtained for the Eulerian-
based perturbations, the linearized conservation equations are “simpler”, while the coupling conditions, localized
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at the interface, are more complicated due to the presence of higher-order derivative terms. In the context of time-
dependent fluid–structure problems, an Eulerian-based linearization was proposed by Fernandez & Le Tallec [19,20],
based on the Arbitrary Lagrangian–Eulerian (ALE) formulation of the fluid–structure problem [21]. They found that
in addition to the classical transpiration velocity, the linearized stress coupling results in an added-stiffness term that
depends on higher-order derivatives of the steady fluid velocity and pressure, as well as on a deformation operator
involving the derivatives of the interface displacement. However, the numerical examples proposed in the paper did
not highlight the role of the added stiffness terms and the requirements needed for the proper and accurate capture
of the second-order spatial derivatives. For these reasons, we rather follow the Lagrangian-based approach detailed
hereafter, that results in a lower-order differential problem.

The Lagrangian-based approach was adopted in a discrete framework (finite-volume discretization) by Lesoinne
et al. [5,22] to derive a linearized ALE formulation for inviscid compressible flows modelled with the Euler
equations. The formulation is somehow extended in the present paper. First, the linearized formulation of the
ALE equation is derived in a continuous framework, independently of the spatial discretization chosen. Secondly,
viscous flows are considered and modelled with the incompressible Navier–Stokes equations. Similar linearized
ALE formulations have been derived with the aim of simulating unsteady fluid–structure interaction problems
with large-added mass effects [23,24]. Those unsteady simulations require indeed a fully implicit temporal
discretization [25–28]. A non-linear system is solved at each time-step using a Newton method, and thus involves
the linearized ALE equations around the solution computed at the previous iteration. The mathematical formulation
proposed in the present paper is similar but the ALE formulation is linearized around the steady deformed
configuration, both for the fluid and the solid domains. Moreover, the physical objective is to investigate the linear
stability properties of the steady deformed solution, which requires an exact linearization at the continuous level [25],
and then a consistent discretization of the resulting problem.

The paper is organized as follows. Section 2 first briefly introduces the non-linear ALE formulation for an
elastic solid immersed in an incompressible viscous fluid. The continuous equations are then linearized about a
steady solution based on a Lagrangian decomposition of the perturbations in the configuration corresponding to
the steady deformed solution. The eigenvalue problem obtained after a modal decomposition of the perturbation
is then presented, as well as the discretization based on finite-elements. Then, in Section 3 three fluid–structure
configurations are studied more specifically: an elastic plate clamped on a rigid cylinder immersed in a viscous
channel flow [29], a flag placed in a viscous channel flow [30] and a plate positioned perpendicular to an incoming
flow [31]. The first configuration is representative of a vortex-induced-vibration instability, while the second
accounts for a flutter-induced-vibration instability. The last case shows, in a three-dimensional setting, how static
reconfiguration of a flexible obstacle affects the instabilities in the wake [32]. Obtained stability results are validated
on these cases, and the specific features that come with our formulation are further assessed.

2. Governing equations for the stability analysis with the ALE method

We investigate here the motion of an elastic solid immersed in a Newtonian fluid. The fluid is characterized
by its density ρ∗

f and its kinematic viscosity ν∗

f = η∗

f /ρ
∗

f , where η∗

f is the dynamic viscosity. The superscript * is
used in the following to indicate dimensional quantities. The fluid flow is characterized by a velocity scale U ∗ and
the solid is characterized by a length scale L∗. It is assumed homogeneous of density ρ∗

s . Under the assumption
of isotropy, its elasticity is defined with two parameters. The Young modulus E∗

s characterizes the stiffness while
the Poisson coefficient νs evaluates the ratio between transverse and axial strains. The classical Lamé coefficients
λ∗

s = E∗
s νs/((1+νs)(1−2νs)) and µ∗

s = E∗
s /(2 (1+νs)) can also be used instead of the Young modulus and Poisson

coefficient.
The reference velocity U ∗ and length L∗, specified later depending on the configuration investigated, are used in

the following to make all of the fluid and solid variables non-dimensional, the reference time scale being L∗/U ∗. The
non-dimensional variables are then denoted without superscript *. The fluid–structure configurations investigated in
the following are entirely characterized by four non-dimensional parameters:

Re = U ∗L∗/ν∗

f , Ms = ρ∗

s /ρ
∗

f , Es = E∗

s /(ρ
∗

f U ∗2) and νs (1)

where the Reynolds number Re characterizes the fluid flow, the solid-to-fluid density ratio Ms controls the strength
of the inertia effects in the fluid–structure coupling, and the non-dimensional Young modulus Es and Poisson
coefficient νs characterize the solid elasticity. The last two non-dimensional parameters can be replaced by the
non-dimensional Lamé coefficients λs = λ∗

s /(ρ
∗

f U ∗2) and µs = µ∗
s /(ρ

∗

f U ∗2).
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Fig. 1. Definitions of notations and spatial domains occupied by the fluid (white) and the solid (orange) in the instantaneous configuration
(left), the stress-free reference configuration (middle) and the steady deformed reference configuration (right). Unlike in the instantaneous
configuration, the fluid and solid domains are independent of time in the stress-free and steady configurations. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

2.1. Non-linear ALE fluid–solid equations in the stress-free configuration

The motion of an elastic structure is classically defined in a Lagrangian framework. The position of any material
point x̃t in the instantaneous configuration (the spatial domain Ω̃s,t occupied by the structure at time t shown in
the left sketch of Fig. 1) is identified with respect to its position x̂ in an arbitrary reference configuration. A natural
choice for this reference configuration is the stress-free configuration, i.e. the spatial domain Ω̂s occupied by the
structure when no external stresses are applied on it, as depicted in the sketch in the middle in Fig. 1. The solid
displacement field ξ̂ s is then defined as the difference between the two positions:

ξ̂ s(x̂, t) = x̃t − x̂ for x̂ ∈ Ω̂s. (2)

The solid stresses are then expressed from the solid displacement by means of the first Piola–Kirchhoff stress
tensor [33]

P̂(ξ̂ s) = F̂(ξ̂ s) Ŝ(ξ̂ s) with Ŝ(ξ̂ s) = λs tr(Ê(ξ̂ s))I + 2µsÊ(ξ̂ s), (3)

where F̂(ξ̂ s) = I + ∇̂ξ̂ s is the deformation gradient, Ŝ is the second Piola–Kirchhoff stress tensor written here for
a compressible Saint-Venant–Kirchhoff material, and

Ê(ξ̂ s) =
1
2

(
F̂(ξ̂ s)

TF̂(ξ̂ s) − I
)
. (4)

is the Green–Lagrange strain tensor (where the superscript “T” denotes the transposition operator). Other types of
strain–stress relations can be chosen, but are not considered here for the sake of simplicity. In the above equations,
the notation ∇̂ = ∂/∂ x̂ refers to the differentiation operator with respect to the coordinates in the stress-free
configuration.

On the other hand, the motion of an incompressible viscous fluid is classically defined in an Eulerian framework,
with the Eulerian velocity and pressure fields ũ(x̃t , t) and p̃(x̃t , t), for x̃t ∈ Ω̃f,t , satisfying the incompressible
Navier–Stokes equations

∂ ũ
∂t

+ (∇̃ũ)ũ − ∇̃ · σ̃ (ũ, p̃) = 0, ∇̃ · ũ = 0 in Ω̃f,t

where σ̃ (ũ, p̃) = − p̃+1/Re (∇̃ũ+∇̃ũ
T
) is the fluid stress tensor written in the actual configuration, and ∇̃ = ∂/∂ x̃t

denotes the differentiation with respect to the coordinates in the actual configuration. In the above formulation, both
the velocity/pressure variables and the time-evolving domain are unknowns. The Arbitrary-Lagrangian–Eulerian
(ALE) formalism [21,34] allows to rewrite the governing fluid equations in a fixed fluid domain Ω̂f (for instance
the stress-free reference configuration) while accounting explicitly for the deformation of the instantaneous fluid
domain Ω̃f,t induced by the solid deformation at the fluid–solid interface Γ̃t [34]. Like for the solid domain, the
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deformation of the fluid domain is described in a Lagrangian framework by introducing an extension displacement
field defined in the stress-free configuration as follows:

ξ̂ e(x̂, t) = x̃t − x̂ for x̂ ∈ Ω̂f. (5)

This non-physical variable is introduced in the ALE method so as to propagate the solid displacement at the
fluid–structure interface Γ̂ into the fluid domain, as

0 = ∇̂ · Σ̂e(ξ̂ e) in Ω̂f, (6)

0 = ξ̂ e − ξ̂ s on Γ̂ , (7)

where Σ̂e is the so-called extension operator, often chosen in such a way that (6) is an elliptic equation, for
instance the Laplace or a linear elasticity equation [35,36], in order to ensure a smooth propagation of the interface
deformation. Enhanced models based on the biharmonic equation can also be used [37], but are not considered in
the following. In the stress-free configuration, the fluid velocity and pressure fields are defined as û(x̂, t) = ũ(x̃t , t)
and p̂(x̂, t) = p̃(x̃t , t) respectively. Compared to the usual form of the incompressible Navier–Stokes equation,
additional terms are then found in the fluid equations due to the deformation of the fluid domain. A deformation
operator Φ̂(ξ̂ e) is defined as a function of F̂(ξ̂ e) the deformation gradient in the fluid domain, and Ĵ(ξ̂ e) the
transformation Jacobian, as

Φ̂(ξ̂ e) = Ĵ(ξ̂ e)F̂(ξ̂ e)−1, F̂(ξ̂ e) = I + ∇̂ξ̂ e, Ĵ(ξ̂ e) = det(F̂(ξ̂ e)). (8)

This deformation operator expresses how an infinitesimal surface in the instantaneous configuration is transformed
in the reference configuration [38]. Note that in the two-dimensional case, Φ̂ is an affine operator, while it is
quadratic in the three-dimensional case. In the stress-free reference configuration, the first Piola–Kirchhoff stress
tensor for the fluid finally writes as

Σ̂(û, p̂, ξ̂ e) = σ̂ (û, p̂, ξ̂ e) Φ̂(ξ̂ e)T, (9)

where σ̂ is the Cauchy stress tensor recasted in the stress-free configuration,

σ̂ (û, p̂, ξ̂ e) = − p̂ I +
1
Re

1

Ĵ(ξ̂ e)

(
(∇̂û) Φ̂(ξ̂ e) + Φ̂(ξ̂ e)

T
(∇̂û)

T)
. (10)

In the stress-free reference configuration Ω̂f∪Ω̂s, the dynamical equilibrium between the Lagrangian solid (elastic
stresses given by (3)) and the ALE fluid (viscous/pressure stresses given by (10)) is then written as follows [19,39,40]

Ms
∂2ξ̂ s

∂t2 = ∇̂ · P̂(ξ̂ s) = 0 in Ω̂s, (11)

Ĵ(ξ̂ e)
∂ û
∂t

+

(
∇̂û Φ̂(ξ̂ e)

)(
û −

∂ ξ̂ e

∂t

)
− ∇̂ · Σ̂(û, p̂, ξ̂ e) = 0 in Ω̂f, (12)

∇̂ ·

(
Φ̂(ξ̂ e) û

)
= 0 in Ω̂f, (13)

û −
∂ ξ̂ s

∂t
= 0 on Γ̂ , (14)

Σ̂(û, p̂, ξ̂ e) n̂ − P̂(ξ̂ s)n̂ = 0 on Γ̂ , (15)

where (11) expresses the solid momentum conservation, Eqs. (12) and (13) express respectively the fluid momentum
and mass conservations, while equations (14) and (15) express the continuity of the fluid and solid velocities and
stresses at the fluid–solid interface Γ̂ . The extension field ξ̂ e is given by (6) and (7). The ALE formulation of the
fluid–structure problem is completely defined once farfield boundary conditions, detailed later, are specified.

