5 research outputs found

    Renewable energy for offshore platforms energy optimization

    Get PDF

    Optimal Connection of Offshore Wind Farm with Maximization of Wind Capacity to Power Systems considering Losses and Security Constraints

    No full text
    The technical, economic, and environmental constraints related to the construction of new transmission lines are complex issues related to the definition of points for connecting new offshore wind farms (OWFs) to the grid. In this context, it has become an important research topic to choose the best OWF connection point to a power system, among some geographically close to each other within a given region, aiming at ensuring maximum generation capacity of the wind farm and safe use of existing transmission network. The objective of this work is to present a methodology to determine the optimal OWF connection point in a power system, with maximum penetration of firm wind power and minimum loss, considering security constraints related to the β€œNβˆ’1” contingency criterion, exchange limits between areas, and a strategy to reduce the number of constraints in the optimization problem. The algorithm is modeled using a Mixed Integer Nonlinear Programming (MINLP), and it is evaluated in a tutorial system and three well-known other networks from literature: IEEE 14-Bus, IEEE RTS-79, and Southern Brazilian System

    Optimal planning of electrical infrastructure of large wind power plants

    Get PDF
    ΠŸΡ€Π΅Π΄ΠΌΠ΅Ρ‚ ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° докторскС Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ јС Ρ€Π°Π·Π²ΠΎΡ˜ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π° Π·Π° ΡƒΠ½Π°ΠΏΡ€Π΅Ρ’Π΅ΡšΠ΅ Скономских ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΡ‡ΠΊΠΈΡ… услова ΠΏΠ»Π°Π½ΠΈΡ€Π°ΡšΠ° ΠΈ ΠΈΠ·Π³Ρ€Π°Π΄ΡšΠ΅ Π²Π΅Ρ‚Ρ€ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€Π°Π½Π΅. Основни доприноси су слСдСћи: 1. РазвијСн јС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π» Π·Π° ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Ρƒ ΠΈΠ·Π±ΠΎΡ€Π° Π²Π΅Ρ‚Ρ€ΠΎΠ°Π³Ρ€Π΅Π³Π°Ρ‚Π°. Π£ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ јС Ρ€Π°Π·Π²ΠΈΡ˜Π΅Π½ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π» Π·Π° ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Ρƒ ΠΈΠ·Π±ΠΎΡ€Π° Π²Π΅Ρ‚Ρ€ΠΎΠ°Π³Ρ€Π΅Π³Π°Ρ‚Π° Π·Π° ΠΏΠΎΠ·Π½Π°Ρ‚Ρƒ статистику Π²Π΅Ρ‚Ρ€Π°. Основни Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΈ ΠΏΡ€ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜ΠΈ ΠΈΠ·Π±ΠΎΡ€Π° Π²Π΅Ρ‚Ρ€ΠΎΠ°Π³Ρ€Π΅Π³Π°Ρ‚Π° су: висина стуба, ΠΏΡ€Π΅Ρ‡Π½ΠΈΠΊ Π²Π΅Ρ‚Ρ€ΠΎΡ‚ΡƒΡ€Π±ΠΈΠ½Π΅ ΠΈ Π½Π°Π·ΠΈΠ²Π½Π° снага Π²Π΅Ρ‚Ρ€ΠΎΠ³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€Π°. МодСл Π²Ρ€ΡˆΠΈ Π²Π°Ρ€ΠΈΡ˜Π°Ρ†ΠΈΡ˜Ρƒ ΠΊΡ™ΡƒΡ‡Π½ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π° ΠΈ ΠΏΡ€ΠΎΡ€Π°Ρ‡ΡƒΠ½ ΡƒΠΊΡƒΠΏΠ½ΠΈΡ… Π°ΠΊΡ‚ΡƒΠ΅Π»ΠΈΠ·ΠΎΠ²Π½ΠΈΡ… Ρ‚Ρ€ΠΎΡˆΠΊΠΎΠ²Π° Π²Π΅Ρ‚Ρ€ΠΎΠ°Π³Ρ€Π΅Π³Π°Ρ‚Π°, ΠΊΠ°ΠΎ ΠΈ годишњС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΡšΠ΅ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Π΅ Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅. Π£ Π½Π°Π²Π΅Π΄Π΅Π½ΠΎΠΌ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΎΠ½ΠΎΠΌ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅ Ρ‚Π΅Ρ…Π½ΠΈΡ‡ΠΊΠ° ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅ΡšΠ° Ρƒ ΠΏΠΎΠ³Π»Π΅Π΄Ρƒ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»Π½ΠΈΡ… ΠΈ максималних врСдности ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Π°Ρ€Π° којС Π½Π°ΠΌΠ΅Ρ›Π΅ сам ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΡ’Π°Ρ‡ ΠΎΠΏΡ€Π΅ΠΌΠ΅, Π° ΠΌΠΎΠΆΠ΅ ΡƒΠ²Π°ΠΆΠΈΡ‚ΠΈ ΠΈ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅ΡšΠ° која Π½Π°ΠΌΠ΅Ρ›Π΅ Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π° Π½Π° којој сС ΠΏΠ»Π°Π½ΠΈΡ€Π° ΠΈΠ·Π³Ρ€Π°Π΄ΡšΠ° Π²Π΅Ρ‚Ρ€ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€Π°Π½Π΅. МодСл јС Π±Π°Π·ΠΈΡ€Π°Π½ Π½Π° гСнСтском Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡƒ који Π½Π°ΠΊΠΎΠ½ ΠΎΠ΄Ρ€Π΅Ρ’Π΅Π½ΠΎΠ³ Π±Ρ€ΠΎΡ˜Π° ΠΈΡ‚Π΅Ρ€Π°Ρ†ΠΈΡ˜Π° Π΄ΠΎΠ»Π°Π·ΠΈ Π΄ΠΎ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½ΠΈΡ… Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚Π° који Π·Π°Π΄ΠΎΠ²ΠΎΡ™Π°Π²Π°Ρ˜Ρƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Ρƒ Ρ†ΠΈΡ™Π° ΠΈ Π·Π°Π΄Π°Ρ‚Π° ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅ΡšΠ°. РазвијСни Π°Π»Π³ΠΎΡ€ΠΈΡ‚Π°ΠΌ ΠΈ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π» ΠΈΠΌΠ°Ρ˜Ρƒ ΠΎΠΏΡˆΡ‚ΠΈ ΠΊΠ°Ρ€Π°ΠΊΡ‚Π΅Ρ€ Ρ‚Ρ˜. ΠΏΡ€ΠΈΠΌΠ΅Π½Ρ™ΠΈΠ²ΠΈ су Π·Π° ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Ρƒ ΠΈΠ·Π±ΠΎΡ€Π° Π²Π΅Ρ‚Ρ€ΠΎΠ°Π³Ρ€Π΅Π³Π°Ρ‚Π° Π·Π° Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π΅ са Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΠΌΠ° Π²Π΅Ρ‚Ρ€Π°. ΠŸΡ€ΠΈΠΌΠ΅Π½ΠΎΠΌ ΠΌΠΎΠ΄Π΅Π»Π° ΠΎΠ±Π΅Π·Π±Π΅Ρ’ΡƒΡ˜Π΅ сС ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½ΠΎ ΠΈΡΠΊΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ΅ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π° Π²Π΅Ρ‚Ρ€Π° Π½Π° ΠΎΠ΄Ρ€Π΅Ρ’Π΅Π½ΠΎΡ˜ Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜ΠΈ, Π° Ρ‚ΠΈΠΌΠ΅ ΠΈ Π²Π΅Ρ›ΠΈ ΠΏΡ€ΠΎΡ„ΠΈΡ‚ власнику Π²Π΅Ρ‚Ρ€ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€Π°Π½Π΅. Као ΡƒΠ»Π°Π·Π½ΠΈ ΠΏΠΎΠ΄Π°Ρ†ΠΈ користС сС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈ Π’Π΅Ρ˜Π±ΡƒΠ»ΠΎΠ²Π΅ статистикС Π²Π΅Ρ‚Ρ€Π° ΠΈ висински ΠΊΠΎΠ΅Ρ„ΠΈΡ†ΠΈΡ˜Π΅Π½Ρ‚ ΡΠΌΠΈΡ†Π°ΡšΠ° Π²Π΅Ρ‚Ρ€Π°. На ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΈΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΈΠΌΠ° Π²Π΅Ρ‚Ρ€ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€Π°Π½Π° Π½Π° Π»ΠΎΠΊΠ°Ρ†ΠΈΡ˜Π°ΠΌΠ° са Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΠΌΠ° Π’Π΅Ρ˜Π±ΡƒΠ»ΠΎΠ²Π΅ статистикС Π²Π΅Ρ‚Ρ€Π° дСмонстрирана јС ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½Π° употрСбљивост ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎΠ³ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π°. 2. РазвијСн јС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π» Π·Π° ΠΏΡ€ΠΎΡ€Π°Ρ‡ΡƒΠ½ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½Π΅ ΠΏΠΎΠ²Ρ€ΡˆΠΈΠ½Π΅ ΠΏΠΎΠΏΡ€Π΅Ρ‡Π½ΠΎΠ³ прСсСка ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° Ρƒ ΠΈΠ½Ρ‚Π΅Ρ€Π½ΠΎΡ˜ кабловској ΠΌΡ€Π΅ΠΆΠΈ Π²Π΅Ρ‚Ρ€ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€Π°Π½Π΅. Како просторни распорСд Π²Π΅Ρ‚Ρ€ΠΎΠ°Π³Ρ€Π΅Π³Π°Ρ‚Π° Ρƒ Π²Π΅Ρ‚Ρ€ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€Π°Π½Π°ΠΌΠ° Π²Π΅Π»ΠΈΠΊΠ΅ снагС ΠΊΠ°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΡˆΠ΅ Ρ€Π΅Π»Π°Ρ‚ΠΈΠ²Π½ΠΎ Π²Π΅Π»ΠΈΠΊΠ° мСђусобна удаљСност, Π΄ΡƒΠΆΠΈΠ½Π° кабловскС колСкторскС ΠΌΡ€Π΅ΠΆΠ΅ ΠΌΠΎΠΆΠ΅ Π±ΠΈΡ‚ΠΈ Π½Π΅ΠΊΠΎΠ»ΠΈΠΊΠΎ дСсСтина, ΠΏΠ° ΠΈ стотина ΠΊΠΈΠ»ΠΎΠΌΠ΅Ρ‚Π°Ρ€Π°, Ρ‚Π΅ су Π³ΡƒΠ±ΠΈΡ†ΠΈ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Π΅ Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ Ρƒ њој Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΈ. ΠšΠΎΡ€ΠΈΡˆΡ›Π΅ΡšΠ΅ Π²Π΅Ρ›ΠΈΡ… прСсСка ΠΊΠ°Π±Π»ΠΎΠ²Π° Ρƒ односу Π½Π° Ρ‚Π΅Ρ…Π½ΠΈΡ‡ΠΊΠ΅ Π·Π°Ρ…Ρ‚Π΅Π²Π΅ јС чСсто ΠΎΠΏΡ€Π°Π²Π΄Π°Π½ΠΎ ΠΈ ΠΌΠΎΠΆΠ΅ ΠΎΠ±Π΅Π·Π±Π΅Π΄ΠΈΡ‚ΠΈ Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΎ ΠΏΠΎΠ²Π΅Ρ›Π°ΡšΠ΅ Сфикасности, ΠΊΠ°ΠΎ ΠΈ Π±ΠΎΡ™Π΅ СнСргСтскС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Ρ™Π΅ Π΅Π»Π΅ΠΊΡ‚Ρ€Π°Π½Π΅. МодСл Ρ€Π°Π·Π²ΠΈΡ˜Π΅Π½ Ρƒ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ Π²Ρ€ΡˆΠΈ ΠΏΡ€ΠΎΡ€Π°Ρ‡ΡƒΠ½ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½ΠΎΠ³ прСсСка ΠΊΠ°Π±Π»Π° Π½Π° који јС ΠΏΡ€ΠΈΠΊΡ™ΡƒΡ‡Π΅Π½ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΡ™Π°Π½ Π±Ρ€ΠΎΡ˜ Π²Π΅Ρ‚Ρ€ΠΎΠ°Π³Ρ€Π΅Π³Π°Ρ‚Π°, ΠΊΡ€ΠΎΠ· ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ˜Ρƒ односа инвСстиционих ΠΈ Сксплоатационих Ρ‚Ρ€ΠΎΡˆΠΊΠΎΠ²Π° Ρ‚Ρ˜. Ρ‚Ρ€ΠΎΡˆΠΊΠΎΠ²Π° услСд Π³ΡƒΠ±ΠΈΡ‚Π°ΠΊΠ° ΠΏΠΎ Ρ˜Π΅Π΄ΠΈΠ½ΠΈΡ†ΠΈ Π΄ΡƒΠΆΠΈΠ½Π΅ ΠΊΠ°Π±Π»Π°. Π‘ ΠΎΠ±Π·ΠΈΡ€ΠΎΠΌ Π½Π° Ρ‚ΠΎ Π΄Π° сС инвСстициони Ρ‚Ρ€ΠΎΡˆΠΊΠΎΠ²ΠΈ ΠΈΠ·Π΄Π²Π°Ρ˜Π°Ρ˜Ρƒ Π½Π° ΠΏΠΎΡ‡Π΅Ρ‚ΠΊΡƒ, односно Ρƒ Ρ„Π°Π·ΠΈ ΠΈΠ·Π³Ρ€Π°Π΄ΡšΠ΅ Π²Π΅Ρ‚Ρ€ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€Π°Π½Π΅, Π° Ρ‚Ρ€ΠΎΡˆΠΊΠΎΠ²ΠΈ услСд Π³ΡƒΠ±ΠΈΡ‚Π°ΠΊΠ° сС Π³Π΅Π½Π΅Ρ€ΠΈΡˆΡƒ Ρ‚ΠΎΠΊΠΎΠΌ Π΅ΠΊΡΠΏΠ»ΠΎΠ°Ρ‚Π°Ρ†ΠΈΡ˜Π΅, Π²Ρ€ΡˆΠΈ сС Π°ΠΊΡ‚ΡƒΠ΅Π»ΠΈΠ·Π°Ρ†ΠΈΡ˜Π° Ρ‚Ρ€ΠΎΡˆΠΊΠΎΠ²Π°, односно користи сС Π΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΈ Скономски ΠΌΠΎΠ΄Π΅Π». ΠŸΡ€Π΅Π΄Π½ΠΎΡΡ‚ прСдстављСног ΠΌΠΎΠ΄Π΅Π»Π° јС ΡˆΡ‚ΠΎ су ΠΏΡ€ΠΎΡ€Π°Ρ‡ΡƒΠ½ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½Π΅ Ρ‚ΠΎΠΏΠΎΠ»ΠΎΠ³ΠΈΡ˜Π΅ ΠΈ прСсСка ΠΊΠ°Π±Π»ΠΎΠ²Π° распрСгнути, односно ΠΌΠΎΠ³Ρƒ сС Ρ€Π΅ΡˆΠ°Π²Π°Ρ‚ΠΈ одвојСно. ΠŸΡ€ΠΈΠΌΠ΅Π½ΠΎΠΌ Ρ€Π°Π·Π²ΠΈΡ˜Π΅Π½ΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π° Ρƒ ΠΏΠ»Π°Π½Π΅Ρ€ΡΠΊΠΎΡ˜ Ρ„Π°Π·ΠΈ Ρ€Π°Π·Π²ΠΎΡ˜Π° ΠΏΡ€ΠΎΡ˜Π΅ΠΊΡ‚Π° Π²Π΅Ρ‚Ρ€ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€Π°Π½Π΅ ΠΌΠΎΠΆΠ΅ сС ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΎΠ²Π°Ρ‚ΠΈ сваки ΠΎΠ΄ Ρ„ΠΈΠ΄Π΅Ρ€Π° Π½Π° који јС ΠΏΡ€ΠΈΠΊΡ™ΡƒΡ‡Π΅Π½ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΡ™Π°Π½ Π±Ρ€ΠΎΡ˜ Π²Π΅Ρ‚Ρ€ΠΎΠ°Π³Ρ€Π΅Π³Π°Ρ‚Π°. На ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρƒ Π²Π΅Ρ‚Ρ€ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€Π°Π½Π΅ Ρƒ Π‘Π°Π½Π°Ρ‚Ρƒ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ јС Π΄Π° сС ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½ΠΈΠΌ ΠΈΠ·Π±ΠΎΡ€ΠΎΠΌ прСсСка ΠΊΠ°Π±Π»ΠΎΠ²Π° ΠΌΠΎΠ³Ρƒ Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΎ ΡΠΌΠ°ΡšΠΈΡ‚ΠΈ Ρ‚Ρ€ΠΎΡˆΠΊΠΎΠ²ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΡšΠ΅, односно ΠΏΠΎΠ²Π΅Ρ›Π°Ρ‚ΠΈ ΡƒΠΊΡƒΠΏΠ°Π½ ΠΏΡ€ΠΎΡ„ΠΈΡ‚ Ρ‚ΠΎΠΊΠΎΠΌ ΠΆΠΈΠ²ΠΎΡ‚Π½ΠΎΠ³ Π²Π΅ΠΊΠ° Π²Π΅Ρ‚Ρ€ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€Π°Π½Π΅. 3. РазвијСн јС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π» Π·Π° ΠΈΠ·Π±ΠΎΡ€ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½ΠΎΠ³ напонског Π½ΠΈΠ²ΠΎΠ° ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½Π΅ Ρ‚Π°Ρ‡ΠΊΠ΅ ΠΏΡ€ΠΈΠΊΡ™ΡƒΡ‡Π΅ΡšΠ° Π²Π΅Ρ‚Ρ€ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€Π°Π½Π° Π²Π΅Π»ΠΈΠΊΠΈΡ… снага Π½Π° прСносну ΠΌΡ€Π΅ΠΆΡƒ. Π˜Π·Π±ΠΎΡ€ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½Π΅ Ρ‚Π°Ρ‡ΠΊΠ΅ ΠΏΡ€ΠΈΠΊΡ™ΡƒΡ‡Π΅ΡšΠ° Π²Π΅Ρ‚Ρ€ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€Π°Π½Π΅ Π½Π° прСносну ΠΌΡ€Π΅ΠΆΡƒ прСдставља Π·Π°Ρ…Ρ‚Π΅Π²Π°Π½ Π·Π°Π΄Π°Ρ‚Π°ΠΊ који ΠΌΠΎΡ€Π° ΠΎΠ±ΡƒΡ…Π²Π°Ρ‚ΠΈΡ‚ΠΈ Π±Ρ€ΠΎΡ˜Π½Π΅ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π΅. Π£ Π²Π΅Π»ΠΈΠΊΠΎΠΌ Π±Ρ€ΠΎΡ˜Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Π΅Π²Π° Ρƒ ΠΏΠΎΠ³Π»Π΅Π΄Ρƒ ΠΏΡ€ΠΈΠΊΡ™ΡƒΡ‡Π΅ΡšΠ° Π²Π΅Ρ‚Ρ€ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€Π°Π½Π΅ Π½Π° прСносну ΠΌΡ€Π΅ΠΆΡƒ ΠΏΠΎΡΡ‚ΠΎΡ˜Π΅ ΠΊΠΎΠ½ΠΊΡƒΡ€Π΅Π½Ρ‚Π½Π΅ Ρ‚Π°Ρ‡ΠΊΠ΅ ΠΏΡ€ΠΈΠΊΡ™ΡƒΡ‡Π΅ΡšΠ°, ΠΏΠ° сС поставља ΠΏΠΈΡ‚Π°ΡšΠ΅ ΠΈΠ·Π±ΠΎΡ€Π° ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½Π΅ Ρ‚Π°Ρ‡ΠΊΠ΅ Ρƒ којој Ρ›Π΅ Π²Π΅Ρ‚Ρ€ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€Π°Π½Π° Π±ΠΈΡ‚ΠΈ ΠΏΡ€ΠΈΠΊΡ™ΡƒΡ‡Π΅Π½Π° ΠΈ Π Π΅Π·ΠΈΠΌΠ΅ iv Докторска Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π° Ана ΠŸΠ΅Ρ‚Ρ€ΠΎΠ²ΠΈΡ› пласирати ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½Ρƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Ρƒ Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Ρƒ Ρ‚ΠΎΠΊΠΎΠΌ Π΅ΠΊΡΠΏΠ»ΠΎΠ°Ρ‚Π°Ρ†ΠΈΡ˜Π΅. ΠŸΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π½Π΅ Ρ‚Π°Ρ‡ΠΊΠ΅ ΠΏΡ€ΠΈΠΊΡ™ΡƒΡ‡Π΅ΡšΠ° ΠΌΠΎΠ³Ρƒ сС Ρ€Π°Π·Π»ΠΈΠΊΠΎΠ²Π°Ρ‚ΠΈ ΠΏΠΎ удаљСности, Π°Π»ΠΈ ΠΈ Ρƒ ΠΏΠΎΠ³Π»Π΅Π΄Ρƒ напонског Π½ΠΈΠ²ΠΎΠ°, ΠΏΠ° сС ΠΈΠ·Π±ΠΎΡ€ Ρ‚Π°Ρ‡ΠΊΠ΅ ΠΏΡ€ΠΈΠΊΡ™ΡƒΡ‡Π΅ΡšΠ° ΠΏΡ€ΠΎΡˆΠΈΡ€ΡƒΡ˜Π΅ ΠΈ Π½Π° ΠΈΠ·Π±ΠΎΡ€ напонског Π½ΠΈΠ²ΠΎΠ° Π½Π° који Ρ›Π΅ Π±ΠΈΡ‚ΠΈ ΠΏΡ€ΠΈΠΊΡ™ΡƒΡ‡Π΅Π½Π° Π²Π΅Ρ‚Ρ€ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€Π°Π½Π°. РазвијСни ΠΌΠΎΠ΄Π΅Π» Π²Ρ€ΡˆΠΈ ΠΏΡ€ΠΎΡ€Π°Ρ‡ΡƒΠ½ ΡƒΠΊΡƒΠΏΠ½ΠΈΡ… Π°ΠΊΡ‚ΡƒΠ΅Π»ΠΈΠ·ΠΎΠ²Π°Π½ΠΈΡ… инвСстиционих ΠΈ Сксплоатационих Ρ‚Ρ€ΠΎΡˆΠΊΠΎΠ²Π° ΠΏΡ€ΠΈΠΊΡ™ΡƒΡ‡Π΅ΡšΠ° Π½Π° прСносну ΠΌΡ€Π΅ΠΆΡƒ, Ρƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜ΠΈ удаљСности ΠΎΠ΄ ΠΏΡ€ΠΈΠΊΡ™ΡƒΡ‡Π½Π΅ Ρ‚Π°Ρ‡ΠΊΠ΅. ΠŸΠΎΡ€Π΅Π΄ Ρ‚Ρ€ΠΎΡˆΠΊΠΎΠ²Π° ΠΎΠ΄Ρ€ΠΆΠ°Π²Π°ΡšΠ°, Ρƒ СксплоатационС Ρ‚Ρ€ΠΎΡˆΠΊΠΎΠ²Π΅ су сврстани ΠΈ Ρ‚Ρ€ΠΎΡˆΠΊΠΎΠ²ΠΈ нСиспоручСнС Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Π΅ Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ услСд нСрасполоТивости ΠΌΡ€Π΅ΠΆΠ΅. OΠΏΡ‚ΠΈΠΌΠ°Π»Π°Π½ напонски Π½ΠΈΠ²ΠΎ ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½Π° Ρ‚Π°Ρ‡ΠΊΠ° ΠΏΡ€ΠΈΠΊΡ™ΡƒΡ‡Π΅ΡšΠ° ΠΎΠ΄Ρ€Π΅Ρ’Π΅Π½ΠΈ су ΠΏΡ€ΠΎΡ€Π°Ρ‡ΡƒΠ½ΠΎΠΌ ΠΊΡ€ΠΈΡ‚ΠΈΡ‡Π½ΠΈΡ… удаљСности ΠΊΠΎΠ½ΠΊΡƒΡ€Π΅Π½Ρ‚Π½ΠΈΡ… ΠΏΡ€ΠΈΠΊΡ™ΡƒΡ‡Π½ΠΈΡ… Ρ‚Π°Ρ‡Π°ΠΊΠ° Π²Π΅Ρ‚Ρ€ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€Π°Π½Π΅ ΠΎΠ΄Ρ€Π΅Ρ’Π΅Π½Π΅ инсталисанС снагС, Π·Π° којС су Ρ‚Ρ€ΠΎΡˆΠΊΠΎΠ²ΠΈ ΠΏΡ€ΠΈΠΊΡ™ΡƒΡ‡Π΅ΡšΠ° јСднаки. РазвијСни ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π» ΠΎΠΌΠΎΠ³ΡƒΡ›Π°Π²Π° ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€ΠΈΠΌΠ° прСносног систСма, ΠΊΠ°ΠΎ ΠΈ инвСститорима, Π΄Π° ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»Π½ΠΎ ΡΠ°Π³Π»Π΅Π΄Π°Ρ˜Ρƒ ΠΈ ΠΏΠ»Π°Π½ΠΈΡ€Π°Ρ˜Ρƒ ΠΏΡ€ΠΈΠΊΡ™ΡƒΡ‡Π΅ΡšΠ΅ Π²Π΅Ρ‚Ρ€ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€Π°Π½Π΅ Π½Π° прСносну ΠΌΡ€Π΅ΠΆΡƒ. На ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρƒ Ρ€Π΅Π°Π»Π½ΠΎΠ³ ΠΈΠ½ΠΆΠ΅ΡšΠ΅Ρ€ΡΠΊΠΎΠ³ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° ΠΏΡ€ΠΈΠΊΡ™ΡƒΡ‡Π΅ΡšΠ° Π²Π΅Ρ‚Ρ€ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€Π°Π½Π΅ Π§ΠΈΠ±ΡƒΠΊ 1 Ρƒ Ρ˜ΡƒΠΆΠ½ΠΎΠΌ Π‘Π°Π½Π°Ρ‚Ρƒ дСмонстрирана јС ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½Π° употрСбљивост Ρ€Π°Π·Π²ΠΈΡ˜Π΅Π½ΠΎΠ³ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΎΠ³ ΠΌΠΎΠ΄Π΅Π»Π°. 4. РазвијСн јС Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΡ˜ΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π» Ρ‚Π΅ΠΌΠ΅Ρ™Π½ΠΎΠ³ ΡƒΠ·Π΅ΠΌΡ™ΠΈΠ²Π°Ρ‡Π° Π²Π΅Ρ‚Ρ€ΠΎΠ°Π³Ρ€Π΅Π³Π°Ρ‚Π° Π·Π° СкспСримСнтално ΠΎΠ΄Ρ€Π΅Ρ’ΠΈΠ²Π°ΡšΠ΅ карактСристика ΡƒΠ·Π΅ΠΌΡ™ΠΈΠ²Π°Ρ‡Π° Π²Π΅Ρ‚Ρ€ΠΎΠ°Π³Ρ€Π΅Π³Π°Ρ‚Π°. Нарочита паТња Ρƒ Ρ‚ΠΎΠΊΡƒ ΠΈΠ·Π³Ρ€Π°Π΄ΡšΠ΅ Π²Π΅Ρ‚Ρ€ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€Π°Π½Π΅ ΠΏΠΎΡΠ²Π΅Ρ›ΡƒΡ˜Π΅ сС ΠΏΡ€ΠΎΡ˜Π΅ΠΊΡ‚ΠΎΠ²Π°ΡšΡƒ ΡƒΠ·Π΅ΠΌΡ™ΠΈΠ²Π°Ρ‡ΠΊΠΎΠ³ систСма. Π£ кабловском Ρ€ΠΎΠ²Ρƒ зајСдно са СнСргСтским ΠΊΠ°Π±Π»ΠΎΠ²ΠΈΠΌΠ° ΠΏΠΎΠ»Π°ΠΆΡƒ сС Π±Π°ΠΊΠ°Ρ€Π½Π° ΡƒΠΆΠ°Π΄ која ΠΏΠΎΠ²Π΅Π·ΡƒΡ˜Ρƒ Ρ‚Π΅ΠΌΠ΅Ρ™Π½Π΅ ΡƒΠ·Π΅ΠΌΡ™ΠΈΠ²Π°Ρ‡Π΅ Π²Π΅Ρ‚Ρ€ΠΎΠ°Π³Ρ€Π΅Π³Π°Ρ‚Π°. Π’Π΅ΠΌΠ΅Ρ™Π½ΠΈ ΡƒΠ·Π΅ΠΌΡ™ΠΈΠ²Π°Ρ‡ Π²Π΅Ρ‚Ρ€ΠΎΠ°Π³Ρ€Π΅Π³Π°Ρ‚Π° ΠΈΠ·Π²ΠΎΠ΄ΠΈ сС полагањСм ΡƒΠ·Π΅ΠΌΡ™ΠΈΠ²Π°Ρ‡Π° Ρƒ бСтонски Ρ‚Π΅ΠΌΠ΅Ρ™, Π»ΠΎΡ†ΠΈΡ€Π°Π½ ΠΏΠΎΠ΄ ΠΏΠΎΠ²Ρ€ΡˆΠΈΠ½ΠΎΠΌ Π·Π΅ΠΌΡ™Π΅, Ρƒ ΠΎΠ±Π»ΠΈΠΊΡƒ Π·Π°Ρ‚Π²ΠΎΡ€Π΅Π½ΠΈΡ… ΠΊΠΎΠ½Ρ‚ΡƒΡ€Π° (прстСнова) ΠΎΠ΄ Π±Π°ΠΊΠ°Ρ€Π½ΠΈΡ… Ρ‚Ρ€Π°ΠΊΠ° којС сС ΡΠΏΠ°Ρ˜Π°Ρ˜Ρƒ са Π°Ρ€ΠΌΠ°Ρ‚ΡƒΡ€ΠΎΠΌ Ρƒ Ρ‚Π΅ΠΌΠ΅Ρ™Ρƒ. Π•Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Π° ΡΠ²ΠΎΡ˜ΡΡ‚Π²Π° ΠΎΠ²Π°ΠΊΠ²ΠΎΠ³ ΡƒΠ·Π΅ΠΌΡ™ΠΈΠ²Π°Ρ‡Π° су ΠΎΠ΄Ρ€Π΅Ρ’Π΅Π½Π° Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜ΠΎΠΌ ΡƒΠ·Π΅ΠΌΡ™ΠΈΠ²Π°Ρ‡Π°, карактСристикама Π±Π΅Ρ‚ΠΎΠ½Π°, Π°Ρ€ΠΌΠ°Ρ‚ΡƒΡ€Π΅, саставом Ρ‚Π»Π° ΠΈ ΡΡ‚Π°ΡšΠ΅ΠΌ Ρ‚Π»Π° (Π΄ΠΎΠΌΠΈΠ½Π°Π½Ρ‚Π½ΠΎ ΡΠ°Π΄Ρ€ΠΆΠ°Ρ˜Π΅ΠΌ Π²Π»Π°Π³Π΅). Π—Π±ΠΎΠ³ својС слоТСнС ΠΊΠΎΠ½ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡ˜Π΅, Ρ‚Π΅ΠΌΠ΅Ρ™Π½ΠΈ ΡƒΠ·Π΅ΠΌΡ™ΠΈΠ²Π°Ρ‡ Π²Π΅Ρ‚Ρ€ΠΎΠ°Π³Ρ€Π΅Π³Π°Ρ‚Π° јС Π²Π΅ΠΎΠΌΠ° Ρ‚Π΅ΡˆΠΊΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΎΠ²Π°Ρ‚ΠΈ. Π Π°Π΄ΠΈ ΠΎΠ΄Ρ€Π΅Ρ’ΠΈΠ²Π°ΡšΠ° карактСристика ΡƒΠ·Π΅ΠΌΡ™ΠΈΠ²Π°Ρ‡Π° којС су ΠΎΠ΄ Π·Π½Π°Ρ‡Π°Ρ˜Π° Π·Π° њСгово димСнзионисањС Ρ€Π°Π·Π²ΠΈΡ˜Π΅Π½ јС Ρ„ΠΈΠ·ΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π» Ρ‚Π΅ΠΌΠ΅Ρ™Π½ΠΎΠ³ ΡƒΠ·Π΅ΠΌΡ™ΠΈΠ²Π°Ρ‡Π° Π²Π΅Ρ‚Ρ€ΠΎΠ°Π³Ρ€Π΅Π³Π°Ρ‚Π°, који прСдставља Π΅ΠΊΠ²ΠΈΠ²Π°Π»Π΅Π½Ρ‚ Ρ€Π΅Π°Π»Π½ΠΎΠΌ ΠΌΠΎΠ΄Π΅Π»Ρƒ ΡƒΠ·Π΅ΠΌΡ™ΠΈΠ²Π°Ρ‡Π° ΠΊΠΎΠΌΠ΅Ρ€Ρ†ΠΈΡ˜Π°Π»Π½ΠΎΠ³ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΡ’Π°Ρ‡Π°. Π£Π·Π΅ΠΌΡ™ΠΈΠ²Π°Ρ‡ јС ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ Ρƒ Ρ‚Π»ΠΎ Ρ‡ΠΈΡ˜Π΅ су карактСристикС Ρƒ ΠΏΠΎΠ³Π»Π΅Π΄Ρƒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½Π΅ проводности Π²Π°Ρ€ΠΈΡ€Π°Π½Π΅. Анализирани су Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ добијСни ΠΌΠ΅Ρ€Π΅ΡšΠΈΠΌΠ° Π½Π° ΡƒΠΌΠ°ΡšΠ΅Π½ΠΎΠΌ ΠΌΠΎΠ΄Π΅Π»Ρƒ ΡƒΠ·Π΅ΠΌΡ™ΠΈΠ²Π°Ρ‡Π°.The subject of the doctoral dissertation is development of mathematical models for the improvement of economic and technical conditions of planning and construction of wind farms. The main contributions are the following: 1. A mathematical model for optimal wind turbine selection has been developed. In the dissertation, a mathematical model for optimal wind turbine selection, for known wind statistics, was developed. The main elements for wind turbine optimization are: the hub height, the wind turbine diameter, and the wind turbine rated power. The model varies key parameters and calculates the total wind turbine actualization costs, as well as the annual electricity production. In the mentioned optimization problem, there are technical limitations regarding the minimum and maximum values of parameters imposed by the equipment manufacturer. The model is based on a genetic algorithm which, after a certain number of iterations, leads to optimal results that satisfy both, the optimisaton function and the given constraints. The developed algorithm and mathematical model have a general character ie. can be used to optimize WT selection for locations with different wind parameters. The application of the model ensures optimal use of wind potential at a certain location, and also provides a higher profit to the owner of the wind farm. The parameters of the Weibull wind statistics and the wind shear coefficient are used as input data. The practical applicability of the proposed mathematical model was demonstrated on specific examples of WPPs at locations with different Weibull parameters. 