173 research outputs found

    Multilevel Artificial Neural Network Training for Spatially Correlated Learning

    Get PDF
    Multigrid modeling algorithms are a technique used to accelerate relaxation models running on a hierarchy of similar graphlike structures. We introduce and demonstrate a new method for training neural networks which uses multilevel methods. Using an objective function derived from a graph-distance metric, we perform orthogonally-constrained optimization to find optimal prolongation and restriction maps between graphs. We compare and contrast several methods for performing this numerical optimization, and additionally present some new theoretical results on upper bounds of this type of objective function. Once calculated, these optimal maps between graphs form the core of Multiscale Artificial Neural Network (MsANN) training, a new procedure we present which simultaneously trains a hierarchy of neural network models of varying spatial resolution. Parameter information is passed between members of this hierarchy according to standard coarsening and refinement schedules from the multiscale modelling literature. In our machine learning experiments, these models are able to learn faster than default training, achieving a comparable level of error in an order of magnitude fewer training examples.Comment: Manuscript (24 pages) and Supplementary Material (4 pages). Updated January 2019 to reflect new formulation of MsANN structure and new training procedur

    Deep Multi-view Learning to Rank

    Full text link
    We study the problem of learning to rank from multiple information sources. Though multi-view learning and learning to rank have been studied extensively leading to a wide range of applications, multi-view learning to rank as a synergy of both topics has received little attention. The aim of the paper is to propose a composite ranking method while keeping a close correlation with the individual rankings simultaneously. We present a generic framework for multi-view subspace learning to rank (MvSL2R), and two novel solutions are introduced under the framework. The first solution captures information of feature mappings from within each view as well as across views using autoencoder-like networks. Novel feature embedding methods are formulated in the optimization of multi-view unsupervised and discriminant autoencoders. Moreover, we introduce an end-to-end solution to learning towards both the joint ranking objective and the individual rankings. The proposed solution enhances the joint ranking with minimum view-specific ranking loss, so that it can achieve the maximum global view agreements in a single optimization process. The proposed method is evaluated on three different ranking problems, i.e. university ranking, multi-view lingual text ranking and image data ranking, providing superior results compared to related methods.Comment: Published at IEEE TKD

    GAN-Based Approaches for Generating Structured Data in the Medical Domain

    Get PDF
    Modern machine and deep learning methods require large datasets to achieve reliable and robust results. This requirement is often difficult to meet in the medical field, due to data sharing limitations imposed by privacy regulations or the presence of a small number of patients (e.g., rare diseases). To address this data scarcity and to improve the situation, novel generative models such as Generative Adversarial Networks (GANs) have been widely used to generate synthetic data that mimic real data by representing features that reflect health-related information without reference to real patients. In this paper, we consider several GAN models to generate synthetic data used for training binary (malignant/benign) classifiers, and compare their performances in terms of classification accuracy with cases where only real data are considered. We aim to investigate how synthetic data can improve classification accuracy, especially when a small amount of data is available. To this end, we have developed and implemented an evaluation framework where binary classifiers are trained on extended datasets containing both real and synthetic data. The results show improved accuracy for classifiers trained with generated data from more advanced GAN models, even when limited amounts of original data are available

    "Task-relevant autoencoding" enhances machine learning for human neuroscience

    Full text link
    In human neuroscience, machine learning can help reveal lower-dimensional neural representations relevant to subjects' behavior. However, state-of-the-art models typically require large datasets to train, so are prone to overfitting on human neuroimaging data that often possess few samples but many input dimensions. Here, we capitalized on the fact that the features we seek in human neuroscience are precisely those relevant to subjects' behavior. We thus developed a Task-Relevant Autoencoder via Classifier Enhancement (TRACE), and tested its ability to extract behaviorally-relevant, separable representations compared to a standard autoencoder, a variational autoencoder, and principal component analysis for two severely truncated machine learning datasets. We then evaluated all models on fMRI data from 59 subjects who observed animals and objects. TRACE outperformed all models nearly unilaterally, showing up to 12% increased classification accuracy and up to 56% improvement in discovering "cleaner", task-relevant representations. These results showcase TRACE's potential for a wide variety of data related to human behavior.Comment: 41 pages, 11 figures, 5 tables including supplemental materia
    • …
    corecore