2.2. Modal stability analysis in the steady deformed configuration

Fluid–structure steady-states are time-independent solutions of the governing equations (6)–(15), denoted as

Û(x̂), P̂(x̂), Ξ̂s(x̂) and Ξ̂e(x̂), (16)
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for the velocity, pressure, solid displacement and extension displacement fields respectively. In that case, the fluid
loads exactly balance the elastic restoring force so that the fluid–structure interface does not move. The fluid velocity
is thus equal to zero at this interface and the velocity of the fluid domain in (12) also vanishes, i.e. ∂Ξ̂e/∂t = 0. In
the present study, the steady non-linear fluid–structure equations are solved with a Newton method. More details
about the determination of these steady-state solutions are given in Appendix B and can also be found in other
studies [41,42].

While the steady-state solutions are computed in the stress-free configuration, the linear stability analysis is
performed in the steady deformed configuration, shown in the sketch in the right in Fig. 1. In this configuration, we
note the quantities without superscripts. The fluid and solid domains are noted Ωf and Ωs respectively, while Γ is
the fluid–solid interface. This configuration is obtained from the stress-free reference configuration by deformation
by the steady displacement fields Ξ̂s(x̂) and Ξ̂e(x̂). The spatial position in Ωf ∪Ωs is thus unequivocally defined as

x ∈ Ωs , x = x̂ + Ξ̂s(x̂) for x̂ ∈ Ω̂s,

x ∈ Ωe , x = x̂ + Ξ̂e(x̂) for x̂ ∈ Ω̂e.
(17)

New solid and extension displacement fields are then defined in this steady configuration, as ξ s(x, t) = x̃t − x for
x ∈ Ωs, and ξ e(x, t) = x̃t − x for x ∈ Ωe. The fluid velocity and pressure fields are noted u and p respectively, they
are obtained from their counterparts in the reference configuration through the variable change (17) as u(x) = û(x̂)
and p(x) = p̂(x̂). The ALE formulation of the fluid–structure equations governing those variables is often referred
to as an “updated Lagrangian” formulation [42], that is obtained by applying the change of coordinate (17) to the
non-linear equations (11)–(15). By construction, the steady-state solutions expressed in the steady configuration are

(U, P)(x) = (Û, P̂)(x̂) and (Ξ,Ξe)(x) = (0, 0). (18)

While the updated formulation implies the presence of initial strains in the solid (as will be detailed later), in the
fluid domain the fact that the steady displacements are zero greatly simplifies the linearized ALE formulation, for
the steady deformation gradient operators just vanish.

To investigate the long-term stability of the steady-state solutions (18) in the steady deformed, pre-stressed
configuration, we introduce the splitting

(u, p)(x, t) = (U, P)(x) + ε
(
(u◦, p◦)(x) e(λ+iω)t

+ c.c.
)

in Ωf,

(ξ s, ξ e)(x, t) = (0, 0) + ε
(
(ξ ◦

s , ξ
◦

e)(x) e(λ+iω)t
+ c.c.

)
in (Ωf,Ωs),

(19)

where ε is an arbitrary small real number, and the perturbation is decomposed into a modal form: λ and ω are
the growth rate and angular frequency of the spatial structures u◦, p◦, ξ ◦

s and ξ ◦

e — which are complex fields,
where “c.c.” denotes the complex conjugate. By injecting this decomposition into the updated ALE formulation
and keeping only the first-order terms in ε, one obtains the following eigenvalue problem:

(λ+ iω)
Ms

Ĵ(Ξ̂s)
u◦

s = ∇ · P′(ξ ◦

s ; Ξ̂s) in Ωs, (20)

(λ+ iω)
(
u◦

− (∇U) ξ ◦

e

)
= ∇ ·

[
Σ′(ξ ◦

e,U, P) + σ (u◦, p◦)
]
. . .

− (∇U)u◦
− (∇u◦)U − (∇U)Φ′(ξ ◦

e) U in Ωf, (21)

0 = ∇ · u◦
+ ∇ · (Φ′(ξ ◦

e) U) in Ωf, (22)

0 = u◦
− u◦

s on Γ , (23)

0 =

[
σ (u◦, p◦) + Σ′(ξ ◦

e,U, P)
]

n − P′(ξ ◦

s ; Ξ̂s) n on Γ , (24)

where the spatial derivative operator is now ∇ = ∂/∂x. The (complex) solid u◦
s velocity field

(λ+ iω) ξ ◦

s = u◦

s in Ωs (25)

is introduced so as to reduce the order of the temporal derivative in the solid equation. We choose here a Laplace
equation for the extension operator, i.e.

0 = ∇
2ξ ◦

e in Ωf, (26)
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0 = ξ ◦

e − ξ ◦

s on Γ . (27)

In the solid equation (20), P′ denotes the linearized first Piola–Kirchhoff stress tensor that writes in the steady
deformed configuration as

P′(ξ ◦

s ; Ξ̂s) =
1

Ĵ(Ξ̂s)

{
∇ξ ◦

s F̂(Ξ̂s) Ŝ(Ξ̂s) + F̂(Ξ̂s) S′(ξ ◦

s ; Ξ̂s)
}

F̂(Ξ̂s)T. (28)

This expression involves in particular the steady strains F̂(Ξ̂s) that exist in the steady deformed configuration. The
linearization of the second Piola–Kirchhoff stress tensor writes

S′(ξ ◦

s ; Ξ̂s) = λs tr
(

E′(ξ ◦

s ; Ξ̂s)
)

+ 2µsE′(ξ ◦

s ; Ξ̂s), (29)

with E′(ξ ◦

s ; Ξ̂s) =
1
2

F̂(Ξ̂s)T
(
∇ξ ◦

s + ∇ξ ◦

s
T
)

F̂(Ξ̂s). (30)

If the strains in the steady-state solution are small, i.e. F̂(Ξ̂s) ≃ I, then the linearized Saint-Venant–Kirchhoff law
reduces to the classical linear elastic strain–stress relation and the solid equation (20) reduces to the linear elasticity
equation. The fluid equations (21)–(22) involve the linearized deformation operator expressed in the steady deformed
configuration as

Φ′(ξ ◦

e) =
(
∇ · ξ ◦

e

)
I − ∇ξ ◦

e . (31)

Note that the linearization of the deformation operator (8) in the stress-free reference configuration yields to a more
complicated expression, involving additional terms related to the steady deformation field Ξ̂e(x̂). In the steady
deformed configuration, these contributions are directly taken into account by the deformation of the domain itself,
thus greatly simplifying the expression of the linearized fluid problem. In the momentum equation (21) there are
terms linearized with respect to the fluid velocity and pressure (which are identical to what is obtained in a rigid
case), plus additional terms that represent how the steady equilibrium (U, P) is affected by the domain displacement
perturbation. An extra term related to the geometry modification is also present in the mass conservation equation
(22). In (21), σ is the classical (viscous) Cauchy stress tensor

σ (u◦, p◦) = −p◦ I +
1
Re

(
∇u◦

+ ∇u◦T
)

(32)

while the linearization of the fluid stress tensor (9) with respect to the extension displacement field writes, in the
steady deformed configuration, as

Σ′(ξ ◦

e,U, P) = σ (U, P)Φ′(ξ ◦

e)T
−

1
Re

(
∇U ∇ξ ◦

e + (∇ξ ◦

e)T (∇U)T
)
. (33)

More details on the linearization steps can be found in [25,27,40] for instance.

2.3. Spatial discretization

The eigenvalue problem (20)–(27) is discretized in space with the finite-element method. The continuous Galerkin
weak formulation of the modal problem is obtained by multiplying each equation with test functions belonging to the
appropriate functional space and integrating over the appropriate spatial domain. Following the three-field discrete
formulation proposed by [5], all the variables and test-functions (noted with the symbol ψ) are gathered into three
sub-groups, namely the solid, fluid and extension variables, as follows:

q◦

s =
(
ξ ◦

s , u◦

s

)
, ψ s =

(
ψ ξ

s ,ψ
u
s

)
, in U s

× U s,

q◦

f =
(
u◦, p◦,λ◦

)
, ψ f =

(
ψu, ψ p,ψλ

)
, in U f

× P f
× UΓ ,

q◦

e =
(
ξ ◦

e,λ
◦

e

)
, ψe =

(
ψ ξ

e ,ψ
λ
e

)
, in U e

× UΓ .

