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Levelable Sets and the Algebraic Structure of

Parameterizations

Jouke Witteveen Leen Torenvliet

April 23, 2018

Abstract

Asking which sets are fixed-parameter tractable for a given parameteri-
zation constitutes much of the current research in parameterized complex-
ity theory. This approach faces some of the core difficulties in complexity
theory. By focussing instead on the parameterizations that make a given
set fixed-parameter tractable, we circumvent these difficulties. We isolate
parameterizations as independent measures of complexity and study their
underlying algebraic structure. Thus we are able to compare parameteri-
zations, which establishes a hierarchy of complexity that is much stronger
than that present in typical parameterized algorithms races. Among other
results, we find that no practically fixed-parameter tractable sets have op-
timal parameterizations.

1 Introduction

Ever since the identification of efficient computability by Cobham and Edmonds
(see Goldreich, 2008, Arora and Barak, 2009) and subsequent intractability re-
sults [Cook, 1971, Garey and Johnson, 1979], the computational complexity of
sets has been focused on the complexity of their hardest instances, or in the
case of average computational complexity on the complexity of the majority of
their instances. Yet, even very hard sets have simple instances and often lots of
them.

Parameterized complexity [Downey and Fellows, 1999, Flum and Grohe,
2006] was originally introduced to deal with this apparent indiscriminate judg-
ment of computational complexity of sets. Instead of looking at the entire set
as a single computational object, the complexity of the set is stratified. A
parameter function is introduced that singles out one particular dimension of
the set, such as the size of the desired solution, and a function of this param-
eter is factored into the complexity of the computation. Then, for any part
of the set where this function yields a constant, membership of the set may
be efficiently computable. Sets that can thus be dissected into parts that are
decidable in polynomial time, where the degree of the polynomial is invariable
across all parts, form the parameterized counterpart of efficient computabil-
ity, fixed-parameter tractability. This division into polynomial time computable
parts may be uniform or nonuniform (i.e., with or without a single piecewise
polynomial time algorithm) and the function of the parameter in play may be
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computable or non-computable. Thus, sets can be divided up into parts that
are easy or tractable from one of many viewpoints.

At the same time, many sets have infinite subsets that do not have tractable
algorithms. Lynch [1975] introduced complexity cores and showed that in-
tractable sets have infinite subsets of which all but finitely many instances resist
all efficient programs. In particular no parameter function of a fixed-parameter
tractable set can take on the same value infinitely often on a complexity core.

Unfortunately, complexity cores allow finite variations and thus any specific
instance can arbitrarily be made part of, or excluded from a complexity core.
Therefore, complexity cores do not lead to a useful formalization of the idea of
hard instances. Exclusion of an instance from a complexity core is possible by
augmenting a program with table lookup for that instance. This shortcoming
can be overcome by taking also the sizes of programs into account. Resource
bounded instance complexity, as introduced by Orponen et al. [1994], does ex-
actly that as a combination of the complexity of the set and the individual
complexity of strings [Li and Vitányi, 1997].

Both instance complexity and parameterized complexity can be seen as ways
of extending complexity cores into a meaningful notion of the distribution of
complexity inside a set. While instance complexity focuses on sets directly,
parameterized complexity instead focuses on algorithms, or, more abstractly,
on the possible ways to slice up a set into tractable parts. In general, there may
be many different algorithms for deciding a particular set and in that regard
instance complexity is less ambiguous than parameterized complexity. However,
any finite number of algorithms can be combined into a single one that boasts
the best behavior of its constituents. Such a compound algorithm would be
structured as a big if-then-else case distinction. On the parameterization side,
this means that any finite number of parameters can be combined into a single
parameter via an easy to compute pairing function. This compound parameter
then represents the complexity obtained when taking all of the finitely many
algorithms considered into account.

Besides treating parameterizations as measures of complexity, it may be
tempting to view a classification of a set as fixed-parameter tractable as infor-
mation about the computational complexity of that set. However, Witteveen
and Torenvliet [2016, Corollary 3.8] have shown that the class of fixed-parameter
tractable sets equals that of fixed-parameter decidable sets. Hence classifying
a set as fixed-parameter tractable holds very little information about its com-
putational complexity. When imposing additional uniformity constraints, the
class of fixed-parameter tractable sets quickly becomes equal to that of the de-
cidable sets. Again, a classification as fixed-parameter tractable is of little value
from a computational complexity point of view. We therefore consider it more
informative to study parameters and parameterizations first, and sets second.

In studying parameterizations, we should not ask what sets are fixed-parameter
tractable with a given parameterization, even though such questions constitute
much of the current research in parameterized complexity theory (e.g., Bod-
laender et al., 2013). The question “is some set A (uniformly) fixed-parameter
tractable with a given parameterization?” is equivalent to “are the parts of A
with a fixed parameter value (uniformly) decidable in polynomial time?” If this
was in general an easy question, we would not have so much trouble separating P
from other complexity classes. Instead, we should explore the parameterizations
with which a given set is fixed-parameter tractable (e.g., Garg and Philip, 2016).

2



This circumvents the difficulties associated with having to separate complexity
classes.

We found that in order to study parameterizations properly, we need a defi-
nition of parameterizations that is more general than most common definitions.
Often, parameters are represented by integer values associated with instances.
Whether a parameter represents the size of a vertex cover in a graph, a bound
on the treewidth in a graph, or the number of classrooms in a scheduling prob-
lem, it is usually a function that yields a number. It has been recognized that
parameters need not be restricted to one dimensional numerical values, yet to
our knowledge the true limits of parameters have not been investigated before.
In Section 3, we shall identify an axiomatic basis of traits required from param-
eters and parameterizations. This allows us to build general definitions from the
ground up, enforcing just the properties we desire. The resulting definitions are
rooted in order theory and reveal a rich algebraic structure that governs param-
eterizations. Notions from order theory required for our definitions are defined
also in Section 3. Because of the role of order theory in this paper, we meet var-
ious kinds of orders that (almost) all have their own symbol. There is ≤, which
we reserve for natural numbers, N. In text, we refer to this as “smaller”. We
use 4 both for orders on parameter spaces and for orders on parameterizations,
and refer to these orders as “before” and “below” respectively. Finally, sets
of parameterizations take center stage in this paper. For such sets, the usual
set inclusion ordering ⊆ is in place. When the parameterizations with which
a given set is fixed-parameter tractable form a subset of the parameterizations
with which some other set is fixed-parameter tractable, we could say that the
latter set is “easier” than the former.

Historically, parameterized complexity theory is, at least in part, practi-
cally motivated [Downey and Fellows, 1999], and its definitions are arrived at
in a pragmatic fashion. In Sections 4 and 5, continuing our foundational jour-
ney, we recover the well-known parameterized complexity classes XP and FPT
from classical complexity theory primitives and our general definition of param-
eterizations. The first of these sections deals with nonuniform parameterized
complexity, whereas the second deals with semi-uniform and fully uniform pa-
rameterized complexity. Section 2 contains the required background in classical
complexity theory, as far as used for building parameterized complexity theory
bottom-up. Chiefly, that section includes the definition of a slice, which serves
as a dual to the complexity core.

Much of our parameterized analysis of complexity revolves around collec-
tions of parameterizations that put a given set in a parameterized complexity
class. Such collections function as an interface to the complexity of the sets that
gave rise to them. In Sections 4 and 5 we lift classical levelability and immu-
nity classifications to the parameterized context. The parameterized versions of
these classifications can be expressed as properties of the collection of parame-
terizations that put a given set in a parameterized complexity class. Doing so
makes clear that levelability captures a usefulness criterion for parameterized
algorithms. Intuitively, a parameterized approach to decision algorithms is only
useful when there are infinitely many instances corresponding to any fixed pa-
rameter value. Levelability with respect to parameterized complexity classes is
the formalization of this intuition. Another complexity aspect captured by the
collection of parameterizations that put a given set in a parameterized complex-
ity class is the existence of optimal parameterizations. As it turns out, these
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collections of parameterizations form filters in a lattice of parameterizations. A
parameterization that is better than (or in terms of this paper below) all other
parameterizations exists precisely when such a filter is a principal filter. We
obtain an almost complete characterization of the sets that have optimal param-
eterizations with respect to FPT and XP with varying uniformity constraints.
From this characterization we get that uniformly fixed-parameter tractable sets
for which a parameterized approach is useful admit no optimal parameteriza-
tions. A completion of the characterization and two conjectures regarding the
separations of sets based on their complexity are left as open problems.

2 Preliminaries

We assume the reader is familiar with standard notation from complexity theory,
as in [Papadimitriou, 2003, Arora and Barak, 2009]. In the current text we use
a binary alphabet 2 = {0, 1}. The set of nonempty finite binary sequences,
strings, is denoted by 2+. Complexity classes are written in boldface. We make
use of O-notation, where n is the free variable in the mathematical expression
following O. For a function f , the complexity class O(f(n)) is the class of sets
that can be decided deterministically by a Turing machine with a running time
bound in O(f(n)) using some agreed upon alphabet and number of tapes.

Of interest to us are decision procedures that not necessarily decide on mem-
bership of every element.

Definition. A Turing machine Φ is a partial decision procedure for a set A if
we have, for all x ∈ 2+:

• Φ(x) = 1 =⇒ x ∈ A.

• Φ(x) = 0 =⇒ x /∈ A

The machine is said to decide the elements of its domain:

dom(Φ) = {x | Φ(x) ∈ {1, 0}}.

Outside its domain, a partial decision procedure either does not halt at all,
or outputs anything other than 0 or 1. Limiting partial decision procedures to
a polynomial running time gets us polynomial approximations as in [Ko and
Moore, 1981, Balcázar and Schöning, 1985].

Definition. A procedure Φ is a P-approximation for a set A if it is a partial
decision procedure for A that runs in polynomial time.

