6 research outputs found

    Levelable Sets and the Algebraic Structure of Parameterizations

    Get PDF
    Asking which sets are fixed-parameter tractable for a given parameterization constitutes much of the current research in parameterized complexity theory. This approach faces some of the core difficulties in complexity theory. By focussing instead on the parameterizations that make a given set fixed-parameter tractable, we circumvent these difficulties. We isolate parameterizations as independent measures of complexity and study their underlying algebraic structure. Thus we are able to compare parameterizations, which establishes a hierarchy of complexity that is much stronger than that present in typical parameterized algorithms races. Among other results, we find that no practically fixed-parameter tractable sets have optimal parameterizations

    Resource Bounded Immunity and Simplicity

    Get PDF
    Revisiting the thirty years-old notions of resource-bounded immunity and simplicity, we investigate the structural characteristics of various immunity notions: strong immunity, almost immunity, and hyperimmunity as well as their corresponding simplicity notions. We also study limited immunity and simplicity, called k-immunity and feasible k-immunity, and their simplicity notions. Finally, we propose the k-immune hypothesis as a working hypothesis that guarantees the existence of simple sets in NP.Comment: This is a complete version of the conference paper that appeared in the Proceedings of the 3rd IFIP International Conference on Theoretical Computer Science, Kluwer Academic Publishers, pp.81-95, Toulouse, France, August 23-26, 200

    Parameterized analysis of complexity

    Get PDF

    On inefficient special cases of NP-complete problems

    Get PDF
    AbstractEvery intractable set A has a polynomial complexity core, a set H such that for any P-subset S of A or of Ā, S∩H is finite. A complexity core H of A is proper if H⊆A. It is shown here that if P≠NP, then every currently known (i.e., either invertibly paddable or k-creative) NP-complete set A and its complement Ā have proper polynomial complexity cores that are nonsparse and are accepted by deterministic machines in time 2cn for some constant c. Turning to the intractable class DEXT=∪c>0DTIME(2cn), it is shown that every set that is ⩽pm-complete for DEXT has an infinite proper polynomial complexity core that is nonsparse and recursive
    corecore