The solid variable q◦
s gathers the solid velocity and displacement, that both belong to the functional space

U s
= {u ∈ H1(Ωs)d , u = 0 on Γ D

s } where Γ D
s denotes the boundary of the solid domain Ωs where Dirichlet

boundary conditions are applied and d = 2, 3 depending on the dimension of the problem.
The fluid variable q◦

f regroups the velocity and pressure, as well as a new variable λ◦ defined on the fluid–solid
interface Γ . Classically, the fluid velocity is taken in the functional space U f

= {u ∈ H1(Ωf)d , u = 0 on Γ D
f } [43],
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and Γ D
f denotes the boundary of the fluid domain Ωf where Dirichlet boundary conditions are applied. The fluid

pressure is taken in P f
= L2(Ωf), while the supplementary variable λ◦ belongs to UΓ

= {v ∈ H−1/2(Γ )d
}. This

additional variable is a Lagrange multiplier that allows for the stress continuity (24) to be satisfied in a weak
sense [44], as a result of the duality with a weak imposition of the velocity continuity condition (23) as

0 =

∫
Γ

(
u◦

− u◦

s

)
· ψλdΓ ∀ψλ

∈ UΓ .

To clarify how the velocity Lagrange multiplier λ◦ arises in the weak formulation, let us consider the fluid
momentum equation (21) and integrate by parts the conservative terms, yielding∫

Ωf

(
∇ · (σ (u◦, p◦) + Σ′(ξ ◦

s ,U, P))
)
· ψu dΩ =

−

∫
Ωf

(
σ (u◦, p◦) + Σ′(ξ ◦

s ,U, P)
)

: ∇ψu dΩ +

∫
Γ

λ◦
· ψu dΓ

where in the integrand of the boundary integral in the right-hand side the velocity Lagrange multiplier is introduced
as λ◦

= (σ (u◦, p◦)+Σ′(ξ ◦

s ,U, P))(−n). The Lagrange multiplier unknown thus gives the linearized normal stress at
the interface (recall that n points from the solid to the fluid domain, see Fig. 1). Turning now to the solid equations,
we obtain∫

Ωs

∇ · P′(ξ ◦

s ; Ξ̂s) · ψu
s dΩ = −

∫
Ωs

P′(ξ ◦

s ; Ξ̂s) : ∇ψu
s dΩ −

∫
Γ

λ◦
· ψu

s dΓ

where we have also replaced the linearized normal solid stress in the boundary integral by the velocity Lagrange
multiplier using the stress continuity condition (24), i.e. λ◦

= P′(ξ ◦

s )(−n). The introduction of the velocity Lagrange
multiplier in the weak formulations of both fluid and solid equations thus allows to enforce (24) in a completely
implicit way [43].

The extension variable q◦
e is composed of the extension displacement ξ ◦

e and a second Lagrange multiplier λ◦

e .
The extension displacement is taken in the functional space ξ ◦

e ∈ U e
= {u ∈ H1(Ωe)d , u = 0 on ∂Ωe \ Γ } where

the extension domain Ωe is a subset of the fluid domain Ωf, that encloses the solid as represented in Fig. 6. The
extension displacement can be extended by continuity and set to zero in the fluid domain outside the extension
domain, where the ALE fluid equation thus reduces to the pure hydrodynamic equations. This strategy allows to
reduce the overall computational cost, as will be detailed in Section 3.3. Like the velocity Lagrange multiplier, λ◦

e
is defined on the fluid–solid interface and is taken in UΓ . It is associated to the weak formulation of the fluid and
solid displacement continuity condition (27), namely

0 =

∫
Γ

(
ξ ◦

e − ξ ◦

s

)
· ψλ

e dΓ .

Note that λ◦

e only intervenes in the weak formulation of the extension problem, where it is introduced to replace
the “pseudo-stress” exerted by the extension displacement at the fluid–solid interface, i.e. λ◦

e = (∇ξ ◦

e)(−n). This
allows to satisfy the displacement continuity without having in return a feedback of the extension pseudo-stress on
the physical stresses [45].

The three-fields weak formulation of the coupled fluid–structure perturbation eigenvalue problem is finally written
whatever ψ s ∈ U s

× U s, ψe ∈ U e
× UΓ and ψ f ∈ U f

× P f
× UΓ as

(λ+ iω)Bs(ψ s, q◦

s ) = As(ψ s, q◦

s ) + Afs(q◦

f,ψ s), (34)

0 = Ae(ψe, q◦

e) + Aes(ψe, q◦

s ), (35)

(λ+ iω)
{
Bf(ψ f, q◦

f) + Bfe(ψ f, q◦

e)
}

= Af(ψ f, q◦

f) + Afs(ψ f, q◦

s ) + Afe(ψ f, q◦

e). (36)

The expression of the different operators involved in the three equations above is given in Appendix A. The weak
formulations (34), (35) and (36) are spatially discretized onto unstructured meshes. The meshes of the solid Ωs and
fluid Ωf domains are generated with a conformal discretization of the common fluid–solid interface Γ . For d = 2
(resp. d = 3), these meshes are composed of triangles (resp. tetrahedra). The discrete counterpart of the extension
subdomain Ωe ⊂ Ωf is defined as a simply-connected subset of the elements enclosing the fluid–solid boundary, so
that in the common domain Ωe ∩Ωf the extension and fluid vertices are exactly located at the same position. Details
on the procedure of triangles selection are given in Section 3.3. Quadratic Lagrange elements P2 are used for the
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fluid velocity and the solid/extension displacement, while linear Lagrange elements P1 are used for the pressure
and the Lagrange multipliers so as to satisfy the Ladyzhenskaya–Babuška–Brezzi condition [46].

The discrete generalized eigenvalue problem obtained from (34), (35) and (36) is then

(λ+ iω)

⎡⎣Bs 0 0
0 0 0
0 Bfe Bf

⎤⎦⎡⎣q◦
s

q◦
e

q◦

f

⎤⎦ =

⎡⎣As 0 AT
fs

Aes Ae 0
Afs Afe Af

⎤⎦⎡⎣q◦
s

q◦
e

q◦

f

⎤⎦ , (37)

where As, for instance, denotes the matrix resulting from the spatial discretization of the operator As, etc. The
left-hand side matrix is not symmetric due to the off-diagonal term Bfe, obtained from the temporal derivative of
the extension displacement. A symmetric formulation can nevertheless be obtained at the price of introducing an
additional extension velocity variable u◦

e = σ ξ ◦

e . In the first line (solid equation), the off-diagonal term AT
fs results

from the continuity of the fluid and solid velocities at the interface and expresses the coupling with the fluid. In the
second line (extension equation), the off-diagonal term Aes results from the continuity of the extension and solid
displacements at the fluid–solid interface. In the last line (fluid equation), the off-diagonal term Afs also results
from the continuity of the fluid and solid velocities at the interface, while Afe represents the shape derivatives of
the fluid equation. The finite-element software FREEFEM++ [47] is used to assemble the sparse block matrices in
the above eigenvalue problem. Finally, it should be noted that the eigenmodes are normalized so that q◦

s
HBsq◦

s = 1,
where the superscript H denotes the transconjugate operation.

2.4. Reduced eigenvalue problem

To reduce the number of degrees of freedom in the above eigenvalue problem, that might be very large
when considering a finer mesh resolution and three-dimensional configurations, we can eliminate the extension
displacement, that depends only on the solid displacement according to

q◦

e = −A−1
e Aes q◦

s . (38)

By introducing this expression into (37), one obtains the smaller problem

(λ+ iω)
[

Bf −BfeA−1
e Aes

0 Bs

] [
q◦

f
q◦

s

]
=

[
Af Afs − AfeA−1

e Aes

AT
fs As

] [
q◦

f
q◦

s

]
, (39)

in which the extension variable has disappeared, at the price of the inverted operator A−1
e appearing in the upper

right corners of the block matrices that form the reduced problem. Consequently, the matrices in the above reduced
eigenvalue problem are very expensive to assemble and their inversion cannot be performed with a sparse LU
factorization, since A−1

e is in general a full, large-scale matrix. To circumvent this difficulty, one possibility is to
resort to a projection of the solid equations onto the free-vibration modal basis truncated to Ns modes. Projecting
the solid dynamics on this basis, the projection of the off-diagonal operators AfeA−1

e Aes and BfeA−1
e Aes can be

assembled explicitly, as we will detail hereafter. Eventually, we then obtain an approximate problem (the solid is
reduced to a few vibration modes) having the size of the fluid problem only, plus the number of vibration modes.

The free-vibration modes, denoted φ◦

s,k for k = 1, 2, . . ., are the vibration modes of the solid structure in absence
of dynamic coupling with the fluid — the static coupling resulting from the steady deformed equilibrium is however
embedded in the matrices Bs and As. They are obtained as eigenvectors of the eigenvalue problem

iωs,k Bs φ
◦

s,k = As φ
◦

s,k (40)

that corresponds to the solid sub-problem extracted from (37), and where the coupling AT
fs with the fluid is cancelled

out. In this problem (and in the supposed case where there are no unstable static buckling modes), the associated
eigenvalues iωs,k are purely imaginary, where ωs,k is the vibration circular frequency of the mode k. By normalizing
the free-vibrations modes as φ◦

s,k
T Bs φ

◦

s,k = 1, they form an orthonormal basis that is used to decompose the solid
component of the eigenvectors q◦

s onto a finite number Ns of free-vibration modes, as

q◦

s =

Ns∑
k=1

αs,k φ
◦

s,k = Φs αs. (41)
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The columns of the rectangular matrix Φs =
[
φ◦

s,1,φ
◦

s,2, . . . ,φ
◦

s,Ns

]
are the free-vibration modes and αs =

(αs,1, αs,2, . . . , αs,Ns )T denotes the vector of modal amplitudes. Introducing this decomposition into (39) and
projecting orthogonally onto the free-vibration basis, one obtains the reduced eigenvalue problem

(λ+ iω)
[

Bf Br
fs

0 Br
s

] [
q◦

f
αs

]
=

[
Af Ar

fs
Ar

sf Ar
s

] [
q◦

f
αs

]
, (42)

where the superscript r is used to indicate the reduced matrices defined as

Br
s = Φs

T Bs Φs , Ar
s = Φs

T AsΦs , Ar
sf = (AfsΦs)T,

Br
fs = −Bfe A−1

e AesΦs , Ar
fs = (Afs − Afe A−1

e Aes)Φs.
(43)

These are small matrices, that are therefore easy to assemble, even if they are not sparse. Br
s and Ar

s are diagonal
matrices of size Ns × Ns . The free-vibrations modes forming an orthonormal basis, the first reduced matrix reduces
to the identity matrix, i.e. Br

s = Ir . By definition of the free-vibration modes (40), the diagonal coefficients of Ar
s

are the free-vibration frequencies ωs,k with 1 ≤ k ≤ Ns . The off-diagonal reduced matrices are rectangular. Ar
fs is

obtained by performing Ns times the product of Afs with the free-vibration modes. The assembly of the off-diagonal
matrices Br

fs and Ar
fs is slightly more complicated. For each free-vibration mode φ◦

s,k , an extension displacement
mode φ◦

e,k is obtained by solving

Aeφ
◦

e,k = Aes φ
◦

s,k . (44)

By performing the matrix–vector product −Bfe φ
◦

e,k , one obtains the kth column of the matrix Br
fs. By performing

the matrix–vector products Afe φ
◦

e,k and Afs φ
◦

s,k and taking the difference, one obtains the kth column of the matrix
Ar

fs.
The eigenvalues/eigenvectors obtained with the reduced eigenproblem are approximations of the eigenval-

ues/eigenvectors obtained with the full eigenproblem, since the solid dynamics are projected onto a reduced basis
of free-vibration modes. In Section 3, the accuracy of this approximation is assessed in Section 3.4, otherwise the
full eigenproblem is considered to perform the stability analysis.