Note that although a P-approximation halts on every input, we do not
demand that its domain is 2+. Necessarily, however, the domain of a P-
approximation is in P.

Much of our work revolves around sets that occur as domains of partial
decision procedures. Therefore, we shall introduce a name for such sets.

Definition. A set S is a P-slice for a set A if there is a P-approximation Φ for
A satisfying dom(Φ) = S.

The name slice is inspired by the use of that term in parameterized com-
plexity theory. Slices function as a dual to the complexity cores of Lynch [1975].
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Definition. A set C is a P-core for a set A if for every P-slice S for A the
intersection C ∩ S is finite.

Subsets of P-cores for a set are also P-cores for that set, as are finite vari-
ations. This complicates thinking of the members of a core for a set as the
inherently hard instances of that set. However, for some sets the collection
of P-cores contains a maximal element with respect to inclusion up to finite
variation. Such sets are split into an easy part and a hard part.

Theorem 1. A set A has a maximal (up to finite variations) P-slice if and
only if it has a maximal P-core.

Proof. =⇒. The complement of a maximal P-slice for A is a P-core for A and
cannot be infinitely extended. Hence it is a maximal P-core for A.
⇐=. We claim that the complement of a maximal P-core for A is a P-slice

for A. Let S1, S2, . . . be an enumeration of the P-slices for A. Assuming that
the complement of a maximal P-core for A is not a P-slice for A, then for all
j, there are infinitely many elements in this complement outside the P-slice⋃
i≤j Si. Consequently, we would be able to extend the maximal P-core with

infinitely many elements, one for each j, contradicting its maximality. Hence,
the complement of a maximal P-core for A must be a P-slice for A.

Thus the complement of a maximal P-slice is a maximal P-core and because
P-slices were necessarily in P we get the following.

Corollary 2. A maximal P-core, if it exists, is in P.

Of course, within a maximal P-core C for a set A, membership of A is hard
to decide in the sense that no P-approximation decides membership of A for
infinitely many elements from C.

Complexity cores give us an elegant definition of immunity that is nonstan-
dard, but equivalent to the common definition in the literature based on finite
subsets. The equivalence of both definitions was already observed by Balcázar
and Schöning [1985] (see also Book et al., 1988).

Definition. A set A is P-bi-immune if 2+ is a P-core for A.

Thus a set is P-bi-immune if it has the largest P-core possible. This defini-
tion is easily generalized to sets that have a maximal P-core. In this case the
equivalence of our definition to the common definition as a disjoint union was
observed by Orponen [1986].

Definition. A set is almost P-bi-immune if it has a maximal P-core.

Note that by our definitions sets in P, and finite sets in particular, have
maximal P-cores and are therefore almost P-bi-immune. This may seem some-
what peculiar, but is in agreement with the definitions used by Orponen [1986]
and of no objection in the sequel.

With P-slices and P-cores we make no distinction between the members
and the nonmembers of a set. For this reason and by Theorem 1 a set is al-
most P-bi-immune if it has a slice that cannot be extended by infinitely many
members or nonmembers into a larger slice. In [Orponen et al., 1985, 1986] sets
of which every slice can be extended by infinitely many members into a larger
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slice are called P-levelable. We want a more general definition covering sets of
which every slice can be extended by infinitely many members or nonmembers.
Although it may be tempting to call such sets P-bi-levelable, this would more
naturally describe sets of which every slice can be extended by both infinitely
many members and infinitely many nonmembers. The equivalence of the fol-
lowing definition and that based on infinite extensions of slices was observed by
Orponen et al. [1985].

Definition. A set is P-omni-levelable if it has no maximal P-slice.

By Theorem 1, a set is P-omni-levelable precisely when it is not almost
P-bi-immune. Furthermore, every P-levelable set is P-omni-levelable. As a
consequence of the observation of Orponen et al. [1986] that very many (natural)
intractable sets are P-levelable, we find that there are many P-omni-levelable
sets.

In all of the above definitions and theorems, P can be replaced, given some
constant c, by O(nc). Likewise, an O(nc)-approximation for a set A is a partial
decision procedure for A with a running time in O(nc).

3 Parameter Spaces and Parameterizations

It is customary in computability theory to consider consider convergence of
computation [Odifreddi, 1992]. Computation that terminates is said to be con-
vergent, while computation that does not halt is said to be divergent. In com-
putational complexity theory the central theme is convergence of computation
within a bounded amount of resource (time, space, . . . ) usage. Parameter-
ized complexity theory originates from the desire to have a more fine-grained
analysis of computational complexity, that is, a more fine-grained analysis of
convergence of computation. In the current section we shall adopt this mindset
and define parameterizations from the ground up as mathematical structures.

When we are not interested in resource usage, convergence of a Turing ma-
chine on a given input is a simple matter of yes or no. We can represent
convergence of a Turing machine Φ by the set {x | Φ converges on x}. In a con-
text where resource usage matters, we are mostly interested in Turing machines
that converge on all inputs, but with varying resource needs. It is these resource
needs that we want to measure using parameters. With the parameter, we want
to express how much of some resource is needed for a given Turing machine to
converge on a given input. Thus, we want to represent convergence of a Turing
machine Φ by something like the set

{(x, k) | Φ converges on x with at most k (additional) resource usage}.

From the presence of at most in the above criteria, it is clear that parameter
values have to be taken from ordered sets. These ordered sets we shall call
parameter spaces and the sets of tuples (x, k) as above we shall call parame-
terizations. While we have used a parameter, k, to measure resource usage,
we have neglected to specify how resources should be measured. Indeed, this
is not something that can be done unambiguously and therefore whenever we
say a parameter measures a resource, we mean that the resource is bounded
in a parameter dependent way. The precise dependence (such as, for example,
exponential or double exponential) we shall not pay attention to in this paper.
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In order to come up with proper definitions for parameter spaces and pa-
rameterizations, we consider some of the properties we want them to have. As
ours is the study of computational complexity and not that of computability,
we require that it is always possible to have sufficient parametric leeway for a
computation to converge.

Axiom 1. For every input x, computation converges somewhere (i.e., there is
a parameter value with which x occurs in the parameterization).

A second trait we put in place is that convergence should be stable.

Axiom 2. When some x is in a parameterization with a parameter value k,
then, for all k′ following k (i.e., where k comes before k′ in a parameter space
specific order), x is also in the parameterization with parameter value k′.

When computations produce results, such as is the case for decision pro-
cedures, we want these results to not change for some input x depending on
the parameter values with which x is in a parameterization. This is relevant
since we shall eventually provide Turing machines access to the value of the
parameter. Demanding that the outcome of a computation is the same for all
parameter values following one with which some input occurs in a parameteri-
zation is not enough to enforce convergence to a unique outcome. It could be
that the order on the parameter space defines incomparable (with regard to
the order) branches of parameter values. Not only do we want convergence to
occur on all these branches for all inputs, we also want some enforcement of the
uniqueness of the outcome of a converged computation.

Axiom 3. For every two parameter values k1, k2 there is a parameter value k
such that k1 and k2 come before k in the applicable order.

This axiom internalizes both the idea that resources can always be suffi-
ciently extended and the desire for convergence to only be possible to a single
outcome.

Lastly, we want to be able to use parameters constructively.

Axiom 4. Parameter values can be effectively encoded so that they can be used
in data structures.

These 4 axioms can be realized using structures known from order theory
[Davey and Priestley, 2002].

Definition. A nonempty set Ω, ordered by a reflexive and transitive order 4,
is a directed set if for all a, b ∈ Ω there is a c ∈ Ω such that we have a 4 c and
b 4 c.

Reflexive and transitive orders that are not necessarily antisymmetric are
often referred to as quasiorders. A quasiorder that is also antisymmetric is a
partial order. In this paper, quasiorders are the dominant type of orders so we
shall not drag the term quasi around and instead speak simply of orders.

Definition. A subset U of a directed set Ω is an up-set if, for all a ∈ U and
b ∈ Ω with a 4 b, we have b ∈ U .

Using these concepts, we can formulate the most general definitions that
meet our axioms.
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Definition. A parameter space is a directed set that can be encoded into 2+.
The length of an element k of a parameter space is the length of its encoding
and denoted by |k|.

We call a parameter space decidable if the range of its encoding is. Likely
the most prevalent parameter space is the set of natural numbers ordered by the
regular smaller than order and encoded with ordinary binary representation.

Definition. Given a parameter space Ω, a parameterization is a subset η of
2

+×Ω, such that for every x the set {k | (x, k) ∈ η} is a nonempty up-set of Ω.
For a fixed parameter value k, we denote by ηk the set {x | (x, k) ∈ η}.

Observe how, for a parameterization η and a fixed parameter value k, the
set ηk is similar to our initial representation of convergence of a Turing machine
Φ by the set {x | Φ converges on x}. We are not so much interested in finite
variations on the sets of inputs on which computation converges. Instead, we are
mostly interested in parameterizations for which these sets increase in infinitely
large steps.

Definition. A parameterization η has imix (infinitely many infinite extensions)
if for every parameter value k there is a parameter value k′ such that the set
ηk′\ηk is infinite.

This paper is not the first to define parameterizations, and ideally our def-
inition would be equivalent to earlier definitions. Unfortunately, our axiomatic
definitions differ from the definitions of both Downey and Fellows [1999] and
Flum and Grohe [2006], which were obtained in a more empirical fashion.

The concept of a parameterization as used by Flum and Grohe [2006] is
closest to ours as it can be considered a special case of our definition. For Flum
and Grohe [2006], a parameterization is a polynomial time computable function
κ : 2+ → N mapping inputs to a unique point of convergence in the parameter
space N. This can be viewed as an instance of parameterizing by a function
f : 2+ → Ω, where Ω is a parameter space, in general. The parameterization
corresponding to such a function is the set {(x, k) | f(x) 4 k}. Note that,
contrary to Flum and Grohe [2006], we have not required that there is a unique
point of convergence in parameterizations and in particular we have not required
that every parameterization arises from parameterizing by some function. The
benefit of our more general definition is that it allows for natural operations
combining parameterizations into new ones.

