1,141 research outputs found

    Wireless Communications in the Era of Big Data

    Full text link
    The rapidly growing wave of wireless data service is pushing against the boundary of our communication network's processing power. The pervasive and exponentially increasing data traffic present imminent challenges to all the aspects of the wireless system design, such as spectrum efficiency, computing capabilities and fronthaul/backhaul link capacity. In this article, we discuss the challenges and opportunities in the design of scalable wireless systems to embrace such a "bigdata" era. On one hand, we review the state-of-the-art networking architectures and signal processing techniques adaptable for managing the bigdata traffic in wireless networks. On the other hand, instead of viewing mobile bigdata as a unwanted burden, we introduce methods to capitalize from the vast data traffic, for building a bigdata-aware wireless network with better wireless service quality and new mobile applications. We highlight several promising future research directions for wireless communications in the mobile bigdata era.Comment: This article is accepted and to appear in IEEE Communications Magazin

    Proactive content caching in future generation communication networks: Energy and security considerations

    Get PDF
    The proliferation of hand-held devices and Internet of Things (IoT) applications has heightened demand for popular content download. A high volume of content streaming/downloading services during peak hours can cause network congestion. Proactive content caching has emerged as a prospective solution to tackle this congestion problem. In proactive content caching, data storage units are used to store popular content in helper nodes at the network edge. This contributes to a reduction of peak traffic load and network congestion. However, data storage units require additional energy, which offers a challenge to researchers that intend to reduce energy consumption up to 90% in next generation networks. This thesis presents proactive content caching techniques to reduce grid energy consumption by utilizing renewable energy sources to power-up data storage units in helper nodes. The integration of renewable energy sources with proactive caching is a significant challenge due to the intermittent nature of renewable energy sources and investment costs. In this thesis, this challenge is tackled by introducing strategies to determine the optimal time of the day for content caching and optimal scheduling of caching nodes. The proposed strategies consider not only the availability of renewable energy but also temporal changes in network trac to reduce associated energy costs. While proactive caching can facilitate the reduction of peak trac load and the integration of renewable energy, cached content objects at helper nodes are often more vulnerable to malicious attacks due to less stringent security at edge nodes. Potential content leakage can lead to catastrophic consequences, particularly for cache-equipped Industrial Internet of Things (IIoT) applications. In this thesis, the concept of \trusted caching nodes (TCNs) is introduced. TCNs cache popular content objects and provide security services to connected links. The proposed study optimally allocates TCNs and selects the most suitable content forwarding paths. Furthermore, a caching strategy is designed for mobile edge computing systems to support IoT task offloading. The strategy optimally assigns security resources to offloaded tasks while satisfying their individual requirements. However, security measures often contribute to overheads in terms of both energy consumption and delay. Consequently, in this thesis, caching techniques have been designed to investigate the trade-off between energy consumption and probable security breaches. Overall, this thesis contributes to the current literature by simultaneously investigating energy and security aspects of caching systems whilst introducing solutions to relevant research problems

    Flexpop: A popularity-based caching strategy for multimedia applications in information-centric networking

    Get PDF
    Information-Centric Networking (ICN) is the dominant architecture for the future Internet. In ICN, the content items are stored temporarily in network nodes such as routers. When the memory of routers becomes full and there is no room for a new arriving content, the stored contents are evicted to cope with the limited cache size of the routers. Therefore, it is crucial to develop an effective caching strategy for keeping popular contents for a longer period of time. This study proposes a new caching strategy, named Flexible Popularity-based Caching (FlexPop) for storing popular contents. The FlexPop comprises two mechanisms, i.e., Content Placement Mechanism (CPM), which is responsible for content caching, and Content Eviction Mechanism (CEM) that deals with content eviction when the router cache is full and there is no space for the new incoming content. Both mechanisms are validated using Fuzzy Set Theory, following the Design Research Methodology (DRM) to manifest that the research is rigorous and repeatable under comparable conditions. The performance of FlexPop is evaluated through simulations and the results are compared with those of the Leave Copy Everywhere (LCE), ProbCache, and Most Popular Content (MPC) strategies. The results show that the FlexPop strategy outperforms LCE, ProbCache, and MPC with respect to cache hit rate, redundancy, content retrieval delay, memory utilization, and stretch ratio, which are regarded as extremely important metrics (in various studies) for the evaluation of ICN caching. The outcomes exhibited in this study are noteworthy in terms of making FlexPop acceptable to users as they can verify the performance of ICN before selecting the right caching strategy. Thus FlexPop has potential in the use of ICN for the future Internet such as in deployment of the IoT technology

    Scalable bloom-filter based content dissemination in community networks using information centric principles

    Get PDF
    Information-Centric Networking (ICN) is a new communication paradigm that shifts the focus from content location to content objects themselves. Users request the content by its name or some other form of identifier. Then, the network is responsible for locating the requested content and sending it to the users. Despite a large number of works on ICN in recent years, the problem of scalability of ICN systems has not been studied and addressed adequately. This is especially true when considering real-world deployments and the so-called alternative networks such as community networks. In this work, we explore the applicability of ICN principles in the challenging and unpredictable environments of community networks. In particular, we focus on stateless content dissemination based on Bloom filters (BFs). We highlight the scalability limitations of the classical single-stage BF based approach and argue that by enabling multiple BF stages would lead to performance enhancements. That is, a multi-stage BF based content dissemination mechanism could support large network topologies with heterogeneous traffic and diverse channel conditions. In addition to scalability improvements, this approach also is more secure with regard to Denial of Service attacks
    • …
    corecore