2.5. Resolution of eigenvalue problems and practical implementation

The full and reduced generalized eigenvalue problems (37) and (42) are formally rewritten

σ B q◦
= A q◦ (45)

where σ = λ + iω denotes the complex eigenvalue associated to the eigenvector q◦. The components of this
eigenvector and the definition of the matrices B and A depend on the eigenvalue problem considered. In both cases,
we are interested by computing the leading eigenvalues, i.e. those with the largest growth rate λ. To that aim, a
shift-and-invert spectral transformation is applied to (45), yielding the transformed eigenvalue problem

σs q◦
=
(
A − sB

)−1 B q◦ (46)

where s is the so-called complex shift and σs are the shifted eigenvalues. The eigenvectors are identical in the
transformed and original eigenvalue problems, while the eigenvalues are related through the relation σs = 1/(σ−s).
The shifted eigenvalues σs of largest magnitude correspond to the closest eigenvalues σ from the shift s. To
determine the portion of the spectrum displaying the eigenvalues with the largest growth-rate, the eigenproblem
is solved for several values of s close to the real axis, spanning the imaginary axis in a range of frequency where
unstable eigenvalues are expected.

The Implicitly Restarted Arnoldi Method (IRAM) implemented in the library ARPACK [48] is used to compute
the eigenvalues. This library is called from the finite-element software FREEFEM++ [47], interfaced with ARPACK
library. The reverse communication interface of the latter requires, when using the shift-and-invert mode, to perform
the matrix–vector product Bqi and to solve the following linear problem, for any input vector qi ,

(A − sB)qo = qi (47)

The finite-element software FREEFEM++ [47] is used to assemble the large scale sparse matrices B and A, as well
as to solve the above linear problem. More precisely, the MUMPS library [49] is used to perform a sparse LU
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decomposition of the shifted matrix A − sB and to apply the Lower and Upper triangular resolution. The slow LU
decomposition is performed once for all, unlike the fast upper and lower resolutions which are performed as many
times as required by the IRAM algorithm. This strategy is efficient for eigenvalue problems with a small number
of degrees of freedom, but is limited by the large amount of memory needed to perform the LU decomposition. To
solve eigenvalue problems with a large number of degrees of freedom, an iterative resolution of the shifted problem
is preferred, based on the Gauss–Seidel block preconditioner [43] of the fluid–structure matrix.

To summarize, the linear stability analysis of fluid–solid steady solutions is a two-steps process that consists
in determining first the steady solution, and secondly the eigenmodes of largest growth rate that develop over this
steady solution.

Computing the steady solution: The steady deformed solution is obtained by solving with a Newton method
the steady equations (6)–(15) written in the stress-free reference configuration Ω̂ . Details on the non-linear steady
solver are given in Appendix B.

Computing the leading eigenvalues: They can be obtained by solving either the full (37) or the reduced (42)
eigenproblem. In both cases, the mesh of the steady deformed configuration Ω is computed by deforming the mesh
of the reference configuration Ω̂ using the steady displacement fields Ξ̂s and Ξ̂e. Once the steady solid strains are
computed in the reference configuration, they are pushed forward on the deformed configuration, together with the
steady velocity and pressure fields.

Full eigenvalue problem. To obtain the leading eigenvalues/eigenvectors of (37) in the vicinity of the shift s, we
proceed as follow:

1. The following block matrices are assembled with FREEFEM++: the constant matrices Bf, Aes, Ae, Afs, the
matrices Bfe, Afe, Af that depend on the steady velocity and pressure, and the matrices As, Bs that depend
on the steady strains.

2. the eigenvalue problem (37) is solved with the shift-and-invert approach described above.

• for small-scale eigenvalue problems (typically for cases with a number of degrees of freedom less than
about 5 × 1010), the matrices B and A − sB are first assembled. A single direct LU decomposition of
the shifted matrix A − sB is then performed. For each right-hand side vector qi provided by the IRAM
algorithm, the shifted linear problem (47) is solved by performing successively the lower and an upper
triangular resolution.

• for larger-scale eigenvalue problems, a single direct LU decomposition of each block matrix As − sBs,
Af −sBf and Ae is first performed. For each right-hand side vector qi provided by the IRAM algorithm,
the shifted linear problem (47) is solved iteratively with the GMRES algorithm preconditioned by a
block Gauss–Seidel preconditioner [43].

Reduced eigenvalue problem. When the solid dynamics may be described with a few (Ns) free-vibrations modes,
solving the reduced eigenproblem (42) is advantageous. This can be done as follows:

1. Compute Ns free-vibration modes φ◦

s,k , solutions of the free-vibration eigenproblem (40).
2. Perform a single LU decomposition of the matrix Ae and compute Ns extension modes φ◦

e,k , solutions of
(44).

3. Assemble first the reduced matrices Ar
s f , Ar

f s and Br
f s defined in (43), and then the matrix B and shifted

matrix A − sB corresponding to the reduced eigenproblem (42).
4. the leading eigenvalue of the reduced eigenvalue problem (42) is then obtained with the shift-and-invert

approach described above. A single direct LU decomposition of the shifted A − sB is performed. The
shifted linear problem (47) is then solved at each iteration of the IRAM algorithm, with fast lower and
upper triangular resolutions.

The FREEFEM++ scripts allowing the computation of the non-linear steady solutions and leading eigenmodes
will be made available on the website https://w3.onera.fr/erc-aeroflex/.
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Fig. 2. Reference configuration for the vortex-induced elastic-deformation instability. Sketch of the geometry proposed by [29] with the
associated non-dimensional lengths. Point A is located in the elastic plate at the position (xA, yA) = (3.95, 0) in the reference configuration.

3. Results

In this section, we first present numerical results obtained for two significant two-dimensional test-cases
corresponding to the flow induced vibrations of an elastic bar, and of the flutter instability of a flag in a channel
flow. In the first case, the fluid–structure instability is essentially driven by the fluid wake instability, whereas
in the second configuration the fluid–solid interaction is essential for the development of the instability. A three-
dimensional configuration is finally considered, that consists in the vortex shedding instability in the wake of a plate
deflected by the steady flow.

3.1. Test case with a vortex-induced-deformation instability

The first test case considered here is the configuration proposed and used by Turek & Hron [29] for benchmarking
steady and unsteady nonlinear fluid–structure interaction solvers. As shown in Fig. 2, an elastic plate is clamped
at the rear of a rigid circular cylinder of diameter D∗, which is placed in a channel flow, with a parabolic velocity
profile imposed at the inlet. The centre of the cylinder is not located on the symmetry axis of the channel, but
is slightly shifted downwards, thus creating an asymmetry in the fluid–solid solution. Details of the geometry are
indicated in Fig. 2, where all lengths have been made non-dimensional using the cylinder’s diameter as reference
length L∗

= D∗. The mean velocity of the parabolic velocity profile, denoted Ū ∗, is chosen as the reference velocity,
i.e. U ∗

= Ū ∗. Values of the four non-dimensional parameters defined in (1) and characterizing this fluid–structure
problem are chosen as

120 ≤ Re ≤ 220 , Ms = 1 , Es = 1400 , νs = 0.4. (48)

When considering the Reynolds number Re = 200, we retrieve the test-case denoted FSI3 in [29]. At the maximal
value of the Reynolds number, as shown in the following, multiple unstable eigenvalues are obtained. Smaller
values of the Reynolds number are also considered, so as to have cases with only a single unstable eigenvalue
with a moderate growth-rate, making it possible to monitor the growth of the instability over several periods using
non-linear simulations.

The unsteady ALE equations (11) to (15) written in the reference configuration are satisfied with the following
boundary conditions. The non-dimensional parabolic velocity profile u = 0.357 (2 + y) (2.1 − y) is imposed at the
inlet of the channel. The no-slip boundary conditions (u, v) = (0, 0) are imposed at the top and bottom walls, as well
as on the surface of the rigid cylinder (denoted Γcyl). At the outlet of the channel, a zero normal-stress boundary
condition is imposed. The non-linear unsteady ALE solver is also implemented in the FREEFEM++ software and a
validation is provided in Appendix B. When solving these equations for the above values of the non-dimensional
parameters, one systematically obtains a periodic solution, that is characterized by the unsteady shedding of vortices
in the flow and an unsteady deformation of the elastic plate. Such a configuration can be referred to as a vortex-
induced deformation configuration [3], since the vortex-shedding in the wake of the rigid cylinder induces the
deformation of the elastic plate.

As explained in Section 2.2, steady solutions of (11) to (15) are computed by solving the steady equations using
a Newton method. More details on the numerical algorithm are given in Appendix B. Starting from a uniform zero
field as initial guess, a steady solution is first computed at Reynolds number Re = 20. This solution is then used as
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Fig. 3. Steady solution for the vortex-induced-deformation test case, shown in the steady deformed configuration, Re = 120. The streamwise
component of the velocity U of the steady flow is depicted in blue, while the shear component [F̂(Ξ̂s)]xy of the strain tensor is depicted
in orange in the elastic plate. The dashed lines delimit the recirculating flow regions (a zoom on the tip end of the plate is represented in
the inset on the right, where the orange colour has also been modified to emphasize the peaks at the corners, compared to the full picture).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

initial guess in the Newton algorithm to compute the steady solution at Re = 120. For that value of the Reynolds
number, the Newton algorithm allows to converge towards this steady solution, that cannot been determined by
marching in time the unsteady equations, since it is unstable (as shown later). Steady solutions at higher Reynolds
numbers are computed similarly. Note that, it was not necessary to use any stabilization techniques to ensure the
numerical stability of the finite-element discretization (at least up to Re = 220), probably because the steady
solutions are smooth enough for the low values of the Reynolds number considered here. The fluid velocity (blue)
and the shear component [F̂(Ξ̂s)]xy of the solid strain tensor (orange) are shown in Fig. 3. Although barely visible
due to the small deformation of the solid, the visualization is done in the steady deformed configuration, obtained
after having deformed the domain using the steady displacement field. The steady flow separates on the rigid cylinder
and reattaches on the elastic plate, as indicated by the black dashed curves which represent the isocontours of zero
streamwise velocity. The two recirculation regions formed on the upper and lower sides of the elastic plate are
not symmetric with respect to the symmetry axis of the channel, due to the slight asymmetry of the cylinder’s
position in this channel. The recirculation velocity is slightly larger in the upper region than in the lower region,
thus creating a resultant pressure force that moves the elastic plate upward. The y-displacement of the point A
(located at y = 0 in the reference configuration) is around 0.015, as reported in Table 1. The flow recirculation
also generates viscous shear forces oriented upstream and resulting in a slight compression of the elastic plate. The
x-displacement is however two orders of magnitude lower than the y-displacement and is therefore not reported
here. Finally, the drag and lift coefficients of the rigid cylinder plus the elastic plate are computed as

CD = 2
∫
Γ̂∪Γcyl

Σ̂(Û, P̂, Ξ̂e)n̂ · ex dΓ̂ and CL = 2
∫
Γ̂∪Γcyl

Σ̂(Û, P̂, Ξ̂e)n̂ · ey dΓ̂ ,

where Γ̂ denotes the fluid-elastic plate boundary and Γcyl the rigid cylinder surface and Σ̂ is given in (9). They are
equal to CD = 2.533 and CL = 8.53 × 10−3, the weak positive lift being induced by the slight asymmetry of the
configuration. The influence of the mesh resolution on the computed steady-state solution is reported in Table 1,
which shows the drag coefficient and the y-displacement of the elastic plate at point A. The drag coefficient as well
as the plate displacement reach converged values for the mesh labelled M3. More details about the validation of
the non-linear steady solver are reported in Appendix B.

The linear stability analysis of the steady solution is investigated by solving the eigenvalue problem (37). The
eigenvalue spectrum obtained for Re = 120 is displayed in Fig. 4(a) and exhibits one unstable pair of complex
eigenvalues (λ > 0, ω ̸= 0). The real and imaginary parts of the corresponding eigenvector are displayed in Fig. 4(b).
The transverse solid displacement field inside the elastic plate is depicted in orange, while the arrows represent the
centreline displacement vectors. The mode presents a spatial structure in the solid with one vibration node at the
clamped end of the plate. When the phase of the mode is varied between 0 and 2π , a second vibration minima
moves back and forth along the centreline of the plate (see an animation of the mode in supplementary material).

The influence of the spatial resolution on the unstable eigenvalues is reported in the sixth column in the Table 1.
A converged eigenvalue is reached as the mesh resolution is increased. The unstable eigenvalues are compared
with estimations of the growth rate and frequency (reported in the last column of the table) obtained by marching
in time the non-linear unsteady ALE equations written in the reference configuration. To estimate the growth rate
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Table 1
Vortex-induced deformation test-case at Re = 120. The total number of elements and the minimal size of the
elements are indicated in the second and third columns respectively. The drag coefficient is given in the fourth
columns. The fifth column reports the transverse solid displacement at point A located in xA = 3.95, yA = 0 in
the reference configuration. The sixth column reports the value of the leading complex-conjugate eigenvalues,
while the last column reports the growth-rate and angular frequency extracted from time-marching non-linear
simulations in the linear phase.

Mesh Nt ∆y CD ξ s
y (A) Eigenvalue Time-march

M0 3 264 0.113 2.440 0.0163 −0.023 ± 1.674i Steady-state
M1 8 788 0.051 2.516 0.0158 0.0226 ± 1.689i (0.0228, 1.688)
M2 15 716 0.030 2.528 0.0152 0.0237 ± 1.688i (0.0238, 1.688)
M3 32 732 0.018 2.531 0.0155 0.0238 ± 1.688i (0.0238, 1.687)
M4 59 689 0.012 2.533 0.0154 0.0238 ± 1.688i −

Fig. 4. Results of the stability analysis for the vortex-induced elastic-deformation configuration with non-dimensional parameters (48) and
Re = 120. (a) Eigenvalue spectrum. The eigenvalues are displayed with crosses in the plane (λ, ω) (growth rate, frequency). The vertical
dashed line delimits the (left) stable half-plane from the (right) unstable half-plane. Numerical values of the unstable eigenvalues are reported
in Table 1 for different mesh resolutions. (b) Snapshots of the unstable mode eigenvector for the real (top) and imaginary (bottom) parts,
depicted with the streamwise component of the fluid velocity (blue, dashed negative contours), and the transverse solid displacement (orange).
The centreline displacement in the solid is represented by the orange arrows. Results obtained with the mesh M4. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

and frequency of the linear perturbation using the unsteady non-linear solver, the initial solution is chosen as
the superposition of the steady solution and of the Lagrangian perturbation mode, scaled with a small amplitude
a = 0.005 here. The amplitude of the perturbation is expected to grow exponentially as long as it is small enough
so that the non-linear terms are negligible. Fig. 5 depicts the absolute value of the lift coefficient of the fluctuation
as a function of time, equal to the lift coefficient of the unsteady solution corrected by the steady lift coefficient
CLstat.. For t < 200, the fluctuating lift coefficient grows exponentially (straight envelope in the log-scale) and the
estimated growth rate is in good agreement with the growth-rate λ of the eigenvalue analysis, given by the slope of
the red line in the figure. The Fourier spectra of the signal in the linear phase show one largely predominant peak.
The resulting frequencies are reported in the last column of Table 1, showing a good agreement.

When increasing the Reynolds number, the mode previously described (for Re = 120) becomes more unstable.
Increasing the Reynolds number up to Re = 200 (benchmark case FSI3 from Turek and Hron [29]), computing
the corresponding steady flow and running the eigenvalue analysis, one observes that the leading pair of complex
eigenvalues is 0.298 ± 1.814 i (mesh M4). A second pair of complex eigenvalues gets unstable for a critical value



J.-L. Pfister, O. Marquet and M. Carini / Computer Methods in Applied Mechanics and Engineering 355 (2019) 663–689 677

Fig. 5. Results obtained with temporal simulation for Re = 120, where the initial condition is the superposition of the steady solution and
the unstable eigenmode found in Fig. 4a with an amplitude a = 0.005. Representation of the absolute value of the lift coefficient for the
cylinder and the plate as a function of time, and superimposed growth rate λ given by the eigenvalue analysis After t ≃ 250, a periodic
limit-cycle is reached.

in Reynolds number interval between 215 and 220. For Re = 220, the two pairs of unstable eigenvalues are
0.365 ± 1.861i and 0.0047 ± 2.313 i on mesh M4.

In the configuration of a splitter plate clamped to a rigid cylinder, a vortex-shedding may occur in the wake
flow even when the splitter plate is rigid (Es → ∞). The unsteadiness is due to a purely hydrodynamic eigenmode
that gets unstable when the Reynolds number is high enough. Such fluid–structure configurations are referred to as
vortex-induced vibration configurations, since the vortex-shedding in the flow induces the vibration of the elastic
solid. Although the fluid–structure coupling may be so strong that the vortex-induced vibration can occur for sub-
critical values of the Reynolds number [50], the fluid–solid coupling is not uniquely responsible for the appearance
of unsteadiness. On the other hand, the flutter of slender elastic bodies, like high aspect ratio wings or flags, is
an unsteady aero-elastic phenomenon that is solely induced by the fluid–solid interaction [3]. The next section is
devoted to the analysis of a two-dimensional test case exhibiting a flag flutter instability.

3.2. Test case with a flag flutter instability

The test case considered in this paragraph is shown in Fig. 6 and is similar to the configuration investigated by
Cisonni et al. [30]. A thin elastic plate, denoted “flag” hereinafter, is clamped at the rear of a rigid plate of same
thickness, and placed at the centre of a channel flow. All lengths have been made non-dimensional using the height
of the channel H∗ as the reference length (L∗

= H∗). Identical parabolic velocity profiles are imposed at the two
inlets of the channel, and their mean velocity is chosen as the reference velocity (i.e. U ∗

= U ∗). Following [30], we
impose u(y) = 12y(1−2y) at the upper inlet and u(y) = −12y(1+2y) at the lower inlet. The four non-dimensional
parameters governing this problem are defined with these reference quantities and their values are

Es = 13766 , νs = 0.4 , Ms = 25 , Re = 100 (49)

These values of the non-dimensional elastic Young modulus Es , Poisson coefficient νs , density ratio ρ and Reynolds
number Re correspond to the reduced velocity U = 13.53 and the inertia ratio M = 4 used as a set of non-
dimensional parameters in [30]. The non-dimensional lengths are indicated in Fig. 6, in particular the aspect ratio
of the flag is hL = 1/100 (corresponding to the case labelled (vii) in Figure 7a in [30]). The relations between
the different parametrizations are given by Ms = 1/(MhL ) and Es = 12(1 − ν2

s )/(h3
L MU 2). No-slip boundary

conditions are imposed on the top and bottom walls, as well as on the surface of the rigid and elastic plates. At
the outlet of the channel, a zero normal-stress boundary condition is imposed. When solving the unsteady non-
linear fluid–structure equations for these values of the non-dimensional parameters, the flag oscillates around its
mean deformed position and unsteady flow oscillations develop downstream [30]. The onset of the oscillations is
attributed to a flutter instability which is triggered by the energy transfer from the fluid to the solid [3]. In particular,
unlike in the previous case, there is no pre-existing fluid instability in the wake in the range of Reynolds number
investigated.

The steady-state solution is computed with the methodology already described in the previous paragraph with an
additional ingredient: the symmetry of the present configuration with respect to channel’s axis is used to determine
the steady-state solution, by imposing a zero transverse displacement condition along the centreline of the solid.
The steady-state solution is depicted in Fig. 7 with the streamwise fluid velocity (blue) and the axial component
[F̂(Ξ̂s)]xx of the solid strain tensor (orange). The main difference with the vortex-induced deformation configuration
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Fig. 6. Reference configuration for the flutter instability. Sketch of the geometry investigated by [30]. The dashed rectangular box is the
extension domain Ω e , and the reference point P is located at the position (1.95, 0).