2. A mathematical model for the calculation of the optimal cross-section of cables of the wind farm internal cable network has been developed. As the spatial arrangement of wind turbines in wind farms is characterized by a relatively large distance from each other, the length of the cable collector network can be several tens or even hundreds of kilometers, so electricity losses are significant. The use of larger cable cross-sections in relation to technical requirements is often justified, and can provide a significant increase in efficiency and better energy performance of the power plant. The model developed in the dissertation calculates the optimal cable cross-section to which an arbitrary number of wind turbines is connected, through the optimization of the ratio of investment and operating costs, i.e. costs due to losses per unit length of cable. Considering that investment costs are segregated at the beginning i.e. in the phase of wind power plant construction, and the costs of losses are generated during operation in each year, the costs are actualized i.e. a dynamic economic model is used. The advantage of the presented model is that the calculations of the optimal topology and cable crosssection are decoupled i.e. they can be solved separately. By applying the developed model in the planning phase of the wind power plant project, each of the connection feeders to which an arbitrary number of WTs are connected can be optimized. On specific example of wind power plant in Banat region is shown that the optimal choice of cable cross-section can significantly reduce production costs, i.e. increase the total profit during the lifetime of the wind farm. 3. A mathematical model for the selection of the optimal voltage level and the optimal point of connection of large wind power plants to the transmission network has been developed. The selection of the optimal wind farm connection point is a demanding task that must include many parameters. In many cases of connecting a wind farm to the transmission network there are competing connection points, so the question is how to choose the optimal point at which wind farm will be connected and deliver the produced energy during operation. Potential connection points can differ in distance, but also in terms of voltage level, so the choice of connection point is extended in terms of choosing the voltage level to which the wind farm will be connected. The developed model calculates the total actualized investment and operating costs of connection to the transmission network, as a function of the distance from the connection point. In Abstract vi Докторска Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π° Ана ΠŸΠ΅Ρ‚Ρ€ΠΎΠ²ΠΈΡ› addition to maintenance costs, operating costs also include the costs of undelivered electricity due to the unavailability of the network. The optimal voltage level and the optimal connection point are determined by calculating the critical distances of competing connection points for wind power plant of a certain rated power, for which the connection costs are equal. The developed mathematical model enables transmission system operators, as well as investors, to optimally consider and plan the connection of wind power plants to the transmission network. The practical applicability of the proposed mathematical model is demonstrated on the example of a real engineering problem of connecting the WPP Čibuk 1, located in South Banar region. 