With Downey and Fellows [1999], there is no distinction between the sets
of which the computational complexity is studied and parameterizations. Their
study is restricted to multi-dimensional sets of which the computational com-
plexity is expressed as a function of the values along each of the dimensions of
the sets. As a result, the notion of convergence of computation is lost since it
is no longer possible to speak of the kind of limit behavior we demanded by
our axioms. Where a point of convergence was unique with Flum and Grohe
[2006], it is nonexistent with Downey and Fellows [1999]. In practice, however,
most of the sets considered by Downey and Fellows [1999] are monotone in the
sense that when a parameter value k comes before another parameter value k′,
the inputs associated with k form a subset of those associated with k′. While
this restores a point of convergence for members of a set in the form of a first
parameter value with which it occurs in the parameterized set, it does no good
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for nonmembers. We feel that this asymmetry is undesirable and that parame-
terized complexity theory should be invariant under taking the complement of
a set.

Both Downey and Fellows [1999] and Flum and Grohe [2006] work mostly
with N as their parameter space, ordered by its canonical order. Having a com-
mon parameter space makes it easy to compare parameterizations [Komusiewicz
and Niedermeier, 2012]. While our more general definitions open the door for
parameter spaces with a richer structure than that of N, they also necessitate
a special means of comparing parameterizations. It is possible to numerically
capture the point of convergence for some input given a parameterization.

Definition. Given a parameterization η ⊆ 2+ × Ω, the minimization function
2

+ → N of η is defined as

µη(x) = min{|k| | k ∈ Ω ∧ (x, k) ∈ η}.

This minimization function allows us to compare the behavior of the point of
convergence of multiple parameterizations with different underlying parameter
spaces. Informally, we want to express how long a parameter value needs to be
for convergence in one parameterization to happen on all inputs that converge
with some bounded point of convergence in another parameterization.

Definition. Given parameterizations η1 and η2, the gap functionN→ N∪{∞},
is defined as

gapη1,η2(n) = max{µη1(x) | x ∈ 2+ ∧ µη2(x) ≤ n},

where we take the maximum of the empty set to be 0.

Comparing parameterizations using this gap function enables us to define a
nonuniform and a uniform order on parameterizations. One parameterization
is below another, when a bound on the point of convergence for the other pa-
rameterization can be turned into a bound on the point of convergence for the
one parameterization. Similar orders have been considered by Komusiewicz and
Niedermeier [2012] and Fellows et al. [2013].

Definition. A parameterization η1 is below a parameterization η2 in the nonuni-
form order 4nu if for all n ∈ N we have gapη1,η2(n) <∞.

From a computational standpoint, a bound on the gap between two param-
eterizations is only useful if it is computable. The uniform variant of the order
on parameterizations is therefore mainly of interest when the parameterizations
involved are based on decidable parameter spaces and are themselves decidable.

Definition. A parameterization η1 is below a parameterization η2 in the uni-
form order 4 if there is a computable function upper bounding gapη1,η2 .

We observe the relationship 4⊂4nu between these orders. These definitions
provide structure to the class of parameterizations.

Lemma 3. Both 4nu and 4 are reflexive and transitive orders on the class of
parameterizations.
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Proof. Reflexivity follows from the observation that for every parameterization η
the gap function gapη,η is bounded by the identity function. For transitivity we
need only to remark that the composition of finite bounding functions is again
a finite bounding function and that the composition of computable functions is
computable.

Neither order is antisymmetric and it is convenient to work with the asso-
ciated partially ordered set of equivalence classes instead of with parameter-
izations directly. Note that every parameterization with imix is unequal, in
the associated equivalence relation, to any parameterization without imix, both
using the nonuniform as well as using the uniform order.

Lemma 4. Given parameterizations η and η′, when η has imix but η′ does not,
then one of η 4nu η

′ and η′ 4nu η fails to hold (and similarly for 4).

Proof. The statement for the uniform order follows from that for the nonuniform
order by the inclusion 4⊂4nu.

Let m be so that no parameter value for η′ of length at least m has an infinite
extension. Because parameter spaces are directed sets, for every parameteriza-
tion that does not have imix such an m can be found.

Suppose we have η 4nu η
′. There is then a parameter value k such that ηk

is a superset of all sets η′k′ , when we have |k′| ≤ m. Since η has imix, there
exists a parameter value l such that ηl\ηk is infinite. We find that η′ 4nu η fails
because gapη′,η(|l|) must be infinite.

In case we have η′ 4nu η, then if η 4nu η
′ were to hold as well, gapη,η′(m)

would be finite. However, there would then be a parameter value l such that ηl
is infinitely larger than any η′k′ , when we have |k′| ≤ m. As η′ does not have
imix, this would violate the assumed η′ 4nu η.

For a further investigation of the structure of parameterizations, we need
two more definitions from order theory.

Definition. A partially ordered set is a lattice if every two elements have a
least upper bound and a greatest lower bound. A lattice is bounded if it has a
greatest element and a least element.

Definition. A nonempty up-set F of a lattice is a filter if every greatest lower
bound of elements of F is also an element of F . A filter is principal if it contains
a least element.

Already without any reference to complexity classes we can characterize the
partially ordered sets corresponding to our orders on parameterizations.

Lemma 5. The partially ordered sets on equivalence classes of parameteriza-
tions obtained from 4nu and 4 are lattices.

Proof. We shall show only that the partially ordered sets contain greatest lower
bounds. The presence of least upper bounds can be shown in an entirely similar
fashion and is therefore omitted. The same proof works for both 4nu and 4.
For simplicity we state the proof for 4.

Let η1 ⊆ 2
+ × Ω1 and η2 ⊆ 2

+ × Ω2 be two arbitrary parameterizations.
It suffices to show that there is a parameterization η such that we have η 4 η1

and η 4 η2, and for every other parameterization η′ that realizes this we have
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η′ 4 η. From this, the claimed existence of a greatest lower bound of any two
equivalence classes of parameterizations follows immediately.

The parameter space underlying our parameterization η will be Ω1 × Ω2,
ordered such that (k1, k2) comes before (k′1, k

′
2) if and only if k1 comes before

k′1 in Ω1 and k2 comes before k′2 in Ω2. Observe that this indeed makes Ω a
directed set and that an effective encoding can be derived from the effective
encodings of Ω1 and Ω2. When Ω1 and Ω2 are decidable, Ω is as well. We define
our parameterization as

η = {(x, (k1, k2)) | (x, k1) ∈ η1 ∨ (x, k2) ∈ η2}.

Surely, for every x the set {(k1, k2) | (x, (k1, k2)) ∈ η} is a nonempty up-set of
Ω1 × Ω2 using the order we defined.

We shall now prove that we have η 4 η1. For this, fix some ω2 ∈ Ω2 and
suppose we have some x and n such that µη1(x) ≤ n holds. Then, there exists
a k1 with |k1| ≤ n and (x, k1) ∈ η1. Moreover, we have (x, 〈k1, ω2〉) ∈ η and
|〈k1, ω2〉| is bounded by a computable function of n, depending on the fixed ω2

and the specifics of the way the encodings of Ω1 and Ω2 were combined. By the
same token, we obtain that η 4 η2 holds as well.

Now suppose we have some other η′ with which η′ 4 η1 and η′ 4 η2 hold.
We need to prove that we have η′ 4 η, or equivalently that gapη′,η is upper
bounded by a computable function. For all n, taking Xn = {x | µη(x) ≤ n},
we have gapη′,η(n) = max{µη′(x) | x ∈ Xn}. Since for any reasonable en-
coding of Ω1 × Ω2 we get, Xn ⊆ {x | µη1(x) ≤ n} ∪ {x | µη2(x) ≤ n} and
a maximum cannot increase when taken on a subset, we find gapη′,η(n) ≤
max{gapη′,η1(n), gapη′,η2(n)}. Because both members of the set on the right
hand side are computable as a function of n by assumption, the maximum is
computable and we obtain a computable upper bound for gapη′,η.

The above proof demonstrates the possibility, under our definitions, of com-
bining parameterizations in such a way that the composite parameterization
relates naturally to its constituents. In this case, it was shown that we can
construct greatest lower bounds and least upper bounds. Similar constructions
get convoluted when we work solely with the natural numbers as our parameter
space, or when we require that points of convergence are unique. Note that in
the above proof, there are no ‘first’ parameter values with which an input is a
member of the constructed parameterization. In order to make the order on the
combined parameter space transitive, it was based on a conjunction of orders.
On the other hand, the parameterization itself was based on a disjunction of
points of convergence.

In the context of orders on parameterizations, we refer to the equivalence
classes of parameterizations when speaking simply of parameterizations. As we
have seen in Lemma 4, parameterizations with imix will remain distinct from
those without when employing this convention. Showcasing this convention, we
shall augment Lemma 5 for the nonuniform order.

Lemma 6. The lattice of parameterizations obtained from 4nu is a bounded
lattice.

Proof. First, we construct a least element. Consider η = 2
+×Ω, for an arbitrary

Ω. Let c be the minimum length of a parameter value in Ω. For every η′, we
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have, for all n,
gapη,η′(n) ≤ c,

thus we have η 4nu η
′.

Next, we construct a greatest element. Consider η ⊂ 2
+ × N defined by

η = {(x, n) | |x| ≤ n}. For every η′, the gap with η is the maximum of a finite
set,

gapη′,η(n) = max{µη′(x) | |x| ≤ n}.
Hence, the gap with η is finite and we have η′ 4nu η.