Fig. 7. Steady-state solution in the flutter instability configuration. Streamwise fluid velocity is depicted in blue while the component
[F̂(Ξ̂s)]xx of the solid strain tensor is shown in orange. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

investigated before is that the steady flow does not separate from the solid surface, except at the trailing edge of
the flag where a tiny recirculation region appears (its length is less than the thickness of the flag). The viscous
fluid forces produce a slight stretching of the flag. This can be observed in Fig. 7 where the axial stress is maximal
at the clamped end of the flag, then decreases as we move closer to the tip. The drag coefficient exerted on the
flag C f

D , and the solid axial displacement (ΞP · ex) of point P(1.95, 0), are reported in Table 2 for various mesh
resolutions. Both the drag coefficient and the solid displacement, which is of order of magnitude of 10−3, do not
display significant evolution for meshes finer than M2.

The linear stability of this steady-state solution is now investigated. A converged eigenvalue spectra is depicted
in Fig. 8a. A pair of complex unstable eigenvalues is found close to the imaginary axis. The spatial structure of the
corresponding eigenvector is shown in Fig. 8b. It displays four vibration minimas in the solid, which are emphasized
in Fig. 8c where the y component of the transverse displacement perturbation ξ ′(y, 0) = Real(ξ ◦

s (y, 0) exp iφ) is
represented for different phases φ varying between 0 and 2π . The resulting superposition shows the vibration
envelope. A first vibration node is obviously located at the clamped end x0 = 0. Then, a second vibration node
is clearly noticeable at a position x1. The third and fourth vibration minimas in x2 and x3 (see the positions in
Fig. 8d) cannot be assimilable to vibration nodes, since the position of zero transverse displacement varies with
the phase (see in supplementary material an animation showing the mode). In Fig. 8d the position of the vibration
minimas of the leading eigenmode is reported, together with measurements made on the modal shapes extracted
from non-linear simulations in [30], also represented by orange dots in Fig. 8c. A very good agreement is found
concerning the position x1. Since the other vibration minima are less marked (and thus less identifiable as vibration
nodes), the evaluation of their position is less relevant. An estimate is nevertheless given in Fig. 8d. The influence of
the spatial resolution on the leading eigenvalue is reported in Table 2. Compared to the vortex-induced-deformation
test-case, the spatial resolution needs to be finer for converging the growth rate and the frequency.

We compare now the instability thresholds predicted with the eigenvalue analysis to those reported by [30]
and obtained with time-marching simulations. In this study, the authors vary different parameters such as the plate
aspect ratio, the mass ratio M or the reduced velocity U . Then, neutral curves are determined by running non-linear
time-marching simulations in which a small-amplitude perturbation is applied at the flag at the beginning of the
computation. The growth (resp. decay) of the oscillations is measured so as to estimate an unstable (resp. stable)
growth-rate of the perturbations. The vibration frequencies are estimated using a Fast Fourier Transform of the
oscillation signal at the tip end of the flag.

In what follows, the Reynolds number, Poisson coefficient and inertia ratio are fixed to the values used previously,
(i.e. Re = 100, νs = 0.4 and M = 4), while the reduced velocity U is varied — in this case, this amounts to varying
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Fig. 8. Flutter-induced vibrations case. (a) Eigenvalue spectra. (b) Real and imaginary parts of the leading eigenmode depicted with the
streamwise fluid velocity (blue, dashed negative contours) and the transverse solid velocity (orange). (c) Solid transverse displacement
extracted along the centreline (y = 0) of the solid, for 25 phases varying between 0 and 2π . Orange dots represent the vibrations minimas
found in [30] also reported in (d). Results are shown for the finer mesh. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Table 2
Flutter-induced elastic-deformation test-case. The total number of elements Nt and the minimal/maximal size of
the elements are indicated in the second and third/fourth columns. The fifth and sixth columns display the drag
coefficient of the flag and the streamwise displacement at point P . The leading complex-conjugate eigenvalue
is reported in the last column.

Mesh Nt ∆max ∆min Cf
D ΞP · ex Eigenvalue

M0 3 675 0.1649 0.0164 1.016 1.663 × 10−3 0.0210 ± 3.530 i
M1 8 899 0.1335 0.0109 1.017 1.668 × 10−3 0.0294 ± 3.534 i
M2 16 105 0.0942 0.0081 1.015 1.670 × 10−3 0.0280 ± 3.542 i
M3 35 272 0.0720 0.0038 1.016 1.671 × 10−3 0.0297 ± 3.545 i
M4 67 602 0.0517 0.0025 1.016 1.672 × 10−3 0.0305 ± 3.546 i

only the stiffness of the plate. The results are reported in Fig. 9. On the left side, the growth-rate of the leading
eigenvalue is displayed as a function of the reduced velocity U , while the angular frequency is reported on the right
side. The case (U,M) = (13.53, 4), or equivalently (Es,Ms) = (13766, 25) is the reference flutter case presented in
Fig. 6, and is materialized by the dashed vertical line. The linear stability analysis predicts an instability threshold
(λ = 0) for U crit

= 13.35 ± 0.05, which is very close to the one obtained by Cisonni et al. [30] at U = 13.53. The
frequency at the threshold is estimated from [30] to ωcrit

= 3.5 ± 0.1 (their values are reported in a logarithmic
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Fig. 9. Flutter-induced vibrations, evolution of the leading eigenvalue for a mass ratio M = 4, Reynolds number Re = 100 and Poisson
coefficient νs = 0.4 when the reduced velocity U is varied, with mesh M3. The values corresponding to the flutter-induced case studied
earlier in this paper is marked with the dashed line (parameters M = 4 and U = 13.53). The values obtained by Cisonni et al. are reported
with squares symbols: the instability onset is found to U = 13.53 (left), with a vibration frequency estimated around 3.5 ± 0.1 (right).

scale on a figure). Once again, the frequency prediction obtained with the linear approach is in good agreement.
It is interesting to notice that the computational time for the characterization of one case is estimated to about 1.2
hours on an Intel Xeon X5660 2.8 GHz processor (CPUmark score 7622 according to www.cpubenchmark.net,
where it is claimed that the score roughly scales linearly with the amount of data that the processor can handle in
a given period of time). In our sequential computations, performed with one core of an Intel Xeon E5-1620 v3 3.5
GHz processor (CPUmark score 9758), it takes about 2 minutes to compute a steady flow and then about 4 minutes
to compute 20 eigenvalues on the mesh M3 with the Lagrangian approach (without the modal projection evoked in
Section 3.4). This clearly shows the advantage of running linear analyses for thresholds identifications.

As a conclusion, our linear eigenvalue analysis, tested in a strongly coupled case where the instability arises
primarily from the fluid–structure coupling, is able to reproduce at much lower costs the instability thresholds
obtained with non-linear time-marching simulations. In the next two sections, we evaluate the influence of the
extension equation on the results, as well as the modal projection approach presented in Section 2.4.

3.3. Influence of the extension operator and domain

The ALE formulation introduces a non-physical variable, the extension displacement, to propagate the solid
displacement field at the fluid–solid boundary into the fluid domain with the extension operator. In the present
linear stability analysis, the perturbation of the extension displacement ξ ◦

e is by definition infinitesimal and is thus
never used to explicitly move the fluid domain, unlike in non-linear simulations. Nevertheless, we investigate here
the influence of the extension domain size on the results of the linear stability analysis.

Due to the infinitesimal size of the extension displacement, we expect that the extension domain can be reduced
to a few layers of elements around the elastic solid, as depicted in the sketch of Fig. 6. The extension region,
depicted with dashed lines, extends over a layer of thickness de around the solid. For a given mesh, we define the
signed distance function δ(x) of any point x ∈ Ωf from the fluid–solid boundary Γ . The extension mesh Ωe is then
defined as the set of elements whose centroids satisfy the relation δ(x) < de. Thus de controls the thickness of the
extension domain and the number NL of layers of elements, without changing the distribution of the elements in
the fluid mesh. This way of proceeding allows one to study only the influence of the size of the extension domain,
without changing the overall mesh resolution.

The characteristics of the extension regions and their influence on the leading eigenmode are reported in Table 3.
The extension region does not influence the leading eigenvalue provided its size is sufficiently large, de > 0.2 in
the present case. Note also the greater sensitivity of the growth-rate: while the frequency varies by about 0.03 %
between the case de = 0.199 and de = 0.38, the variation is by 1.3 % for the growth-rate. For the case with only
one layer, the discrepancy compared to the converged values is by 41 % for the growth-rate, and a remarkably
small 0.84 % for the frequency. We have also performed the same tests on the vortex-induced elastic deformation
case, and observed the same behaviour, with even smaller variations, probably due to the fact that the instability
mechanism is essentially linked with the wake located further downstream to the interface.

Let us now examine the eigenvectors, and more specifically the absolute value of the streamwise fluid velocity.
This quantity is displayed in Fig. 10 with solid lines, for two sizes of the extension domain, de = 0.4 (top) and
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Table 3
Characteristics of the extension domain and influence on the leading eigenmodes. de
is the thickness of the extension domain Ωe, while NL and NΩe are the numbers
of layers of triangles and the total number of triangles in the extension region,
respectively. The leading complex-conjugate eigenvalue is reported in the last column.

de NL NΩe Eigenvalue

0.500 >15 17 475 0.0297 ± 3.545 i
0.380 >15 15 721 0.0297 ± 3.545 i
0.199 12 13 829 0.0301 ± 3.544 i
0.041 6 8 421 0.0320 ± 3.541 i
0.018 3 5 444 0.0341 ± 3.536 i
0.010 2 3 531 0.0364 ± 3.530 i
0.005 1 1 793 0.0419 ± 3.515 i

Fig. 10. Influence of the extension domain on the spatial structure of the leading eigenmode for (top) d = 0.4 and (bottom) d = 0.1. The
limit of the extension region is marked with the red dashed line. Contours correspond to the module of the streamwise Lagrangian velocity
(|u◦

· ex|) while colours represent the Eulerian velocity |ũ◦
· ex|, defined in (50).

de = 0.01 (bottom). A strong difference is observed inside the extension domain, while the isocontours look the
same outside this region. This is expected since u◦ is the Lagrangian velocity perturbation that depends on the
extension displacement ξ ◦

e . To display a quantity independent on the extension displacement, we follow Fernandez
and Le Tallec [19] and define the Eulerian-based velocity perturbation as

ũ◦
= u◦

− ∇U ξ ◦

e (50)

that includes the effect of the transport by the domain movement of the steady flow. Such an Eulerian-based
perturbation is displayed with colours in Fig. 10. A comparison between the two figures shows that the spatial
structure of the Eulerian velocity does not depend on the size of the extension domain.