4. A laboratory model of the wind turbine grounding has been developed for the experimental determination of the grounding system characteristics. During the construction of the wind power plant, special attention is given to the design of the earthing system. Copper ropes are laid in the cable trench together with the power cables, which connect the basic earthing conductors of the wind turbine. The basic earthing of the wind turbine is performed by laying the earthing in a concrete foundation, located below the ground surface, in form of closed contours (rings) of copper strips that are connected to the reinforcement in the foundation. The electrical properties of such an earthing system are determined by the earthing conductor geometry, concrete characteristics, reinforcement characteristics, soil composition and soil condition (dominantly moisture content). Due to its complex construction, the grounding of the wind turbine is very difficult to model mathematically. In order to determine the characteristics of the earthing system that are important for its sizing, a physical model of the wind turbine earthing system has been developed, which is equivalent to the real model of the earthing system of a commercial manufacturer. The grounding conductor is laid in the ground whose characteristics in terms of electrical conductivity vary. The results obtained by measurements on a scale model of the earthing system were analyzed

    Determinação do ponto ótimo de conexão de parques eólicos offshore a sistemas interligados considerando a maximização da capacidade de geração de energia

    Get PDF
    Due to growing environmental issues and depletion of conventional energy sources, alternative energy sources, especially renewable ones, are receiving more attention than ever. In this sense, wind energy is one of the most prominent in the context of investments in renewable sources in Brazil and globally. In some cases, regions with high potential for wind generation are far from load centers and are located in a maritime environment; in such situations, it makes sense to install wind farms in an offshore environment. In this scenario, a comprehensive analysis is required to determine the optimal connection point for Offshore Wind Farms (OWF) to the network to ensure maximum wind generation penetration safely and efficiently, taking into account such aspects as load profile, conventional system power generations, impacts caused by intermittent renewable energy sources in grid operation, capacity constrains of the transmission line and wind speed behavior of all the potential regions under study. In this context, this paper aims to propose two methodologies for determining the optimum OWF connection point to interconnected systems while considering how to maximize the capacity for power generation. The first methodology proposes a formulation based on Nonlinear Programming with Linear Power Flow (NLP-DC), where it is possible to observe the wind generation penetration path to the system until the maximum viable value is obtained, considering the minimization of losses in the transmission system and presenting an efficient strategy for the incorporation of active restrictions regarding the β€œN-1” safety criterion. The second method addresses a computationally efficient optimization problem, which proposes a two-step formulation, both based on Nonlinear Programming (NLP) with a Nonlinear Power Flow approach, which determines the optimum OWF connection point, with their respective maximum wind generation penetration and generating capacity values, considering all contingency