So far, we have looked at parameterizations in isolation. Turning to complex-
ity theory, we are interested in pairs of a subset of 2+ and a parameterization.
In its broadest sense, parameterized complexity classes are collections of such
pairs. When a set A is in a parameterized complexity class C with parameter-
ization η, we write (A, η) ∈ C. Parameterized complexity classes can be used
to define ordered sets of parameterizations. We shall give names to two of such
sets.

Definition. Given a partial order ≤ on parameterizations and a parameterized
complexity class C, we denote the partially ordered set of parameterizations
that may put a set in C by

L≤C = ({η | ∃A : (A, η) ∈ C},≤).

For a fixed set A, the partially ordered set of parameterizations with which A
is in C is denoted by

F≤(A,C) = ({η | (A, η) ∈ C},≤).

4 Nonuniform Parameterized Complexity

Parameterized complexity classes can be derived from nonparameterized com-
plexity classes [Flum and Grohe, 2003]. In this section we shall look at a nonuni-
form way of doing so and study the structure of the sets of parameterizations
associated with the resulting parameterized complexity classes. The complexity
class for which we shall define parameterized variants will be P, although other
classes can be used equally well.

Lifting P to different realms of analysis is not new and several ways of doing
so have been studied previously. Using ∃ as an operator, the nondeterministic
counterpart, NP, of P has been obtained as ∃P. In probabilistic complex-
ity theory, the BP operator was derived from the complexity class BPP by
Schöning [1989] to define various probabilistic complexity classes from their
deterministic counterparts. For defining parameterized complexity classes we
shall consider the nonuniform X nu operator, of which uniform versions will
be studied in the next section. Note that we indicate nonuniformity with
the nu-subscript. In general, we shall use unmodified names of parameter-
ized complexity classes for their uniform variants. In other places (e.g., https:
//complexityzoo.uwaterloo.ca/Complexity_Zoo:X), special notation is used
instead to denote the uniform classes.

Definition. A set A is in XPnu with parameterization η if for every parameter
value k the set ηk is a P-slice for A.
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In the current century, the class XP has been called slicewise P, giving a
name to the X operator [Flum and Grohe, 2003]. However, in earlier work,
Downey and Fellows [1999] used “slicewise P” to denote a different complexity
class (FPT).

By definition of P, a set is a P-slice if there is a constant c such that it is
an O(nc)-slice. Because the exponent c is in general unbounded for members
of XPnu, the class XPnu is very permissive. A bound on the exponent is
obtained by changing the order of the quantifiers in the definition above.

Definition. A set A is in FPTnu with parameterization η if there is a constant
c such that for every parameter value k the set ηk is an O(nc)-slice for A.

Sets in FPT are said to be fixed-parameter tractable as they can be decided
in polynomial time with a fixed exponent. The algorithm and precise running
time for the slices of a fixed-parameter tractable set vary depending on the
parameter. In our nonuniform variant FPTnu, this dependence is unrestricted.

For every value of c, we can replace P by O(nc) in the definition of XPnu

to get a definition of XO(nc)nu. With this definition in place, we get the
equalities

XPnu = X
(⋃

c

O(nc)
)
nu

and

FPTnu =
⋃
c

(
XO(nc)nu

)
,

further illustrating the reversal of the order of dependence on the parameter
and the exponent in the definitions of XPnu and FPTnu.

The sets of parameterizations relevant to XPnu and FPTnu showcase an
algebraic structure similar to that of the set of all parameterizations ordered by
the nonuniform order.

Lemma 7. L4nu

XPnu
and L4nu

FPTnu
are bounded lattices.

Proof. We shall first show that the partially ordered sets are lattices. In order
to do so, we shall only prove that the partially ordered sets contain greatest
lower bounds. The presence of least upper bounds can be shown in an entirely
similar fashion and is therefore omitted.

Let C be either XPnu or FPTnu and let η1 and η2 be parameterizations
in L4nu

C . The parameterization η as constructed in the proof of Lemma 5 is a
greatest lower bound in the lattice of all parameterizations. Since the union of
a set in O(nc1) and a set in O(nc2) is in O(nmax{c1,c2}), the parameterization
η puts any trivial set, such as the empty set, in C and thus η is contained in
L4nu

C . Hence L4nu

C indeed contains all greatest lower bounds.
Next, we shall show that the lattices contain a least and a greatest element.

Sets in P are put in both XPnu and FPTnu by the parameterization 2+ ×Ω,
where Ω is an arbitrary parameter space. In the proof of Lemma 6 we have seen
that this parameterization is below any other. Hence it is a least element in both
L4nu

XPnu
and L4nu

FPTnu
. The greatest element of the lattice of parameterizations,

as constructed in the proof of Lemma 6, is present in both L4nu

XPnu
and L4nu

FPTnu

and thus a greatest element for both these lattices.
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Focussing on XPnu for a moment, we find that the set of parameterizations
with which any particular set is put in XPnu sits nicely inside L4nu

XPnu
.

Lemma 8. For every set A, F4nu

(A,XPnu) is a filter in L4nu

XPnu
.

Proof. Let A be an arbitrary set. We need to prove that F4nu

(A,XPnu) is a

nonempty up-set of L4nu

XPnu
that includes all greatest lower bounds of its mem-

bers.
As F4nu

(A,XPnu) includes all parameterizations η for which, for every parameter

value k, the set ηk is finite, it is nonempty. To see that it is an up-set, first
observe that for every parameterization η in L4nu

XPnu
and every parameter value

k in the corresponding parameter space, the set ηk is a P-slice of some set and
hence ηk is in P. Next, note that whenever there is a parameterization η′ in
F4nu

(A,XPnu) that is below a parameterization η, then for every parameter value

k in the parameter space of η there is a parameter value k′ in the parameter
space of η′ such that we have ηk ⊆ η′k′ . Because every subset of a P-slice that
is in P is itself a P-slice, ηk is a P-slice for A. Hence, as the parameter values
were chosen arbitrarily, we may conclude that η is in F4nu

(A,XPnu) and thus that

F4nu

(A,XPnu) is an up-set of L4nu

XPnu
.

Let η1 and η2 be two parameterizations in F4nu

(A,XPnu). To prove that F4nu

(A,XPnu)

includes all greatest lower bounds of its members, it suffices to show that the
greatest lower bound η as constructed in the proof of Lemma 5 is in F4nu

(A,XPnu).

That this is the case readily follows from the ability to combine any two P-
approximations for A into a P-approximation for A of which the domain is the
union of the domains of its constituents.

The orders on parameterizations can be thought of as an inverse ranking
of how powerful parameterizations are. When a parameterization is below an-
other, it signifies that the convergence behavior of this parameterization is an
improvement over that of the other. This improvement is of a much stronger
kind than the improvements made in parameterized algorithms races, where
improvements are sought within a parameterization [Komusiewicz and Nieder-
meier, 2012, Fellows et al., 2013]. In this regard, the best parameterizations in
a filter of parameterizations such as that of the previous lemma are those that
are below most others. Hence a set A admits an optimal parameterization with
respect to XPnu if the filter F4nu

(A,XPnu) is principal.

Theorem 9. For any set A, the filter F4nu

(A,XPnu) is principal.

Proof. Let S1, S2, . . . be an enumeration of the P-slices for A. Consider the
parameterization η ⊆ 2+ ×N given by

ηk =
⋃
i≤k

Si.

By definition A is in XPnu with η and by construction η is a least element in
F4nu

(A,XPnu).

We shall call a least element in the filter corresponding to some set a principal
parameterization for that set. While Theorem 9 shows that all sets have prin-
cipal parameterizations with respect to XPnu, this is not a given for arbitrary
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parameterized complexity classes. When they exist, principal parameterizations
provide insight into some of the computational complexity of a set. Indeed, as
a consequence of Theorem 9 there is a one-to-one correspondence between the
imix property of a principal parameterization with respect to XPnu and the
levelability of a set.

Corollary 10. A set is P-omni-levelable (almost P-bi-immune) if and only if
a principal parameterization for the induced nonuniform filter with respect to
XPnu has (does not have) imix.

Note that the filter induced by a P-bi-immune set consists of a single equiv-
alence class of parameterizations, namely that of parameterizations η where for
every parameter value k the set ηk is finite.

In case the existence of a principal parameterization is not a given, a state-
ment like Corollary 10 is still valid when there is a parameterization such that
it and all parameterizations below it have imix. This motivates the following
definition.

Definition. A set A is XPnu-omni-levelable (almost XPnu-bi-immune) if
there is a parameterization η with which A is in XPnu such that every pa-
rameterization η′ 4nu η with which A is in XPnu has (does not have) imix.

In these definitions, P can be replaced by other complexity classes, in par-
ticular, for any c, by O(nc). However, by the nature of the definition of FPTnu

we should not blindly replace XPnu by FPTnu in these definitions, but instead
include a dependence on the exponent c.

Definition. A set is FPTnu-omni-levelable (almost FPTnu-bi-immune) if there
is a constant c0 such that for all c ≥ c0 the set is XO(nc)nu-omni-levelable (al-
most XO(nc)nu-bi-immune).

It is an open problem whether this definition is different from the alternative
obtained by replacing XPnu by FPTnu in our initial definition of parameterized
levelability. If the two notions are the same, then for every FPTnu-omni-
levelable set A there is a constant c such that every P-slice for A can be infinitely
extended to an O(nc)-slice for A. We do not expect every set we wish to call
FPTnu-omni-levelable to show this behavior and shall go with the tailored
definition of levelability for FPTnu. This definition works the way we want it
to and we feel that keeping the exponent fixed in the analysis reflects the spirit
of fixed-parameter tractability.

Our definitions are so that from Theorem 9 and Corollary 10 we get an
identification of levelability with respect to P and levelability with respect to
XPnu.