To conclude, the size of the extension domain cannot be reduced to very few layers around the solid domain,
without modifying significantly the results of the stability analysis. The critical size of the extension region depends
on the mesh resolution at the interface but also on the problem investigated: all things being equal, it is for instance
smaller in the vortex-induced-deformation problem than in the flutter problem, probably because the origin of the
instability is more critically the fluid–solid interaction in the latter case. As explained and detailed in Section 3.4,
the extension displacement field variable can also be eliminated from the discrete eigenvalue problem, to the price
of projecting the solid dynamics on a reduced basis composed of free-vibration modes. Results obtained with the
resulting reduced eigenvalue problem are presented in the next paragraph.
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Fig. 11. Flutter-induced case, free vibration modes. (a) Snapshots of the transverse centreline displacement in the solid for different phases,
for the three lowest frequency solid modes with pre-stress (Ξ̂s ̸= 0). (b) Leading complex-conjugate eigenvalues as a function of the number
Ns of solid vibration modes in the truncated modal basis. The time needed for the LU decomposition of the reduced matrices is indicated
in the last column, as a percentage of the time needed to invert the full (i.e. without modal projection) matrix.

3.4. Results for the reduced eigenvalue-problem

Rather than solving the full eigenvalue problem (37), we consider here the resolution of the reduced eigenvalue
problem (42) obtained after projection of the solid dynamics onto free-vibrations modes (see the steps described in
Section 2.5). More specifically, we investigate how the number of free-vibrations modes influence the accuracy of
the leading eigenvalue.

For our test-cases with elongated structures, the free-vibration mode with the lowest frequency is a flexion mode
with one vibration node at the clamped end, as represented on top in Fig. 11a. Then as the frequency increases,
the number of vibration nodes in the corresponding mode increases as well (see Fig. 11a modes 2 and 3). For
higher frequencies, compression modes also appear. Note that taking into account the initial steady strains has a
significant influence on the computed frequencies: while the four first in-vacuo circular frequencies are 0.130, 0.842,
2.227 and 4.458, due to the presence of the pre-strains that tends to elongate the solid, the vibration frequencies
are higher when the steady deformation Ξ̂s ̸= 0 is taken into account for computing the uncoupled solid vibration
frequencies. Namely, the four first pre-stressed frequencies are 0.602, 1.577, 3.421 and 5.579. In all what follows,
the free vibration basis is therefore computed by taking into account these pre-stresses. Also note that the free
vibration frequencies without initial strains that we have computed are in good agreement with those obtained in [30]
(respectively 0.820, 2.287 and 4.498 for the second, third and fourth in-vacuuo circular frequencies, re-normalized
according to the reference scales used in this paper).

The results obtained with mesh M3 are reported in Fig. 11b. For Ns = 5, the basis for the flutter-induced
case is constituted of five modes, the first one with ωs,1 = 0.602 and the last one with ωs,5 = 8.584. As the
number of modes in the free vibration basis is increased, the leading eigenvalue of the approximate eigenvalue
problem becomes closer to the leading eigenvalue of the full problem (reported in the last row). One notices that
the approximate results become fairly good from Ns = 5. This makes sense, since the mode obtained with the full
solver seems to be a combination of the bending modes 1, 2 and 3 (see for instance the solid displacement extracted
from a cut y = 0 on Fig. 8c). Note that fewer modes are required to reconstruct correctly the frequency than to
reconstruct the growth-rate. For Ns = 5, the deviation compared to the eigenvalue obtained with the full problem
is of about 23% for the growth-rate and less than 2% for the frequency. In all cases the interest of the modal
decomposition in terms of computing performance is clear. Even when a solid basis of 20 modes is considered, a
speedup of at least about 4× is observed for the LU factorization of the shifted system matrix (using a direct LU
solver like MUMPS). The gain in terms of memory depends on the initial extension box size.
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3.5. Bending and vibration of a three-dimensional flexible plate in a uniform cross-flow

The last test-case is a three-dimensional flexible plate facing a uniform incoming flow of velocity U∞. The
stability of the three-dimensional flow around the rigid plate was previously investigated by Marquet et Larsson [31].
Following them, we define the Reynolds number as Re = U∞h∗/ν where the height of the plate h∗ is used to
non-dimensionalize all lengths. The non-dimensional thickness of the plate being fixed to 0.04, they varied the
non-dimensional spanwise length L in the range 1 ≤ L ≤ 6 and determined the critical Reynolds number for
various eigenmodes. These unstable eigenmodes break one of the reflectional symmetries with respect to the planes
y = 0 and z = 0 that are satisfied by the steady flow. Here, we focus on the longest plate L = 6 and set the Reynolds
number to Re = 60. For this value an unsteady eigenmode breaking the reflectional symmetry with respect to the
plane y = 0 is unstable. Such eigenmode leads to the shedding of vortices whose axis is aligned with the z direction.
Here, we consider that the flexible plate is clamped along its axis Oy and investigate the effect of the flexibility on
the unsteady properties of the wake flow. As the stiffness is reduced, the plate bends in the streamwise direction
as a result of the load exerted by the incoming flow. After computing the steady flow balancing the deformation of
the plate for various stiffness, we determine its stability by computing the largest eigenmodes.

The plate is made of an elastic material characterized by a fixed Poisson coefficient νs = 0.35 and a non-
dimensional Young modulus varying in the range 5 × 105

≤ Es ≤ 1 × 1010. The fluid-to-solid density ratio is set to
Ms = 1. The computational domain, sketched in Fig. 12, is a quarter of the physical domain, taking advantage of
the reflectional symmetries, specified hereinafter, to reduce the computational cost. Dirichlet conditions are applied
to the velocities at the inlet (x = −10), a stress-free boundary condition is applied at the outlet (x = 20) and slip
boundary conditions are applied on the lateral planes (z = 10 and y = 7). The boundary conditions applied along
the symmetry planes (y = 0 and z = 0) depend on the type of computations. The steady flow velocity and solid
displacement fields exhibit the following reflectional symmetries
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The eigenmode of interest satisfies the symmetry (Sz) but breaks the symmetry (Sy). For the eigenvalue computa-
tions, the following boundary conditions are therefore applied on the symmetry planes(
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◦
s ) are the solid components of an eigenmode. More details about the various combination of

symmetries satisfied by the eigenmodes can be found in [31]. The computations are performed using a mesh made
of 566 216 tetrahedra that yields to 3 751 070 degrees of freedom for the steady-state problem and 3 905 378 for the
eigenvalue problem. For both the steady computations and eigenvalue problems investigated here, the block Gauss–
Seidel preconditioner requires on the order of ten iterations to converge. Combined with direct LU decompositions
for each sub-block, this provides relatively fast and robust computations for moderately large 3d problems. To
compute large steady deformations of the plate achieved when the stiffness Es is reduced, an updated Lagrangian
approach [42] is used together with a continuation on the Young modulus, so as to deform progressively the
computational domain.

The steady-state solutions are described in Fig. 13. Contours of the flow velocity magnitude (blue) in the plane
y = 0 and the pressure at the surface of the plate (orange) computed for Es = 5 × 105 are shown. The pressure
is maximum in the centre of the plate, then decreases as one moves towards the edges thanks to the streamlining
effect induced by the deformation of the plate. For the above value of the stiffness, the displacement of the plate in
the streamwise direction is of the same order of magnitude as the height of the plate. The shape of the back-flow
region in the wake of the plate is modified by the bending of the plate, as emphasized by the translucent grey
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Fig. 12. Computational domain of the three-dimensional flexible plate (orange) immersed in an incoming uniform flow sketched with blue
arrows. The plate is of (non-dimensional) height 1, length 6 and thickness 0.04. Only a quarter of the physical domain is used for the
computation, exploiting the reflectional symmetries of the problem. The boundary conditions applied on the symmetry planes are specified
in the text. A probe point P is placed in the free corner of the plate at position (0, 0.5, 3) marked with a + symbol. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Steady fluid–structure equilibrium for the three-dimensional flexible plate facing an incoming uniform flow. The pictures on the
right-hand side display top and side views of the steady solution obtained for Es = 5 × 105 in the symmetry planes y = 0 (top) and z = 0
(bottom). Velocity magnitude contours in the y = 0 plane are depicted with the blue colour, and the pressure at the surface of the plate
is depicted with the orange colour. The back-flow region in the wake of the plate is delimited with the grey translucent surface for which
the streamwise velocity is −0.05. The left-hand side picture represents the streamwise displacement ξb

s of the point P as a function of the
stiffness Es .

interface that delimits the back-flow region. The larger back-flow velocities are obtained near the tip of the plate.
The streamwise displacement of the tip (point P shown in Fig. 12) is reported in the left-hand side picture as a
function of the stiffness. Small displacements of the plate are obtained down to Es = 107. Further decreasing the
stiffness yields to a linear increase of the displacement up to 1, the (non-dimensional) height of the plate.

The largest eigenvalues are computed for a stiff (Es = 1 × 1010) and a flexible (Es = 5 × 105) plate. The
eigenvalue spectra are reported in Fig. 14a with symbols □ and ×, respectively. The unstable pair of eigenvalues
obtained for the stiff plate compares well with results given in Fig. 5 in [31] where an angular frequency of 0.529 is
reported for the unstable mode. In the case where Es = 1 × 1010, an angular frequency of 0.518 is found (deviation
of about 2 %). Considering now the flexible plate, one clearly sees that the pair of complex eigenvalues is stabilized
and its frequency is increased (2.4 × 10−3

± 0.80 i). The vibrating motion given by the solid component of the
eigenmode that corresponds to the leading pair of eigenvalues is shown in Fig. 14b for the flexible plate. Four
snapshots in the period of oscillation are depicted. The displacement is a combination of torsional motion about the
z axis and a smaller-amplitude up-and-down flexion along the y axis. As shown in Figs. 14c–14e, the flow velocity
components exhibit an oscillating pattern in the streamwise direction, typical of the vortex-shedding pattern also
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Fig. 14. Linear stability analysis of steady solutions computed for flexible plates of various stiffness Es . (a) Eigenvalue spectra for a stiff
plate (□, Es = 1010) and a flexible plate (×, Es = 5 × 105) where the unstable eigenvalue is circled. (b) Three-dimensional view of the
instantaneous deformation of the flexible plate induced by the solid component of the eigenmode associated to the pair of marginal complex
eigenvalues (×). Snapshots are displayed (in the clockwise direction) at times 1/4, 1/2, 3/4 and 1 of the oscillation period T = 2π/ω,
ω being the imaginary part of the eigenvalue. The colours indicate the deformation magnitude. The rectangle placed in the plane z = 0
materializes the clamped position of the plate. (c,d,e) Plots of the x , y and z components of the flow velocity (blue) and solid displacement
(orange) of the real part of the unstable eigenmode. For the fluid, iso-contours are shown for a positive (light blue) and a negative (dark
blue) value. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

observed for the rigid plate (see [31]). The spatial structure is mainly modified by the streamlining effect induced
by the bending of the plate. For instance, the transverse size of the region where the largest y velocity perturbations
occur is reduced.

