8,712 research outputs found

    Heterogeneous Paxos

    Get PDF
    In distributed systems, a group of learners achieve consensus when, by observing the output of some acceptors, they all arrive at the same value. Consensus is crucial for ordering transactions in failure-tolerant systems. Traditional consensus algorithms are homogeneous in three ways: - all learners are treated equally, - all acceptors are treated equally, and - all failures are treated equally. These assumptions, however, are unsuitable for cross-domain applications, including blockchains, where not all acceptors are equally trustworthy, and not all learners have the same assumptions and priorities. We present the first consensus algorithm to be heterogeneous in all three respects. Learners set their own mixed failure tolerances over differently trusted sets of acceptors. We express these assumptions in a novel Learner Graph, and demonstrate sufficient conditions for consensus. We present Heterogeneous Paxos, an extension of Byzantine Paxos. Heterogeneous Paxos achieves consensus for any viable Learner Graph in best-case three message sends, which is optimal. We present a proof-of-concept implementation and demonstrate how tailoring for heterogeneous scenarios can save resources and reduce latency

    Different Approaches to Proof Systems

    Get PDF
    The classical approach to proof complexity perceives proof systems as deterministic, uniform, surjective, polynomial-time computable functions that map strings to (propositional) tautologies. This approach has been intensively studied since the late 70’s and a lot of progress has been made. During the last years research was started investigating alternative notions of proof systems. There are interesting results stemming from dropping the uniformity requirement, allowing oracle access, using quantum computations, or employing probabilism. These lead to different notions of proof systems for which we survey recent results in this paper

    Consensus on Transaction Commit

    Full text link
    The distributed transaction commit problem requires reaching agreement on whether a transaction is committed or aborted. The classic Two-Phase Commit protocol blocks if the coordinator fails. Fault-tolerant consensus algorithms also reach agreement, but do not block whenever any majority of the processes are working. Running a Paxos consensus algorithm on the commit/abort decision of each participant yields a transaction commit protocol that uses 2F +1 coordinators and makes progress if at least F +1 of them are working. In the fault-free case, this algorithm requires one extra message delay but has the same stable-storage write delay as Two-Phase Commit. The classic Two-Phase Commit algorithm is obtained as the special F = 0 case of the general Paxos Commit algorithm.Comment: Original at http://research.microsoft.com/research/pubs/view.aspx?tr_id=70

    Logical closure properties of propositional proof systems - (Extended abstract)

    Get PDF
    In this paper we define and investigate basic logical closure properties of propositional proof systems such as closure of arbitrary proof systems under modus ponens or substitutions. As our main result we obtain a purely logical characterization of the degrees of schematic extensions of EF in terms of a simple combination of these properties. This result underlines the empirical evidence that EF and its extensions admit a robust definition which rests on only a few central concepts from propositional logic
    • …
    corecore