scenarios (β€œN-1” safety criterion), modeled here with the help of the Benders Mathematical Decomposition technique. The proposed methodologies are applied in small, medium and large test systems in order to explore their characteristics and their contributions. Studies in small and medium-sized systems allow for a more tutorial analysis of the problem, while studies of real large systems are able to demonstrate the applicability and effectiveness of the proposed methodology in practical cases.Devido Γ s crescentes questΓ΅es relacionadas ao meio ambiente e ao esgotamento de fontes de energia convencionais, as fontes alternativas de energia, principalmente as renovΓ‘veis, estΓ£o recebendo mais atenção do que nunca. Nesse sentido, a energia eΓ³lica Γ© uma das que apresentam maior destaque na conjuntura de investimentos em fontes renovΓ‘veis no cenΓ‘rio brasileiro e mundial. Em alguns casos, as regiΓ΅es com alto potencial de geração eΓ³lica estΓ£o longe dos centros de carga e localizadas em ambiente marΓ­timo; em situaçáes como essa, torna-se interessante a instalação de parques eΓ³licos em ambiente offshore. Nesse cenΓ‘rio, Γ© necessΓ‘ria uma anΓ‘lise abrangente para se determinar o ponto Γ³timo de conexΓ£o de Parques EΓ³licos Offshore (PEO) Γ  rede principal que garanta a mΓ‘xima penetração de geração eΓ³lica, de forma segura e eficiente, levando-se em consideração questΓ΅es como o perfil de carga, as geraçáes convencionais de energia existentes no sistema, os impactos causados pela inserção de fontes de energia renovΓ‘veis intermitentes na operação da rede, as restriçáes relacionadas Γ s capacidades das linhas de transmissΓ£o e o comportamento da velocidade do vento de todas as regiΓ΅es potenciais em estudo. Nesse contexto, este trabalho tem por objetivo propor duas metodologias para a determinação do ponto Γ³timo de conexΓ£o de PEO a sistemas interligados considerando a maximização da capacidade de geração de energia. Na primeira metodologia Γ© proposta uma formulação baseada em Programação NΓ£o Linear associada a um Fluxo de PotΓͺncia Linearizado (PNL-CC), em que Γ© possΓ­vel observar a trajetΓ³ria de penetração de geração eΓ³lica ao sistema atΓ© se obter o valor mΓ‘ximo viΓ‘vel, considerando-se a minimização de perdas no sistema de transmissΓ£o e apresentando uma estratΓ©gia eficiente para a incorporação das restriçáes ativas referentes ao critΓ©rio de seguranΓ§a β€œN-1”. O segundo mΓ©todo aborda um problema de otimização computacionalmente mais eficiente, em que se propΓ΅e uma formulação dividida em duas etapas, ambas baseadas em Programação NΓ£o Linear e com uma abordagem de Fluxo de PotΓͺncia CA (PNL-CA), que determina o ponto Γ³timo de conexΓ£o do PEO, com seus respectivos valores mΓ‘ximos de penetração de geração eΓ³lica e de capacidade de geração, considerando-se todos os cenΓ‘rios de contingΓͺncia (critΓ©rio de seguranΓ§a β€œN-1”), modelados atravΓ©s da tΓ©cnica de Decomposição MatemΓ‘tica de Benders. As metodologias propostas sΓ£o aplicadas a sistemas-testes de pequeno, mΓ©dio e grande porte, de forma a explorar suas caracterΓ­sticas e suas contribuiçáes. Os estudos realizados em sistemas de pequeno e mΓ©dio porte permitem uma anΓ‘lise do problema com cunho mais tutorial, enquanto que o estudo de sistemas reais de grande porte sΓ£o capazes de demonstrar a aplicabilidade e eficΓ‘cia das metodologias propostas em casos prΓ‘ticos.CAPES - Coordenação de AperfeiΓ§oamento de Pessoal de NΓ­vel Superio
    corecore