This three-dimensional test-case shows that the present approach allows to compute steady fluid–solid configu-
rations for which the solid is strongly deformed by the fluid loads and to determine the three-dimensional fluid and
solid modal perturbations that are responsible for the destabilization of this steady state.

Conclusion

Inspired by previous numerical studies aiming at designing fully implicit fluid–structure solvers, we proposed
an approach for performing linear stability analyses of strongly coupled fluid–structure interaction problems in the
ALE framework. This approach is based on an exact linearization of the continuous ALE fluid–structure equations
formulated for the Lagrangian-based perturbation in the steady deformed configuration. Using a standard finite-
element method for the spatial discretization of the eigenvalue problem, the linear stability analysis has been
performed for two bi-dimensional configurations exhibiting distinct physical fluid–structure interaction mechanisms
(the vortex-induced vibrations of an elastic plate attached to a cylinder, and the flutter instability of a flag in a
channel flow), and a three-dimensional case involving large static displacements. The proposed approach is found to
be numerically consistent, and gives accurate predictions of instability thresholds at a very moderate cost compared
to non-linear simulations.

As mentioned before, our formulation is closely related to non-linear ALE codes, and thus its development can
also be very easily re-used for this purpose. On a broader perspective, it can also be adapted at low costs for
computing adjoint eigensolutions for parameter estimation or optimal control problems. On the other hand, we plan
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to compare this approach to Eulerian-based methods, and investigate in particular the numerical behaviour induced
by the presence of the non-standard added-stiffness terms.

Direct solvers are particularly efficient in eigenvalues problems, that require multiple matrix inversions. In the
case of large-scale 3d problems however, even a fully distributed LU decomposition becomes prohibitive in terms
of memory, and it is thus mandatory to adopt an iterative method. The development of efficient preconditioners
for handling the inversion of the fluid subproblem that appears in the block Gauss–Seidel loop evoked in section
Section 2.5 would therefore be beneficial to address this limitation.
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Appendix A. Linearized operators

The linearized operator that appear in the weak formulation in Section 2.3 writes as follows, with q◦

f =

(u◦, p◦,λ◦), q◦
e =

(
ξ ◦

e,λ
◦

e

)
, q◦

s = (ξ ◦

s , u◦
s ), ψ f = (ψu, ψ p,ψλ), ψ s = (ψ ξ

s ,ψ
u
s ) and ψe = (ψ ξ

e ,ψ
λ
e ). The fluid

operators are

Bf(ψ f, q◦

f) =

∫
Ωf

u◦
· ψu dΩ ,

Bfe(ψ f, q◦

e) = −

∫
Ωe

(∇U)ξ ◦

e · ψu dΩ ,

Af(ψ f, q◦

f) = −

∫
Ωf

((
(∇U)u◦

+ (∇u◦)U
)
· ψu

+
2
Re

D(u◦) : ∇ψu
)

dΩ

+

∫
Ωf

(
p◦

∇ · ψu
+ ψ p

∇ · u◦

)
dΩ +

∫
Γ

(
λ◦

· ψu
+ ψλ

· u◦
)

dΓ ,

Afe(ψ f, q◦

e) = −

∫
Ωe

(
(∇U)Φ′(ξ ◦

e) U · ψu
+

2
Re

D(U)Φ′(ξ ◦

e)T
: ∇ψu

)
dΩ

+
1
Re

∫
Ωe

(
∇U∇ξ ◦

e + ∇ξ ◦

e
T
∇UT

)
: ∇ψu dΩ

+

∫
Ωe

(
P ∇ψu

+ ψ p
∇U

)
: Φ′(ξ ◦

e)T dΩ ,

Afs(ψ f, q◦

s ) = −

∫
Γ

λ◦
· ψu dΓ ,

where D(u◦) = 1/2 (∇u◦
+ ∇u◦T), and where the Nanson’s formula [38] has been used so as to rewrite the fluid

continuity equation as ∇ · (Φ(ξ ′) U) = Φ(ξ ′)T
: ∇U = 0, which lowers the differentiation order on ξ ′. The solid

operators are

Bs(ψ s, q◦

s ) =

∫
Ωs

(
Ms

Ĵ(Ξ̂s)
u◦

s · ψu
s + ξ ◦

s · ψ ξ
s

)
dΩ ,

As(ψ s, q◦

s ) =

∫
Ωs

(
u◦

s · ψ ξ
s − P′(ξ ◦

s ; Ξ̂s) : ∇ψu
s

)
dΩ .

The extension operators (with a Laplace extension equation) write as

Ae(ψe, q◦

e) = −

∫
Ωe

∇ξ ◦

e : ∇ψ ξ
e dΩ +

∫
Γ

(
λ◦

e · ψ ξ
e + ψλ

e · ξ ◦

e

)
dΓ ,

Aes(ψe, q◦

s ) = −

∫
Γ

ξ ◦

s · ψλ
e dΓ .
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Table B.4
(a) Characteristics of meshes used for the vortex-induced vibration test-case and the validation cases, number of
triangles Nt and the maximum (resp. minimum) triangle size ∆max (resp. ∆min) for various meshes. (b) For the
case FSI1, lift and drag coefficients CD and CL for the cylinder and the plate, and displacement Ξ̂s = (ξb

B , ψ
b
B )

at point B(3.99, 0).

(a) Mesh characteristics (b) Case FSI1

Nt ∆max ∆min CD CL ξb
B · 10−4 ψb

B · 10−3

T0 3 298 0.71 0.113 T0 7.092 0.400 2.304 5.129
T1 8 922 0.32 0.051 T1 7.127 0.381 2.233 8.287
T2 16 176 0.26 0.030 T2 7.131 0.382 2.232 8.073
T3 34 958 0.22 0.018 T3 7.132 0.385 2.182 7.910
T4 64 828 0.15 0.012 T4 7.135 0.383 2.155 7.816
T5 120 978 0.10 0.009 T5 7.134 0.382 2.064 7.476

[29] 7.147 0.382 2.270 8.209

Table B.5
FSI3 benchmark, mesh convergence: values of the mean solid x and y displacements
ξ̄ (B) and ψ̄(B), solid x and y displacement amplitude δξ (B) and δψ(B) at point
B(3.99, 0), and mean aerodynamic drag and lift coefficients CD and CL.

ξ̄ (B) δξ (B) ψ̄(B) δψ(B) CD CL

T0 Blow-up Blow-up Blow-up Blow-up Blow-up Blow-up
T1 −0.029 0.028 0.014 0.349 2.274 0.009
T2 −0.029 0.027 0.014 0.348 2.298 0.013
T3 −0.028 0.027 0.014 0.342 2.302 0.012

[29] −0.027 0.025 0.015 0.344 2.286 0.011

Appendix B. Validation of the steady and unsteady non-linear solvers

A non-linear solver is required to compute steady solutions. In order to validate the stability analysis, we also
came to compute time-dependent solutions. We have chosen to use a solver which is very similar to those described
for instance in [27,51], and is able to compute both unsteady and steady strongly coupled fluid–structure solutions.
The non-linear system is written in the reference configuration Ω̂ . A fully implicit scheme is derived, and each time-
step is solved by a Newton loop in which the Jacobian matrix is reassembled only if the residuals increase from
iteration to iteration. This solver is also implemented using FREEFEM++. Time-dependent solutions are computed
with a second-order shifted Crank–Nicholson scheme and a small time-step ∆t = 0.01 — shifting the Crank–
Nicholson scheme with ∆t provides a gain in numerical stability [51], while steady solutions are obtained by
using an implicit Euler scheme associated with a large time-step. Typically, taking ∆t = 1012 is then the same
as solving the steady problem, and results in a converged solution in one single non-linear Newton step provided
that the initial guess is good enough. Taking smaller time steps like ∆t ≃ 1 results in a convergence towards the
steady solution in a few time-steps, while too small time-steps result in an unsteady solution in the case where the
physical problem is indeed time-dependent. Unlike the perturbation problems where the extension displacement is
by definition infinitesimal, large finite-amplitude displacement of the fluid mesh might occur. The extension operator
Σ̂e is then chosen carefully so as to allow large deformation of the fluid mesh. As done in [35,36], the extension
operator has been defined as a diffusion operator with space-varying coefficients in order to stiffen the elements
close to the fluid–solid boundary. The extension domain is chosen large enough so that it allows possibly large
deformations.

A set of various meshes are used to test the algorithms, named T0 to T5 from the coarsest to the finest. In
Table B.4a, the number of triangles in the domain is reported, as well as the minimal edge length in the mesh.
The steady solver is validated on the case FSI1 from [29], for which the parameters are Re = 20, Es = 35000,
νs = 0.4 and Ms = 1. The time-dependent solver is validated on the case FSI3, where Re = 200, Es = 1400,
νs = 0.4 and Ms = 1.

As seen in Table B.4b, our steady solutions are in good agreement with the reference values of case FSI1
given in [29]. Our results are also within the margins obtained in the paper that summarizes the computations
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of various groups [52]. The same observation holds for the unsteady case FSI3, as seen in Table B.5, where the
mean and amplitude of the plate displacement at point B(3.99, 0) are reported, as well as the mean aerodynamic
coefficients. We used the conventions from [29] to compute the mean value as 1/2(max+min) and the amplitude as
1/2(max−min). A time-step convergence study has also been performed on mesh T1, where we varied ∆t between
0.2 and 0.005. A convergence up to the two first digits is observed from ∆t = 0.01.
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