Corollary 11. A set is P-omni-levelable (almost P-bi-immune) if and only if
it is XPnu-omni-levelable (almost XPnu-bi-immune).

The case for levelability with respect to FPTnu is more complicated. As
with XPnu, we find that the set of parameterizations with which any particular
set is put in FPTnu is a filter.

Lemma 12. For every set A, F4nu

(A,FPTnu) is a filter in L4nu

FPTnu
.
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Proof. This lemma can be proven similarly to Lemma 8. For the current
lemma, however, we need to keep track of the exponent in the running time
of the P-approximations involved in the proof. In general, when multiple P-
approximations are at play, it is possible to compute all of them within a poly-
nomial running time of which the exponent is the maximum of the exponents
of the individual polynomial running times.

The existence of optimal parameterizations is of interest with respect to
FPTnu too. Contrary to the case for XPnu, not every filter of parameteriza-
tions with which a set is put in FPTnu is principal. For some sets, however,
principality of the corresponding filter is easily shown.

Theorem 13. For any set A that is almost P-bi-immune, the filter F4nu

(A,FPTnu)

is principal.

Proof. By definition of being almost P-bi-immune, A has a maximal P-slice S.
For some constant c, this P-slice S is also an O(nc)-slice. Any parameterization
η with which A is in FPTnu and for which there is a parameter value k such
that ηk equals S is equivalent to any parameterization below it, hence such an
η is principal.

Of course, a principal parameterization with respect to FPTnu for any al-
most P-bi-immune set does not have imix and it follows that such sets are also
almost FPTnu-bi-immune.

Corollary 14. If a set is almost P-bi-immune, it is almost FPTnu-bi-immune.

The proof of Theorem 13 inspires alternative characterizations of the almost
FPTnu-bi-immune and FPTnu-omni-levelable sets.

Lemma 15. A set is FPTnu-omni-levelable (almost FPTnu-bi-immune) if
and only if there is a constant c0 such that for all c ≥ c0 the set is O(nc)-omni-
levelable (almost O(nc)-bi-immune).

Proof. For any c, we can replace P by O(nc) in Theorem 9. The current lemma
then follows from the associated variants of Corollary 11.

While we have seen that levelability with respect to XPnu is identical to
levelability with respect to P, the situation with respect to FPTnu is different.
We shall provide a constructive proof of the fact that the converse of Corollary 14
does not hold. The set we are about to construct has the remarkable property
that it is almost O(nc)-bi-immune for infinitely many values of c, yet each of the
bi-immune parts is still decidable in polynomial time. Conceptually, we show
that it is possible to diagonalize against polynomial time machines in polynomial
time.

Theorem 16. There are P-omni-levelable sets that are not FPTnu-omni-
levelable.

Proof. We shall prove the theorem by constructing a P-omni-levelable set A for
which there are infinitely many c ∈ N such that A is almost O(nc)-bi-immune.
For this, let φ1, φ2, . . . be an effective enumeration of all partial decision proce-
dures and denote by φ↓ci the ith partial decision procedure restricted to running
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time nc so that for all i and all c ≤ d we have domφ↓ci ⊆ φ
↓d
i . Additionally, let

〈c, x〉 be the result of a pairing function such as Cantor’s.
Consider the following recursive procedure for deciding a set A. On input

〈c, x〉, the procedure takes the following steps.

1. Determine a set I of procedures consistent with an initial segment of A:

(a) Set I = {1, 2, . . . , |〈c, x〉|}.
(b) For d in {1, 2, . . . c} and y in {1, 2, . . . , |〈c, x〉|} do:

Set I = {i | i ∈ I ∧ φ↓2ci (〈d, y〉) = A(〈d, y〉)}.

2. Try to make a procedure from I inconsistent with A:

(a) For i in I do:

If φ↓2ci (〈c, x〉) ∈ {0, 1} then return 1− φ↓2ci (〈c, x〉).
(b) return 0. (arbitrary)

The first stage of this procedure performs at most c|〈c,+x〉|2 simulations of
computations, each with a running time of n2c where the input length n is
at most the length of 〈c, |〈c, x〉|〉. Besides these simulations, this procedure
needs access to a segment of A to test against. This segment can be computed
recursively, with a recursion depth bounded by the iterated logarithm of x.
By using dynamic programming the time required to compute the segment is
insignificant with respect to the total running time of the entire procedure.

The second stage of the procedure requires the simulation of at most |〈c, x〉|
computations, each with a running time of n2c, where we have n = |〈c, x〉|. Using
efficient simulation [Arora and Barak, 2009], this puts the running time of the
second stage in O(n2c+2). Note that the running time of the procedure is thus
not polynomial in |〈c, x〉|, as c appears in the exponent and is not independent
of the input.

For any fixed c, the set {〈d, x〉 | d ≤ c ∧ x ∈ 2
+} is a O(n2c+2)-slice

of A. It is not a maximal P-slice, as for larger values of c infinitely many
elements are introduced in the corresponding sets. However, we claim that
it is a maximal O(n2c+2)-slice and thus that A is P-omni-levelable yet not
FPTnu-omni-levelable. Suppose towards a contradiction that there is an infinite
O(n2c+2) slice S = {〈d, x〉 | d > c ∧ x ∈ 2+} for A that is the domain of a
partial decision procedure that occurs in our enumeration with index i. When
|〈d, x〉| outgrows i in the first stage of our procedure for deciding A will include
i in I. Because there are only finitely many values for d and x such that |〈d, x〉|
is smaller than i, we may assume that I contains i at the start of the second
stage of our procedure. Now for every element of S, either the second stage
invalidates i as the index of a O(n2c+2)-slice for A, or an index smaller than
i is removed from I for all subsequent values of d and x. The latter of these
possibilities can happen at most i times, so, since we assumed that S is infinite,
eventually i must be invalidated. This contradicts our assumption that i was
the index of a partial decision procedure for S with a running time in O(n2c+2).
Note that our time bounds were chosen as they are so that already for d = c+ 1
we find 2d ≥ 2c+ 2.

Note that although the set constructed in the above proof is not FPTnu-
omni-levelable this does not mean that it is necessarily almost FPTnu-bi-
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immune. It could be that the set is neither FPTnu-omni-levelable nor al-
most FPTnu-bi-immune. We shall now turn to the existence of FPTnu-omni-
levelable sets. Our notion of a reduction is that of a membership preserving
polynomial time computable funcion, in other words, that of a Karp reduction.

Theorem 17. Every set outside P from which there is a linearly length in-
creasing reduction to itself is FPTnu-omni-levelable.

Proof. Let A be a set outside P and f a linearly length increasing reduction from
A to itself. Suppose that A is not FPTnu-omni-levelable and has a maximal
O(nc)-slice S, with c high enough for f to be computable in time O(nc−1). The
sets

S′ = {x | x /∈ S ∧ f(x) ∈ S},
Sx = {x, f(x), f(f(x)), . . .}

are, by nature of f , also O(nc)-slices for A. For S′ this requires the linear
bound on the length of the output of f , where for Sx this requires that f is
length increasing. Furthermore, S′ satisfies S ∩ S′ = ∅.

By the assumed maximality of S, for every x there are only finitely many
elements in the set S\Sx. However, since A is not in P, there are infinitely
many x outside S and for each of these the set Sx intersects S′. Hence S′ is
infinite, contradicting the maximality of S.

The existence of FPTnu-omni-levelable sets now follows from the existence
of sets outside P that have a linearly length increasing reduction to itself.

Lemma 18. There are sets outside P that have a linearly length increasing
reduction to itself.

Proof. Let X be a set outside P and consider its cylindrification

A = {〈x, y〉 | x ∈ X, y ∈ N}.

Note that A too is not in P. For most reasonable choices of pairing functions,
the function f defined by

f(〈x, y〉) = 〈x, 2 · y〉

is a linearly length increasing reduction from A to itself.

It should be noted that certain padding functions give rise to linearly length
increasing reductions. There are padding functions, pad, for which there exists
a constant c such that for all x, y we have

1

c
· (|x|+ |y|) ≤ |pad(x, y)| ≤ c · (|x|+ |y|).

Padding functions that meet this enhanced honesty criterion can be turned into
linearly length increasing reductions by mapping x to pad(x, 0c·|x|).

It was shown [Young, 1983] that every honest, one-one, polynomially com-
putable function is the productive function for the complement of some k-
creative set. In particular this means that there are k-creative sets where the
influence of the associated productive function on the length of its input is
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linear. Such functions can again be turned into linearly length increasing re-
ductions and hence, assuming P 6= NP, there are also k-creative sets that are
FPTnu-omni-levelable.

Starting from Lemma 15 we can augment Theorem 13 and thus answer the
principality question for all sets that are not FPTnu-omni-levelable.

Theorem 19. For any set A that is P-omni-levelable and not FPTnu-omni-
levelable, the filter F4nu

(A,FPTnu) is nonprincipal.

Proof. In case A is not FPTnu-omni-levelable, there is an unbounded set of
values c such that A has a maximal O(nc)-slice. When such a set A is P-omni-
levelable, then for every O(nc)-slice S for A that is maximal, there is a constant
d such that A has a maximal O(nd)-slice that is infinitely larger than S. Hence

F4nu

(A,FPTnu) cannot be principal.

For almost FPTnu-bi-immune sets, the principality of their filters with re-
spect to FPTnu is still an open problem. Next to identifying sets that admit
optimal parameterizations, we can study to what degree a filter of parameter-
izations is unique to a set. The filter of parameterizations with respect to a
parameterized complexity class is then taken as a representation of the distri-
bution of complexity inside a set. This approach is a continuation of an idea by
Orponen [1986] who represented the complexity characteristics of a set by the
filter of its complexity cores. Where this idea was shown fruitless when using
proper cores, our parameterized setting is promising. For sets A,B, let A4 B
denote the symmetric difference (A\B) ∪ (B\A).

