2,046 research outputs found

    Teaching Optics: Light Sources and Shadows

    Get PDF
    The study of students representations of physics concepts and phenomena constitutes a central part of Physics Education research, as they play a critical role in teaching. In the study presented here, we investigate 120 ninth grade students mental representations of the formation of shadows. The empirical data was gathered through an interview using four tasks which involved the evaluation of hypothetical situations. The research data included representations that cause difficulty in the comprehension of the position of a light source in relevance to the shadow

    Decoupling frequencies, amplitudes and phases in nonlinear optics

    Get PDF
    In linear optics, light fields do not mutually interact in a medium. However, they do mix when their field strength becomes comparable to electron binding energies in the so-called nonlinear optical regime. Such high fields are typically achieved with ultra-short laser pulses containing very broad frequency spectra where their amplitudes and phases are mutually coupled in a convolution process. Here, we describe a regime of nonlinear interactions without mixing of different frequencies. We demonstrate both in theory and experiment how frequency domain nonlinear optics overcomes the shortcomings arising from the convolution in conventional time domain interactions. We generate light fields with previously inaccessible properties by avoiding these uncontrolled couplings. Consequently, arbitrary phase functions are transferred linearly to other frequencies while preserving the general shape of the input spectrum. As a powerful application, we introduce deep UV phase control at 207 nm by using a conventional NIR pulse shaper

    Linearizing nonlinear optics

    Full text link
    In the framework of linear optics, light fields do not interact with each other in a medium. Yet, when their field amplitude becomes comparable to the electron binding energies of matter, the nonlinear motion of these electrons emits new dipole radiation whose amplitude, frequency and phase differ from the incoming fields. Such high fields are typically achieved with ultra-short, femtosecond (1fs = 10-15 sec.) laser pulses containing very broad frequency spectra. Here, the matter not only couples incoming and outgoing fields but also causes different spectral components to interact and mix through a convolution process. In this contribution, we describe how frequency domain nonlinear optics overcomes the shortcomings arising from this convolution in conventional time domain nonlinear optics1. We generate light fields with previously inaccessible properties because the uncontrolled coupling of amplitudes and phases is turned off. For example, arbitrary phase functions are transferred linearly to the second harmonic frequency while maintaining the exact shape of the input power spectrum squared. This nonlinear control over output amplitudes and phases opens up new avenues for applications based on manipulation of coherent light fields. One could investigate c.f. the effect of tailored nonlinear perturbations on the evolution of discrete eigenmodes in Anderson localization2. Our approach might also open a new chapter for controlling electronic and vibrational couplings in 2D-spectroscopy3 by the geometrical optical arrangement

    A Compact Electronic Speckle Pattern Interferometry System using a Photopolymer Reflection Holographic Optical Element

    Get PDF
    A simple and compact electronic speckle pattern interferometry system using a reflection holographic optical element is presented. The reflection holographic optical element is recorded on an acrylamide based photopolymer formulated and prepared at the Centre for Industrial & Engineering Optics. Light intensity of 40mW/cm2 with an exposure time of 60 seconds was used in fabricating the holographic optical element. The vibration mode patterns of a 4 cm diameter thin circular sheet of brass metal attached to a 4 cm diameter paper cone loud speaker are presented

    Development of a Ground-Based Aerial-Tracking Instrument for Open-Path Spectroscopy to Monitor Atmospheric Constituents

    Get PDF
    A ground-based aerial-tracking instrument, known as the Ground Tracker, designed to provide spectral data to quantify greenhouse gases is under development. The Ground Tracker includes an Optical System including a high power rifle scope, video camera, and spectrometer used to locate an active light source from the Emitter, and collect spectral data by utilizing an actuating mirror. The implementation of this instrument could be made low cost by utilizing existing weather balloon infrastructure to allow the Emitter to be placed into the lower stratosphere. The recovery of the emitter will be possible by tracking the GPS coordinates. Weather balloon instrument packages contain shipping instructions and postage for those packages that go beyond GPS range or are lost. The Ground Tracker and Emitter Gimbal, while not ready for implementation, demonstrate the feasibility of a spectroscopy system that could provide important data for climate observation and modeling at temporal and spatial resolutions not currently available to state-of-the-art satellites

    Laser action generated within a light pipe: A concept

    Get PDF
    Laser light could be generated within light pipe itself, thereby eliminating coupling losses. Theoretical calculations have shown feasibility of light-pipe laser propagating in circularly-polarized TE mode. It is predicted that fiber-optic distributed-feedback laser would have gain on order of 25 dB

    Review of Human Vision Facts

    Get PDF
    Work reported herein was conducted at the Artificial Intelligence Laboratory, a Massachusetts Institute of Technology research program supported in part by the Advanced Research Projects Agency of the Department of Defense and monitored by the Office of Naval Research under Contract Number N00014-70-A-0362-0005. Vision Flashes are informal papers intended for internal use.This note is a collection of well known interesting facts about human vision. All parameters are approximate. Some may be wrong. There are sections on retina physiology, eye optics, light adaptation, psychological curios, color and eyeball movement.MIT Artificial Intelligence Laboratory Robotics Section Department of Defense Advanced Research Projects Agenc

    Wide-field reflective scanning optical systems

    Get PDF
    Catoptric optical scanning system provides relatively fast line-scan rate for two-dimensional coverage. Rapid scan rates require low focal ratios between components and smallest possible masses. System is relatively free from monochromatic defects and chromatic aberrations
    • …
    corecore