Theorem 20. For any set X in P and any set A we have

F4nu

(A,FPTnu) = F4nu

(A4X,FPTnu).

Proof. This follows from the fact that given X, any slice for A can be turned
into a slice for A4X and vice versa.

Intuitively, the above theorem states that taking the symmetric difference
with an easy set does not alter the distribution of complexity. Similarly, we
find that the symmetric difference of two sets with the same distribution of
complexity is easier than either of the initial sets.

Theorem 21. For any two sets A,B satisfying F4nu

(A,FPTnu) = F4nu

(B,FPTnu) we

have
F4nu

(A,FPTnu) ⊆ F
4nu

(A4B,FPTnu).

Proof. This follows from the fact that any slice for A is also a slice for B and
can thus be turned into a slice for A4B.

Even though Theorem 21 asserts that the symmetric difference of two sets
that share all their parameterizations is easier than either of the sets, it does
not guarantee that this symmetric difference is in P. If this would be the case, a
filter with respect to FPTnu would uniquely define a set up to variations in P.
Of comparable flavor is the Berman–Hartmanis conjecture [Young, 1983, Li and
Vitányi, 1997], which asserts that completeness for NP uniquely defines a set up
to isomorphisms computable in polynomial time. We conjecture that indeed the
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filter of the symmetric difference collapses to that of a set in P. In other words,
we conjecture that for all A,B, whenever we have F4nu

(A,FPTnu) = F4nu

(B,FPTnu)

there is some X in P such that we have B = A4X. Here, we should keep in
mind that taking the symmetric difference with some set is an involution and
we have A 4 (A 4 X) = X. Because all sets in P have the same associated
filter, our conjecture can be expressed elegantly as follows.

Conjecture 1. For any two sets A,B we have

F4nu

(A,FPTnu) = F4nu

(B,FPTnu) ⇐⇒ F4nu

(A4B,FPTnu) = F4nu

(∅,FPTnu).

If true, a separation result would follow. Namely, for any two sets A,B
of which the symmetric difference is outside P, there would exist a set in P
separating A and B in the sense that the separating set contains a P-core for
precisely one of the two.

5 Uniform Parameterized Complexity

The classes XPnu and FPTnu were nonuniform in two ways. Firstly, we did not
require the parameter dependence of the running time of the P-approximations
of slices to have a uniformly computable upper bound as a function of the
parameter value to which the slices belong. Put differently, in the equivalent
characterizations of the complexity classes on page 13, we observe that the X nu

operator is used on (a union of) O(nc) complexity classes without restrictions
to the constant hidden in the O-notation. Secondly, we did not require the
existence of a procedure to instantiate the P-approximations of the slices from
the parameter values to which the slices belong.

For the majority of this section, we shall consider two additional complexity
classes for fixed-parameter tractability, both exhibiting more uniformity than
FPTnu. The first of them is a semi-uniform variant, which is known as uniform
FPT by Downey and Fellows [1999]. In this variant the P-approximations are
required to form a uniform collection.

Definition. A set A is in FPTu with parameterization η if there is a constant c
and a Turing machine Ψ taking two inputs, such that for every parameter value
k the partial application of Ψ to k yields an O(nc)-approximation, Ψ(k, ·), for
A with domain ηk.

The second of our classes is a fully uniform variant, for which we use no
subscript. In [Downey and Fellows, 1999], this class is known as strongly uniform
FPT.

Definition. A set A is in FPT with parameterization η if it is in FPTu with
constant c and Turing machine Ψ and there is a computable function f such
that the partial application of Ψ to k has a running time bounded by f(k) · nc.

The parameterizations that can put sets in FPTu on FPT can be identified.
This will help us characterize the structure of L4nu

FPTu
and L4

FPT.

Lemma 22. A parameterization η is in L4nu

FPTu
if and only if there is a constant

c such that, uniformly in k, membership of any x in ηk can be decided by a
decision procedure with a running time in O(nc).
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Moreover, η is in L4
FPT if and only if there is additionally a computable

function f such that membership of any (x, k) in η can be decided by a decision
procedure with a running time bounded by f(k) · |x|c.

Proof. When a set is in FPTu or FPT with some parameterization, the Turing
machine witnessing such a membership can easily be modified to decide mem-
bership of the parameterization. Conversely, a trivial set such as the empty set
is put in FPTu or FPT by every parameterization that meets the respective
running time bound.

Thus the parameterizations relevant for semi-uniform and strongly uniform
fixed-parameter tractability are decidable in a time bound that is polynomial in
the length of their first component. This makes that convergence of computation
with a given parameter value becomes less of a promise for the input, as it was
for our nonuniform classes, and more of a property of the input. Moreover,
it follows from the previous lemma that the minimization function µη of a

parameterization η taken from L4nu

FPTu
or L4

FPT is computable. Having identified
the parameterizations relevant for semi-uniform and strongly uniform fixed-
parameter tractability, we explore the algebraic structure they form.

Lemma 23. L4nu

FPTu
and L4

FPT are bounded lattices.

Proof. We shall phrase the proof as a proof for L4
FPT. Only the first part

is relevant for L4nu

FPTu
as the rest of the proof for this partially ordered set is

identical to Lemma 7.
That L4

FPT is a lattice follows from Lemma 22. The greatest lower bound
of two decidable parameterizations as constructed in the proof of Lemma 5 is
again decidable, hence L4

FPT contains greatest lower bounds. As before, the

remainder of proving that L4
FPT is a lattice is now routine.

Similar to Lemma 7, we observe that 2+ ×Ω is a least element in L4
FPT for

an arbitrary parameter space Ω. The case for a greatest element is more subtle.
In L4

FPT, a parameterization is below another not simply when there is a finite
bound on the gap function of the two, but only when there is such a bound that
is computable. For this reason, given the parameterization η = {(x, k) | |x| ≤ k}
of Lemma 6, the argument that for all slices in η are finite is not sufficient to
show that η is a greatest element. Surely, it follows from Lemma 22 that η is in
L4
FPT. That it is indeed also a greatest element requires that, uniformly in k,

we can compute the number of elements in ηk. Because of this, the maximum

gapη′,η(n) = max{µη′(x) | |x| ≤ n}

is computable and η is a greatest element in L4
FPT.

While all parameterizations in L4nu

FPTu
of which all slices are finite are 4nu-

equivalent, not all parameterizations in L4
FPT of which all slices are finite are

4-equivalent. In particular, the number of elements in a finite set in P need not
be computable. It is for this reason that the existence of a greatest element in
L4
FPT requires a more delicate proof than the existence of a greatest element in

L4nu

FPTu
.

We have seen that the minimization function for parameterizations that put
a set in FPTu or FPT are computable. As a result of this, we find that the
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sets that can be put in FPTu or FPT are all decidable. Indeed, the sets that
can be put in FPTu or FPT are precisely the decidable sets.

Lemma 24. For every decidable set A, F4nu

(A,FPTu) is a filter in L4nu

FPTu
and

F4
(A,FPT) is a filter in L4

FPT.

Proof. Let A be any decidable set. We shall first prove that F4nu

(A,FPTu) and

F4
(A,FPT) are nonempty. For this, let Φ be a decision procedure for A and

consider the parameterization

η = {(x, k) | Φ decides membership of x in at most k steps}.

Immediately, we see that η is in both F4nu

(A,FPTu) and F4
(A,FPT). The running

times of the corresponding approximations for A do not depend on the length
of the input at all.

Next, we shall prove that F4
(A,FPT) is an up-set of L4

FPT. The case for

F4nu

(A,FPTu) is simpler. Suppose we have a parameterization η in L4
FPT and a

parameterization η′ ⊆ 2+ × Ω′ in F4
(A,FPT) that is below η. We need to show

that A is in FPT with parameterization η as well. Let Ψ be the Turing machine
witnessing that A is in FPT with η′, and consider the following procedure on
input (x, k).

1. If (x, k) is not in η, return nothing.

2. For ω′ in (an unbounded subset of) Ω′ do:
If Ψ(x, ω′) ∈ {0, 1} then return Ψ(x, ω′).

For precisely those (x, k) that are in η, this procedure decides membership of x
in A. The time it needs to do so depends on where in the enumeration of (an
unbounded subset of) Ω′ we encounter an ω′ such that (x, ω′) is in η′. For each
of the values in the enumeration up to and including this ω′, the time needed
for step 2 is, for some c depending on Ψ, in O(nc) with a hidden constant
depending on the parameter value. In the case of FPT the dependence on the
parameter value is upper bounded by some computable function. Because we
are considering the uniform order on parameterizations, 4, it is furthermore
possible to compute an upper bound on the set of parameter values considered
in step 2 of the procedure. Therefore, the running time of the above procedure
is so that it witnesses that A is in FPT with parameterization η and we have
shown that F4

(A,FPT) is an up-set of L4
FPT.

It remains to show that F4nu

(A,FPTu) and F4
(A,FPT) include all greatest lower

bounds of pairs of their respective members. This can be done in the same way
as it was done in the proof of Lemma 12 as that proof is constructive insofar
concerned with greatest lower bounds.

This lemma, together with Lemma 8 and Lemma 12 are possible because
of the way we have defined the orders on parameterizations. In other words,
these lemmas justify the definitions of the nonuniform and uniform order on
parameterizations.

For the semi-uniform filter, we have an analogue of Theorem 13.
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Theorem 25. For any set A that is almost P-bi-immune, the filter F4nu

(A,FPTu)

is principal in L4nu

FPTu
.

Proof. Identical to the proof of Theorem 13.

For being principal in L4
FPT, we would need an additional computable upper

bound to the gap between parameterizations. Still, a parameterization with imix
would be below one without it even in the nonuniform order. That is, in accor-
dance with Lemma 4, the nonuniform order on parameterizations distinguishes
parameterizations with imix from those without. Therefore, the corollary to
Theorem 13 works for the uniform case too. The definitions of levelability and
immunity with respect to semi-uniform and uniform parameterized complexity
classes are the same as those with respect to nonuniform ones, with the sole
difference that for uniform complexity classes they now refer to the uniform
order on parameterizations.

Corollary 26. If a set is almost P-bi-immune, it is almost FPTu-bi-immune
and almost FPT-bi-immune.

Of course, we can show that filters with respect to FPT are principal for
sets in P.

Theorem 27. For any set A that is in P, the filter F4
(A,FPT) is principal in

L4
FPT.

Proof. Regardless of the parameter space Ω, the full parameterization 2+×Ω is
one with which A is in FPT. Since the class of this parameterization is the least
element of the lattice of parameterizations, the filter must be principal.

Whether or not there exists a set outside P for which the filter with respect
to FPT is principal is an open problem. We shall see that any such set is
necessarily almost P-bi-immune. As before, the converse of Corollary 26 does
not hold and not all P-omni-levelable sets are FPTu-omni-levelable or FPT-
omni-levelable.

Theorem 28. There are P-omni-levelable sets that are not FPTu-omni-levelable
and not FPT-omni-levelable.

Proof. The proof of Theorem 16 is constructive and applies in the semi-uniform
and uniform situations too.

The existence of FPTu-omni-levelable sets and FPT-omni-levelable sets
can be shown similarly to how the existence of FPTnu-omni-levelable sets was
shown.

Theorem 29. Every set outside P from which there is a linearly length in-
creasing reduction to itself is FPTu-omni-levelable and FPT-omni-levelable.

Proof. The proof of Theorem 17 is constructive and applies in the semi-uniform
and uniform situations too.
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Thus, by Lemma 18, there exist FPTu-omni-levelable sets and FPT-omni-
levelable sets. Again, it could well be that some sets are neither almost FPTu-
bi-immune nor FPTu-omni-levelable (and similarly for FPT). By Corollary 14,
every almost P-bi-immune set is almost FPTu-bi-immune and almost FPT-bi-
immune. Conversely, because every P-slice for a decidable set can be made part
of a parameterization with which the set is fixed-parameter tractable, being
FPTu-omni-levelable or FPT-omni-levelable implies being P-omni-levelable.
This can be graphically depicted as in Figure 1. The same holds for FPTu.

almost P-bi-immune P-omni-levelable
almost FPT-bi-immune FPT-omni-levelable

Figure 1: The universe of sets, represented by the horizontal line, can be
divided according to levelability with respect to P or with respect to FPT.
Note that P is part of the almost P-bi-immune sets.

As we did for FPTnu, we can answer the principality question for all sets
that are not FPTu-omni-levelable or FPT-omni-levelable.

Theorem 30. For any set A that is P-omni-levelable and not FPTu-omni-
levelable ( FPT-omni-levelable), the filter F4nu

(A,FPTu) (F4
(A,FPT)) is nonprinci-

pal.

Proof. Identical to the proof of Theorem 19.

In contrast to the nonuniform setting we can extend Theorem 30 proving that
the filters produced by FPTu-omni-levelable sets and FPT-omni-levelable sets
are also nonprincipal.

Theorem 31. For any set A that is not almost FPTu-bi-immune (almost

FPT-bi-immune), the filter F4nu

(A,FPTu) (F4
(A,FPT)) is nonprincipal.

Proof. We present a proof by contradiction for the uniform setting. The semi-
uniform setting is subsumed in this proof. Assuming F4

(A,FPT) is the principal

filter induced by a parameterization η ⊆ 2+×Ω we construct a parameterization
η′ such that we have (A, η′) ∈ FPT and η 64 η′.

Let c and Ψ be the constant and the Turing machine witnessing that A is
in FPT with parameterization η and let ω1, ω2, . . . be an effective enumeration
of (an unbounded subset of) Ω. Denote by ψωi the partial application of Ψ to
ωi. Thus, ψωi is a O(nc)-approximation for A with domain ηωi . Consider the
following partial decision procedure for A, uniformly defined for all k ∈ N. On
input x, the procedure takes the following steps.

1. Spend k · |x|c+2
time computing the values ψω1(x), ψω2(x), . . ..

2. If any computed value is either 1 or 0, return it, otherwise return nothing.

This partial decision procedure is a O(nc+2)-approximation for A and moreover
it defines a parameterization η′ ⊆ 2

+ × N with which A is in FPT when we
interpret k as the parameter value.

Because the exponent c + 2 is more than necessary to simulate any fixed
number of O(nc)-approximations for A, we are able to compute an increasing
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number of values ψω1
, ψω2

, . . . with increasing |x| for any constant value of k.
Because η necessarily has imix, this enables us to decide membership for ele-
ments from arbitrary high slices in η. Hence the gap between η and η′ is always
infinite, proving η 64nu η

′ and also η 64 η′.

Combining the above theorem with Theorem 25 and Theorem 30, we get a
complete picture of which principal filters in L4nu

FPTu
can occur as filters of the

form F4nu

(A,FPTu) with some set A.

Corollary 32. For any set A, the filter F4nu

(A,FPTu) is principal if and only if A

is almost P-bi-immune.

For the uniform filters, we lack a uniform equivalent to Theorem 25. How-
ever, Theorem 31 holds that whenever F4

(A,FPT) is principal, a principal param-

eterization of that filter does not have imix. Conversely, every parameterization
that has imix does not occur as a principal parameterization in any filter of
the form F4

(A,FPT). As parameterizations with imix are the most interesting

from an applications point of view, we find that sets for which parameterized
algorithms are attractive do not admit optimal parameterizations.

The proof of Theorem 31 has a clear kinship to that of the time hierarchy
theorem [Hartmanis and Stearns, 1965]. Observe though, that the time hier-
archy theorem constitutes a hierarchy of sets, whereas the current theorem is
about a hierarchy of algorithms. The proof of Theorem 31 is made possible in
its current form by our choice of Turing machines as a model of computation.
For other machine models, random access machines for example, different, but
at the same time similar, proofs can be given. To make the paper entirely ma-
chine model independent, we would have to take the jumps in the time bounds a
bit bigger, though still polynomial of small degree as warranted by the sequen-
tial computation thesis [Van Emde Boas, 2014], also known as the extended
Church–Turing thesis [Parberry, 1986].

We have made use of the time hierarchy theorem to break out of the constant
exponent in the running time of fixed-parameter tractable algorithms. When
the exponent is allowed to vary, the diagonalization in the proof of Theorem 31
fails. An immediate class that allows such variations in the exponent of the
polynomial running time is the semi-uniform variant of XPnu.

Definition. A set A is in XPu with parameterization η if there is a Turing
machine Ψ taking two inputs, such that for every parameter value k the partial
application of Ψ to k yields an P-approximation for A with domain ηk.

Not only does the proof of Theorem 31 fail on XPu, the proof of Theorem 9
fails on XPu as well. The enumeration of slices in that proof is in general
not effective and the resulting parameterization need not put the set under
consideration in XPu. When focusing only on parameterizations that provably
put a set in XPu, we regain something akin to Theorem 9.

Theorem 33. Given any formal proof system, for any set A there is a least pa-
rameterization among those provably, via a witnessing Turing machine, putting
A in XPu.
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Proof. Let F be the fixed deductive system. A form of universal search, along the
lines of Hutter [2002], through P-approximations is possible in the parameter-
ized setting. Consider the following partial decision procedure for A, uniformly
defined for all k ∈ N. On input x, the procedure takes the following steps.

1. (a) Set M = ∅.
(b) For all proofs P in F and all machines Φ both of length at most k do:

If P proves that Φ is a P-approximation for A then:
Set M = M ∪ {Φ}.

2. (a) For Φ in M do:
If Φ(x) ∈ {0, 1} then return Φ(x).

(b) return nothing.

Since, for all values of k, the set M is finite throughout the execution of this
partial decision procedure, step 2a can be executed in polynomial time and the
procedure is a P-approximation for A. Moreover, when we interpret k as the
parameter value, the above procedure defines a parameterization η with which
A is in XPu.

It remains to show that η lies below every other parameterization that prov-
ably puts A in XPu. Let Ψ be the witness Turing machine corresponding to
some parameterization η′ ⊆ 2+ × Ω with which A is in XPu. For any param-
eter value ω ∈ Ω, the slice η′ω is included in the slice η|〈Ψ,ω〉|+O(1), where the
hidden constant depends on the length of an F-proof of A being in XPu with
parameterization η′ and the overhead of a program applying Ψ to ω. Hence we
have η 4 η′ as desired.

Thus, adding a provability requirement offsets the limitations we incurred
by moving to a uniform setting. The provability requirement in Theorem 33
enforces the effectiveness that was not present in the proof of Theorem 9. Ad-
ditionally, from the existence of least parameterizations that provably put a set
in XPu it follows that sets are either almost XPu-bi-immune or XPu-omni-
levelable.

Corollary 34. When restricting to parameterizations that provably put a set in
XPu, sets are either almost XPu-bi-immune or XPu-omni-levelable.

While a set is P-omni-levelable precisely when it is XPnu-omni-levelable, it
could be that the XPu-omni-levelable sets form a strict subset of the P-omni-
levelable sets.

Without accounting for proofs, the partial decision procedure constructed in
the proof of Theorem 33 would consider only the lengths of the P-approximations
Φ. Then, parameter values are much akin to instance complexity [Orponen
et al., 1994].

Definition. The time t bounded instance complexity of a string x with respect
to a set A is

ict(x : A) = min{|Φ| | Φ is a t-approximation for A and x ∈ dom(Φ)},

where a t-approximation for A is a partial decision procedure for A that runs
in time t.

26



The following theorem gives a time bounded version of Lemma 6.1 in [Wit-
teveen and Torenvliet, 2016].

Theorem 35. For any polynomial p, any set A is in FPTnu with parameteri-
zation η = {(x, k) | icp(x : A) ≤ k}.

Proof. Let c be such that p is in O(nc). For any value of k, there are only finitely
many p-approximations for A of length at most k. These can be combined into
a single O(nc)-approximation for A for which the domain is exactly ηk. Hence,
A is in FPTnu with parameterization η.

Observe how this theorem is similar to Theorem 9. Stretching our definition
of time bounded instance complexity a little, we can define a parameterization
{(x, k) | icP(x : A) ≤ k}. The previous theorem can be adapted to show that A
is in XPnu with this parameterization and as seen in the proof of Theorem 9
this parameterization is a principal parameterization in F4nu

(A,XPnu).

Based on Theorem 33 and Theorem 35, for a parameterization η that puts a
set in FPT, we think of µη as conveying a sense of complexity. Unlike instance
complexity, the sense of complexity conveyed by µη can be called uniform as it
requires a uniform way of deriving approximations. Indeed, there is a sort of
converse to Theorem 35.

Theorem 36. For any set A that is in FPT with parameterization η ⊆ 2+×Ω
there is a function f and polynomial p such that for all x we have, up to an
additive constant independent of x,

icf(µη(x))p(x : A) ≤ µη(x).

Proof. It suffices to show that for some c and every ω ∈ Ω there is a O(nc)-
approximation for A of which the size is, up to an additive constant, bounded
by |ω|. Let Ψ be the Turing machine witnessing that A is in FPT with param-
eterization η. By definition, there is a c such that for every value ω the partial
application of Ψ to ω yields a O(nc)-approximation for A. As this O(nc)-
approximation can be constructed from Ψ and ω, the length of its specification
can, up to an independent additive constant, bounded by |〈Ψ, ω〉|. Because Ψ
is fixed for all x, the theorem follows.

The behavior of the complexity measure embodied, for a parameterization
η, by µη can be somewhat untangible. When η is not a principal parameter-
ization for a given set, there are sharper parameterizations and hence sharper
complexity measures possible with respect to that set. Many sets, however,
do not allow for principal parameterizations at all. Furthermore, even when a
parameterization η is principal, there can be other parameterizations equal to
it that give rise to a measure of complexity lower than µη. This improvement
though, is of a bounded nature and a sense of optimality is still given to the
complexity behavior of principal parameterizations.

Somewhat more abstract, for a set A the filter F4
(A,FPT) itself can be consid-

ered a representation of the distribution of complexity of instances with respect
to A. This view has the added benefit that it is applicable not only when the
filter is principal. As we did previously in the nonuniform context, we shall
classify sets based on their filters with respect to FPT. Where polynomial iso-
morphism of sets indicates a comparable distribution of difficulty, having the
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same filter with respect to FPT signifies that exactly the same elements are
difficult.

Theorem 37. For any set X in P and any set A we have

F4
(A,FPT) = F4

(A4X,FPT).

Proof. This follows from the fact that given X, the approximations for A corre-
sponding to a parameterization can be uniformly transformed into approxima-
tions for A4X with the same domain, and vice versa.

Compared to Theorem 20, we needed the additional remark that the trans-
formation used in the proof is uniform in the parameter. With a similar addition
we retrieve a version of Theorem 21 for FPT.

Theorem 38. For any two sets A,B satisfying F4
(A,FPT) = F4

(B,FPT) we have

F4
(A,FPT) ⊆ F

4
(A4B,FPT).

Proof. Given a parameterization η with which A and B are in FPT, let ΨA

and ΨB be Turing machines that yield the respective approximations on partial
application to a parameter value. From ΨA and ΨB it is possible to define
an approximation for A 4 B uniformly in a parameter value k. On input x,
when (x, k) is a member of η this approximation simply outputs the exclusive
disjunction of ΨA(k, x) and ΨB(k, x). It follows that A4B is also in FPT with
parameterization η.

We conjecture that the filter of the symmetric difference collapses to that of
a set in P.

Conjecture 2. For any two sets A,B we have

F4
(A,FPT) = F4

(B,FPT) ⇐⇒ F4
(A4B,FPT) = F4

(∅,FPT).

As with Conjecture 1, this conjecture implies a separation result. However,
uniformity constraints make this separation result more intricate than that ob-
tained from Conjecture 1.

6 Conclusion

We have explored the algebraic structure of parameterizations underlying the
parameterized analysis of computational complexity. Under the general defini-
tions of parameter spaces and parameterizations of Section 3, parameterizations
generate a lattice. We found that for several parameterized complexity classes
the parameterizations that put a given set in that parameterized complexity
class form a filter in this lattice. These filters hold information about the com-
plexity make up of the sets that produce them. Thus, in the examination of
sets these filters can act as a proxy to their internal distribution of complexity.

Solely based on the filters induced by given sets with respect to param-
eterized complexity classes we could extend the classifications “almost P-bi-
immune” and “P-omni-levelable” into the parameterized context. We have seen
that the classical classifications coincide with the parameterized classifications
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“almost XPnu-bi-immune” and “XPnu-omni-levelable”. Furthermore we have
seen that for a parameterized complexity class C ∈ {XPnu,XPu,FPTnu,
FPTu,FPT} there are sets that are almost C-bi-immune as well as sets that
are C-omni-levelable. In particular, when we denote the class of sets outside P
that admit a linearly length increasing reduction to itself by LLI, we have the
following relations between classifications of sets.

in P =⇒ almost P-bi-immune =⇒ almost C-bi-immune

and

in LLI =⇒ C-omni-levelable =⇒ P-omni-levelable,

where the last implications on each of these two lines become equivalences
when C is XPnu. Indeed, there exists almost C-bi-immune sets and C-omni-
levelable sets because P is nonempty and, by Lemma 18, LLI is nonempty.
These implications expand on Figure 1 and it should be noted that no set
can be both almost C-bi-immune and C-omni-levelable, and with respect to
C ∈ {FPTnu,FPTu,FPT} it is not ruled out that some set is neither.

In defining levelability with respect to classes of fixed-parameter tractable
sets we have made explicit the role of the exponent in the involved polynomial
running time bounds. Although the alternative characterizations of XP and
FPT on page 13 provide a good motivation for doing so, we wonder whether
any set would meet the naive definition of being FPT-omni-levelable.

Open problem 1. Is there a set A and a parameterization η with which A is
in FPT such that every parameterization η′ 4 η with which A is in FPT has
imix?

Another aspect of parameterized complexity that is captured by filters for
sets with respect to parameterized complexity classes is the existence of optimal
parameterizations. A parameterization that puts a set in one of our param-
eterized complexity classes is optimal when it is below all other such param-
eterizations in the order relevant for the particular parameterized complexity
class. It should be noted that the improvement signified by one parameteri-
zation being below another is far stronger than the improvements related to
typical races in parameterized algorithmics, where a parameterization is held
fixed. For our nonuniform and semi-uniform parameterized complexity classes
we use the nonuniform order on parameterizations. For our strongly uniform
parameterized complexity class the uniform order on parameterizations is the
most natural. An optimal parameterization for a set with respect to a param-
eterized complexity class then exists when the induced filter with respect to
that class is principal. Our results on principality of filters with respect to the
different parameterized complexity classes can be summarized as in Table 1.

Every value in a cell of Table 1 is backed by one or more theorems or corol-
laries. By extending the uniformity constraints of XPu with provability con-
straints, we were able to obtain the same principality results as for XPnu.
Regarding fixed-parameter tractability we were able to obtain a necessary and
sufficient condition for the principality of filters in the semi-uniform case. A
filter for a set with respect to FPTu is principal if and only if the set is al-
most P-bi-immune. Consequently, no FPTu-omni-levelable set has an opti-
mal parameterization with respect to FPTu as the FPTu-omni-levelable sets
are all P-omni-levelable. This is noteworthy because from a practical point
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almost P-bi-immune P-omni-levelable
XPnu principal principal
XPu (provably) principal principal
FPTnu principal Theorem 19
FPTu principal nonprincipal
FPT Theorem 27 nonprincipal

Table 1: Principality of filters with respect to parameterized complexity classes
depending on the classification of the set inducing the filter.

of view a parameterized approach is only worthwhile for sets that are FPTu-
omni-levelable. In many cases attention is limited even further to only strongly
uniform parameterized algorithms. Such algorithms are of practical use in par-
ticular for FPT-omni-levelable sets. As FPT-omni-levelable are again also
P-omni-levelable, in Table 1 we see that no FPT-omni-levelable set admits an
optimal parameterization with respect to FPT.

When the filter induced by a set is nonprincipal, it is not possible to capture
the structure responsible for the computational hardness of the set by a param-
eterization. In that case, there are infinitely many distinct structural properties
an element may have that can be used to decide membership of the element in
the set in a way that defies the computational hardness of the set in general.

For two cells in Table 1 our results are incomplete. The filter of a P-omni-
levelable set with respect to FPTnu is nonprincipal when the set is not FPTnu-
omni-levelable. However, for FPTnu-omni-levelable sets the principality of the
corresponding filters with respect to FPTnu is still unknown.

Open problem 2. Is there a FPTnu-omni-levelable set A for which F4nu

(A,FPTnu)

is principal?

We have a similar incomplete picture for the filter of an almost P-bi-immune
set with respect to FPT. Such a filter is known to be principal for the rather
trivial case when the set is in P. Otherwise we only know that filters of P-omni-
levelable sets with respect to FPT are nonprincipal.

Open problem 3. Is there a set A outside P for which F4
(A,FPT) is principal?
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